請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91510
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 梁啟德 | zh_TW |
dc.contributor.advisor | Chi-Te Liang | en |
dc.contributor.author | 蕭其峯 | zh_TW |
dc.contributor.author | Chi-Feng Hsiao | en |
dc.date.accessioned | 2024-01-28T16:19:24Z | - |
dc.date.available | 2024-02-24 | - |
dc.date.copyright | 2024-01-27 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-07-07 | - |
dc.identifier.citation | 1. Novoselov, K.S., et al., Electric Field Effect in Atomically Thin Carbon Films. Science, 2004. 306(5696): p. 666-669.
2. Liu, F., Mechanical exfoliation of large area 2D materials from vdW crystals. Progress in Surface Science, 2021. 96(2): p. 100626. 3. Li, X., et al., Graphene and related two-dimensional materials: Structure-property relationships for electronics and optoelectronics. Applied Physics Reviews, 2017. 4(2): p. 021306. 4. Guo, H.-W., et al., Stacking of 2D Materials. Advanced Functional Materials, 2021. 31(4): p. 2007810. 5. Wikipedia. Available from: https://en.wikipedia.org/wiki/High-temperature_superconductivity. 6. Xiao, L., et al., Development of the World's First HTS Power Substation. IEEE Transactions on Applied Superconductivity, 2012. 22(3): p. 5000104-5000104. 7. Hellmann, S., et al., Current Limitation Experiments on a 1 MVA-Class Superconducting Current Limiting Transformer. IEEE Transactions on Applied Superconductivity, 2019. 29(5): p. 1-6. 8. Yoon, J.y., S.R. Lee, and J.Y. Kim, Application Methodology for 22.9 kV HTS Cable in Metropolitan City of South Korea. IEEE Transactions on Applied Superconductivity, 2007. 17(2): p. 1656-1659. 9. Yang, B., et al., Qualification Test of a 80 kV 500 MW HTS DC Cable for Applying Into Real Grid. IEEE Transactions on Applied Superconductivity, 2015. 25(3): p. 1-5. 10. Lee, S.J., et al., Recent Status and Progress on HTS Cables for AC and DC Power Transmission in Korea. IEEE Transactions on Applied Superconductivity, 2018. 28(4): p. 1-5. 11. Kwon, Y.K., et al., Performance test of a 1MW class HTS synchronous motor for industrial application. Physica C: Superconductivity, 2008. 468(15): p. 2081-2086. 12. Sivasubramaniam, K., et al. Development of a high speed multi-megawatt HTS generator for airborne applications. in 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century. 2008. 13. Müller, K.A. and J.G. Bednorz, The Discovery of a Class of High-Temperature Superconductors. Science, 1987. 237(4819): p. 1133-1139. 14. Bednorz, J.G. and K.A. Müller, Possible high Tc superconductivity in the Ba−La−Cu−O system. Zeitschrift für Physik B Condensed Matter, 1986. 64(2): p. 189-193. 15. Wu, M.K., et al., Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Physical Review Letters, 1987. 58(9): p. 908-910. 16. Sheng, Z.Z. and A.M. Hermann, Bulk superconductivity at 120 K in the Tl–Ca/Ba–Cu–O system. Nature, 1988. 332(6160): p. 138-139. 17. Maeda, H., et al., A New High-Tc Oxide Superconductor without a Rare Earth Element. Japanese Journal of Applied Physics, 1988. 27(2A): p. L209. 18. Rybicki, D., et al., Perspective on the phase diagram of cuprate high-temperature superconductors. Nature Communications, 2016. 7(1): p. 11413. 19. He, Y., High-temperature superconductivity survives. Nature Materials, 2023. 22(6): p. 671-672. 20. Monthoux, P., A.V. Balatsky, and D. Pines, Toward a theory of high-temperature superconductivity in the antiferromagnetically correlated cuprate oxides. Physical Review Letters, 1991. 67(24): p. 3448-3451. 21. Pines, D., The Spin Fluctuation Model for High Temperature Superconductivity: Progress and Prospects, in The Gap Symmetry and Fluctuations in High-Tc Superconductors, J. Bok, et al., Editors. 1998, Springer US: Boston, MA. p. 111-142. 22. Tsen, A.W., et al., Nature of the quantum metal in a two-dimensional crystalline superconductor. Nature Physics, 2016. 12(3): p. 208-212. 23. Navarro-Moratalla, E., et al., Enhanced superconductivity in atomically thin TaS2. Nature Communications, 2016. 7(1): p. 11043. 24. Ge, J.-F., et al., Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3. Nature Materials, 2015. 14(3): p. 285-289. 25. Hanping, M., et al., Development of round multifilament Bi-2212/Ag wires for high field magnet applications. IEEE Transactions on Applied Superconductivity, 2005. 15(2): p. 2554-2557. 26. Bjoerstad, R., et al., Strain induced irreversible critical current degradation in highly dense Bi-2212 round wire. Superconductor Science and Technology, 2015. 28(6): p. 062002. 27. Liu, G., et al., Two-Dimensional Bi2Sr2CaCu2O8+δ Nanosheets for Ultrafast Photonics and Optoelectronics. ACS Nano, 2021. 15(5): p. 8919-8929. 28. Chen, S.-D., et al., Incoherent strange metal sharply bounded by a critical doping in Bi2212. Science, 2019. 366(6469): p. 1099-1102. 29. Kundu, A.K., et al., Origin of Suppression of Proximity-Induced Superconductivity in Bi/Bi2Sr2CaCu2O8+δ Heterostructures. Advanced Quantum Technologies, 2020. 3(9): p. 2000038. 30. Pan, S.H., et al., Imaging and identification of atomic planes of cleaved Bi2Sr2CaCu2O8+δ by high resolution scanning tunneling microscopy. Applied Physics Letters, 1998. 73(1): p. 58-60. 31. Lindberg, P.A.P., et al., Reaction of Rb and oxygen overlayers with single-crystalline Bi2Sr2CaCu2O8+δ superconductors. Physical Review B, 1989. 39(4): p. 2890-2893. 32. Aebi, P., et al., Complete Fermi surface mapping of Bi2Sr2CaCu2O8+x (001): Coexistence of short range antiferromagnetic correlations and metallicity in the same phase. Physical Review Letters, 1994. 72(17): p. 2757-2760. 33. Saini, N.L., et al., Topology of the Pseudogap and Shadow Bands in Bi2Sr2CaCu2O8+δ at Optimum Doping. Physical Review Letters, 1997. 79(18): p. 3467-3470. 34. Ding, H., et al., Coherent Quasiparticle Weight and Its Connection to High- Tc Superconductivity from Angle-Resolved Photoemission. Physical Review Letters, 2001. 87(22): p. 227001. 35. Lang, K.M., et al., Imaging the granular structure of high-Tc superconductivity in underdoped Bi2Sr2CaCu2O8+δ. Nature, 2002. 415(6870): p. 412-416. 36. Damascelli, A., Z. Hussain, and Z.-X. Shen, Angle-resolved photoemission studies of the cuprate superconductors. Reviews of Modern Physics, 2003. 75(2): p. 473-541. 37. Miller, T.L., et al., Resolving unoccupied electronic states with laser ARPES in bismuth-based cuprate superconductors. Physical Review B, 2015. 91(8): p. 085109. 38. Gotlieb, K., et al., Revealing hidden spin-momentum locking in a high-temperature cuprate superconductor. Science, 2018. 362(6420): p. 1271-1275. 39. Ai, P., et al., Distinct Superconducting Gap on Two Bilayer-Split Fermi Surface Sheets in Bi2Sr2CaCu2O8+δ Superconductor*. Chinese Physics Letters, 2019. 36(6): p. 067402. 40. Ding, Y., et al., Disappearance of Superconductivity and a Concomitant Lifshitz Transition in Heavily Overdoped Bi2Sr2CuO6 Superconductor Revealed by Angle-Resolved Photoemission Spectroscopy*. Chinese Physics Letters, 2019. 36(1): p. 017402. 41. Barbiellini, B., et al., Gap distribution of the tunneling spectra in Bi2Sr2CaCu2Ox and some other superconductors. Physica C: Superconductivity, 1994. 220(1): p. 55-60. 42. McElroy, K., et al., Relating atomic-scale electronic phenomena to wave-like quasiparticle states in superconducting Bi2Sr2CaCu2O8+δ. Nature, 2003. 422(6932): p. 592-596. 43. Fang, A.C., et al., Gap-Inhomogeneity-Induced Electronic States in Superconducting Bi2Sr2CaCu2O8+δ. Physical Review Letters, 2006. 96(1): p. 017007. 44. Fischer, Ø., et al., Scanning tunneling spectroscopy of high-temperature superconductors. Reviews of Modern Physics, 2007. 79(1): p. 353-419. 45. Dudy, L., et al., Structure, Superstructure and Charge Order in Bi-Cuprates. Journal of Superconductivity and Novel Magnetism, 2009. 22(1): p. 51-55. 46. Nieminen, J., et al., Evidence of strong correlations at the van Hove singularity in the scanning tunneling spectra of superconducting Bi2Sr2CaCu2O8+δ single crystals. Physical Review B, 2012. 85(21): p. 214504. 47. Mistark, P., R.S. Markiewicz, and A. Bansil, Nanoscale phase separation in deeply underdoped Bi2Sr2Cu2O6+δ and Ca2CuO2Cl2. Physical Review B, 2015. 91(14): p. 140501. 48. Kuo, C.-T., et al., Atomic-layer-resolved composition and electronic structure of the cuprate Bi2Sr2CaCu2O8+δ from soft x-ray standing-wave photoemission. Physical Review B, 2018. 98(15): p. 155133. 49. Novoselov, K.S., et al., Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences, 2005. 102(30): p. 10451-10453. 50. Yu, Y., et al., High-temperature superconductivity in monolayer Bi2Sr2CaCu2O8+δ. Nature, 2019. 575(7781): p. 156-163. 51. Zeljkovic, I., et al., Scanning tunnelling microscopy imaging of symmetry-breaking structural distortion in the bismuth-based cuprate superconductors. Nature Materials, 2012. 11(7): p. 585-589. 52. Ivanov, A.A., et al., Local Noncentrosymmetric Structure of Bi2Sr2CaCu2O8+y by X-ray Magnetic Circular Dichroism at Cu K-Edge XANES. Journal of Superconductivity and Novel Magnetism, 2018. 31(3): p. 663-670. 53. Rajasekaran, S., et al., Probing optically silent superfluid stripes in cuprates. Science, 2018. 359(6375): p. 575-579. 54. Gerber, S., et al., Three-dimensional charge density wave order in YBa2Cu3O6.67 at high magnetic fields. Science, 2015. 350(6263): p. 949-952. 55. Bluschke, M., et al., Stabilization of three-dimensional charge order in YBa2Cu3O6+x via epitaxial growth. Nature Communications, 2018. 9(1): p. 2978. 56. Hepting, M., et al., Three-dimensional collective charge excitations in electron-doped copper oxide superconductors. Nature, 2018. 563(7731): p. 374-378. 57. Schneider, T., Dimensional crossover in cuprate superconductors. Zeitschrift für Physik B Condensed Matter, 1991. 85(2): p. 187-195. 58. Guo, J., et al., Crossover from two-dimensional to three-dimensional superconducting states in bismuth-based cuprate superconductor. Nature Physics, 2020. 16(3): p. 295-300. 59. Jin, S.-G., et al., Water reactions of superconducting Bi2Sr2CaCu2O8 phase at 0°C and ambient temperature. Solid State Communications, 1990. 74(10): p. 1087-1090. 60. Holt, S.A., R. Zhao, and S. Myhra, Aqueous degradation of Bi-2212 single crystals: an AFM study of surface alteration. Applied Surface Science, 1995. 84(2): p. 125-131. 61. Yang, L., et al., Degradation mechanism of Bi2Sr2CaCu2Oy single crystal in humid atmosphere. Physica C: Superconductivity, 1997. 282-287: p. 825-826. 62. Lee, D., R.A. Condrate Sr, and J.A. Taylor, The environmental degradation mechanism and protective organic thin film coatings on a high-temperature bismuth–cuprate superconductor. Physica C: Superconductivity, 2001. 350(1): p. 1-16. 63. Huang, Y., et al., Unveiling the Degradation Mechanism of High-Temperature Superconductor Bi2Sr2CaCu2O8+δ in Water-Bearing Environments. ACS Applied Materials & Interfaces, 2022. 14(34): p. 39489-39496. 64. Diez, J.C., et al., Environmental Degradation Effect on the Properties of Bi-2212 Highly Textured Rods. Journal of Superconductivity and Novel Magnetism, 2013. 26(4): p. 895-900. 65. Cardona, M., et al., Raman scattering on superconducting crystals of Bi2(Sr1−xCax)n+2Cun+1O(6+2n)+δ (n = 0, 1). Solid State Communications, 1988. 66(12): p. 1225-1230. 66. Denisov, V.N., et al., Raman spectra of superconducting Bi-Sr-Ca-Cu-O single crystals. Solid State Communications, 1989. 70(9): p. 885-888. 67. Sugai, S. and M. Sato, Magnon and phonon Raman scattering in Bi2Sr2Ca1-xYxCu2O8+y. Physical Review B, 1989. 40(13): p. 9292-9295. 68. Boekholt, M., et al., Phonon Raman spectroscopy of superconducting Bi2Sr2CaCu2O8+δ single crystals. Solid State Communications, 1990. 74(10): p. 1107-1112. 69. Slakey, F., et al., Raman properties intrinsic to superconductivity in the Bi-Sr-Ca-Cu-O system. Physical Review B, 1990. 41(4): p. 2109-2112. 70. Boekholt, M., et al., Raman scattering in Bi2Sr2Ca1−x(Y,Er,Tm)xCu2O8+δ single crystals. Physica C: Superconductivity, 1991. 185-189: p. 1035-1036. 71. Liu, R., et al., Raman scattering from A g and B1g phonons in Bi2 Sr2Can−1CunO2n+4 (n= 1, 2). Physical Review B, 1992. 45(13): p. 7392. 72. Martinez, S., et al., The a-b anisotropy in Bi2Sr2CaCu2O8 superconductor: An investigation by Raman spectroscopy. Physica C: Superconductivity, 1992. 200(3): p. 307-314. 73. Martin, A.A. and M.J.G. Lee, Oxygen isotope effect on the vibrational modes of Bi2Sr2CaCu2O8+δ. Physica C: Superconductivity, 1995. 254(3): p. 222-232. 74. Kakihana, M., et al., Raman-active phonons in Bi2Sr2Ca1− xYxCu2O8+δ (x= 0–1): Effects of hole filling and internal pressure induced by Y doping for Ca, and implications for phonon assignments. Physical Review B, 1996. 53(17): p. 11796-11806. 75. Pantoja, A.E., et al., Oxygen-isotope effect on the high-frequency Raman phonons in Bi2Sr2CaCu2O8+δ. Physical Review B, 1998. 58(9): p. 5219-5221. 76. Yelpo, C., et al., Electronic and vibrational properties of the high Tc superconductor Bi2Sr2CaCu2O8: an ab initio study. Journal of Physics: Condensed Matter, 2021. 33(18): p. 185705. 77. Kim, B.-K., et al., Raman spectroscopic evidence of site-selective isotopic substitution of oxygen in Bi2Sr2Ca0.8Y0.2Cu2O8+δ and mode assignments of oxygen vibrations. Physical Review B, 1994. 49(21): p. 15388. 78. Dimesso, L., et al., Effects of annealing under reducing atmosphere on BSCCO 2212 textured thick films prepared by partial melting techniques. Physica C: Superconductivity, 1992. 203(3): p. 403-410. 79. Wu, W., et al., Effect of annealing on the superconductivity of Bi2Sr2CaCu2Oy single crystals. Physical Review B, 1994. 49(2): p. 1315-1319. 80. Zhu, J.-S., et al., Time effect of annealing on Bi2Sr2CaCu2Oy single crystals. Physica C: Superconductivity, 1996. 256(3): p. 331-334. 81. Zhao, X.-r., et al., Oxygen-Diffusion and Structural Modification in Air-Annealed Superconducting Bi2Sr2CaCu2Oy Single Crystals. Chinese Physics Letters, 1997. 14(12): p. 936. 82. Theoretical Fundamentals of Raman Scattering in Solids, in Raman Spectroscopy and its Application in Nanostructures. 2012. p. 199-247. 83. Loudon, R., The Raman effect in crystals. Advances in Physics, 1964. 13(52): p. 423-482. 84. Lax, M. and E. Burstein, Infrared Lattice Absorption in Ionic and Homopolar Crystals. Physical Review, 1955. 97(1): p. 39-52. 85. Saksena, B.D., Raman effect and crystal symmetry. Proceedings of the Indian Academy of Sciences - Section A, 1940. 11(3): p. 229-245. 86. Ovander, L., The form of the Raman tensor. Optics and spectroscopy, 1960. 9: p. 302. 87. Chen, S.-Y., et al., Helicity-Resolved Raman Scattering of MoS2, MoSe2, WS2, and WSe2 Atomic Layers. Nano Letters, 2015. 15(4): p. 2526-2532. 88. Kadleı́ková, M., J. Breza, and M. Veselý, Raman spectra of synthetic sapphire. Microelectronics Journal, 2001. 32(12): p. 955-958. 89. Liu, B., et al., Temperature dependence of sapphire fiber Raman scattering. Optics Letters, 2015. 40(9): p. 2041-2044. 90. Thapa, J., et al., Raman scattering in single-crystal sapphire at elevated temperatures. Applied optics, 2017. 56(31): p. 8598-8606. 91. Huang, Y., et al., Reliable Exfoliation of Large-Area High-Quality Flakes of Graphene and Other Two-Dimensional Materials. ACS Nano, 2015. 9(11): p. 10612-10620. 92. Watanabe, K., T. Taniguchi, and H. Kanda, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nature materials, 2004. 3(6): p. 404-409. 93. Frisenda, R., et al., Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials. Chemical Society Reviews, 2018. 47(1): p. 53-68. 94. Baker, M.J., C.S. Hughes, and K.A. Hollywood, Biophotonics: Vibrational Spectroscopic Diagnostics. 2016, Morgan & Claypool Publishers. 95. Raman, C.V. and K.S. Krishnan, A New Type of Secondary Radiation. Nature, 1928. 121(3048): p. 501-502. 96. Ornstein, L. and J. Rekveld, Intensity measurements in the Raman effect and the distribution law of Maxwell-Boltzmann. Physical Review, 1929. 34(5): p. 720. 97. Raman, C.V. and K.S. Krishnan, The production of new radiations by light scattering. —Part I. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1929. 122(789): p. 23-35. 98. Landsberg, G. and L. Mandelstam, Lichtzerstreuung in Kristallen bei hoher Temperatur. II. Zeitschrift für Physik, 1930. 60(5-6): p. 364-375. 99. Venkateswarlu, K., Relative intensities of stokes and anti-stokes Raman lines in crystals. Proceedings of the Indian Academy of Sciences - Section A, 1941. 13(1): p. 64-67. 100. Khan, P., et al., Excitation of coherent optical phonons in iron garnet by femtosecond laser pulses. Journal of Physics: Condensed Matter, 2019. 31(27): p. 275402. 101. Martinsson, L., P.E. Bengtsson, and M. Aldén, Oxygen concentration and temperature measurements in N2–O2 mixtures using rotational coherent anti-Stokes Raman spectroscopy. Applied Physics B, 1996. 62(1): p. 29-37. 102. Ohno, H., Y. Iizuka, and S. Fujita, Pure rotational Raman spectroscopy applied to N2/O2 analysis of air bubbles in polar firn. Journal of Glaciology, 2021. 67(265): p. 903-908. 103. Kuzuba, T., et al., A low frequency Raman-active vibration of hexagonal boron nitride. Solid State Communications, 1978. 25(11): p. 863-865. 104. Stenger, I., et al., Low frequency Raman spectroscopy of few-atomic-layer thick hBN crystals. 2D Materials, 2017. 4(3): p. 031003. 105. Baclayon, M., G.J.L. Wuite, and W.H. Roos, Imaging and manipulation of single viruses by atomic force microscopy. Soft Matter, 2010. 6(21): p. 5273-5285. 106. Song, D., et al., Visualization of Dopant Oxygen Atoms in a Bi2Sr2CaCu2O8+δ Superconductor. Advanced Functional Materials, 2019. 29(45): p. 1903843. 107. Prade, J., et al., Calculation of Raman- and infrared-active modes of Bi2Sr2CaCu2O8. Physical Review B, 1989. 39(4): p. 2771-2774. 108. Claus, F. and S. Frank, Infrared- and Raman-active modes of Bi-based cuprate superconductors calculated in a microscopic model. Journal of Physics: Condensed Matter, 2003. 15(49): p. 8495. 109. Kovaleva, N.N., et al., $c$-axis lattice dynamics in Bi-based cuprate superconductors. Physical Review B, 2004. 69(5): p. 054511. 110. Hart, L., et al., Rhenium Dichalcogenides: Layered Semiconductors with Two Vertical Orientations. Nano Letters, 2016. 16(2): p. 1381-1386. 111. Zhang, S., et al., Anomalous Polarized Raman Scattering and Large Circular Intensity Differential in Layered Triclinic ReS2. ACS Nano, 2017. 11(10): p. 10366-10372. 112. Wu, R., et al., Anomalous polarization pattern evolution of Raman modes in few-layer ReS2 by angle-resolved polarized Raman spectroscopy. Nanoscale, 2022. 14(5): p. 1896-1905. 113. Ribeiro, H.B., et al., Unusual Angular Dependence of the Raman Response in Black Phosphorus. ACS Nano, 2015. 9(4): p. 4270-4276. 114. Ling, X., et al., Anisotropic electron-photon and electron-phonon interactions in black phosphorus. Nano letters, 2016. 16(4): p. 2260-2267. 115. Mao, N., et al., Birefringence‐Directed Raman Selection Rules in 2D Black Phosphorus Crystals. Small, 2016. 12(19): p. 2627-2633. 116. Kranert, C., et al., Raman Tensor Formalism for Optically Anisotropic Crystals. Physical Review Letters, 2016. 116(12): p. 127401. 117. Xu, J., et al., Raman spectra of CuO nanocrystals. Journal of Raman spectroscopy, 1999. 30(5): p. 413-415. 118. Depablos-Rivera, O., A. Martínez, and S.E. Rodil, Interpretation of the Raman spectra of bismuth oxide thin films presenting different crystallographic phases. Journal of Alloys and Compounds, 2021. 853: p. 157245. 119. Morales-Ramos, C.B., et al., δ-Bi2O3 nanoparticles obtained by laser ablation of solids in liquids. Materials Letters, 2022. 309: p. 131415. 120. Liu, G., et al., Controllable synthesis of α-Bi2O3 and γ-Bi2O3 with high photocatalytic activity by α-Bi2O3→γ-Bi2O3→α-Bi2O3 transformation in a facile precipitation method. Journal of Alloys and Compounds, 2016. 689: p. 787-799. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91510 | - |
dc.description.abstract | 鉍鍶鈣銅氧(BSCCO)是層狀銅氧化物家族中具有高溫超導潛力的材料之一,其臨界溫度高於液氮溫度(77 K)。本論文專注於最廣泛研究的Bi2Sr2CaCu2O8+x (Bi-2212),我們製備了高品質的Bi-2212樣品,並使用拉曼光譜研究其晶格振動模態。透過在平行和垂直偏振散射下進行晶體取向和偏振解析的測量,以及進行對稱性分析,我們闡明了聲子振動模式的特性。大部分拉曼活性模式可歸因於三斜晶系Ci結構中的Ag對稱性,與通常認定的正交D2h結構有所不同。然而在垂直偏振光譜中,我們觀察到幾個聲子模式呈現異常的對稱性破壞,形成了二重對稱性,這與Ag聲子模態的典型四重對稱性不同,其異常行為歸因於非零的拉曼張量元素和各異向性晶體所引起的光學異向吸收與雙折射效應。論文的第二部分,我們利用拉曼光譜研究了Bi-2212在不同實驗條件下的化學穩定性。拉曼光譜顯示,未老化的Bi-2212樣品在高達500 ℃的熱處理後其振動模式保持不變。然而,老化的樣品在退火過程中易受損,並產生了新的副產物(例如CuO、BiOx)。我們的研究結果為未來基於BSCCO的元件製程提供了有價值的資訊。 | zh_TW |
dc.description.abstract | Bismuth strontium calcium copper oxide (BSCCO) is one of the promising high-temperature superconductors in the family of layered copper oxides, which exhibit high critical temperature (Tc) above liquid nitrogen temperature (77 K). In this thesis, we focus on the most generally studied family of Bi2Sr2CaCu2O8+x (Bi-2212). We fabricate high-quality, layered Bi-2212 samples and perform Raman spectroscopy to study their lattice vibration modes. By measuring the crystal-orientation- and polarization-resolved spectra in both parallel (HH) and crossed (HV) polarization scattering geometries and performing symmetry analysis, we clarify the characteristics of the phonon vibration modes. In the back-scattering geometry, most of the Raman active modes can be attributed to Ag symmetry in the triclinic Ci structure, in contrast to the commonly assumed orthorhombic D2h structure. Interestingly, in HV scattered spectra, we observe an anomalous symmetry-breaking to a two-fold symmetry from several phonon modes, in contrast to the typically four-fold symmetry of Ag phonons. We attribute this anomalous behavior to the birefringence effect and optical absorption of the anisotropic crystal. In the second part of the thesis, we employ Raman spectroscopy to study the chemical stability of Bi-2212 in various experimental conditions. The Raman spectra show that the vibrational modes of the freshly cleaved Bi-2212 flakes remained unchanged after thermal treatment up to 500 ℃. However, the aged Bi-2212 samples are prone to damage as evidenced by new byproducts (e.g., CuO, BiOx) during thermal annealing. Our results provide valuable information for fabricating BSCCO-based devices in the future. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-01-28T16:19:24Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-01-28T16:19:24Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vii LIST OF TABLES xiv Chapter 1 Introduction 1 1.1 Two-dimensional material 1 1.2 High-temperature superconductors 3 1.3 Bismuth strontium calcium copper oxide 7 1.4 Paper review: Raman studies in BSCCO 12 1.5 Motivation 21 Chapter 2 Theory 22 2.1 Origin of Raman scattering 22 2.2 Raman scattering process theory 23 2.3 Polarization and symmetry selection rules 27 Chapter 3 Experiment apparatus and methods 30 3.1 Fabrication of Bi-2212 samples 30 3.1.1 The fabrication process of Bi-2212 samples 30 3.1.2 Transfer hBN using PDMS dry transfer method 31 3.2 Optical measurement 34 3.2.1 Raman measurement 34 3.2.2 Polarized and crystal-angle-resolved Raman measurement 36 3.2.3 Bi-2212 Raman data processing 38 3.3 Furnace annealing systems 39 3.4 Atomic force microscopy 41 Chapter 4 Polarized Raman scattering in Bi-2212 42 4.1 Space group and group symmetry of Bi-2212 42 4.2 Raman spectra of Bi-2212 48 4.2.1 Single-crystalline of Bi-2212 48 4.2.2 Polarized Raman spectra of Bi-2212 and peak assignment 50 4.3 Raman intensity dependence on crystal orientation 60 4.3.1 The classical Raman selection rule 60 4.3.2 The Raman selection rule with considering the birefringence effect and the anisotropic absorption 64 4.3.3 The anomalous mode with asymmetric lineshape 71 4.4 Summary 73 Chapter 5 Analysis Bi-2212 chemical stability using Raman spectroscopy 75 5.1 Bi-2212 stability under different storage conditions 75 5.2 Bi-2212 stability under different thermal treatments 77 5.2.1 Aged Bi-2212 samples under Ar/O2 annealing 77 5.2.2 Aged Bi-2212 samples under vacuum annealing 83 5.2.3 Freshly cleaved Bi-2212 samples under Ar/O2 and vacuum annealing 89 Chapter 6 Conclusion 94 Future Prospect 96 REFERENCES 97 | - |
dc.language.iso | en | - |
dc.title | 利用偏振解析拉曼散射研究層狀鉍鍶鈣銅氧之晶格對稱性及熱穩定性 | zh_TW |
dc.title | Studies of Crystal Symmetry and Thermal Stability of Layered Bismuth Strontium Calcium Copper Oxide Using Polarization-resolved Raman Scattering | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 王偉華 | zh_TW |
dc.contributor.coadvisor | Wei-Hua Wang | en |
dc.contributor.oralexamcommittee | 林昭吟 | zh_TW |
dc.contributor.oralexamcommittee | Jauyn-Grace Lin | en |
dc.subject.keyword | 鉍鍶鈣銅氧,偏振解析拉曼光譜,光學吸收,熱可靠性, | zh_TW |
dc.subject.keyword | Bi-2212,Polarization-resolved Raman,Optical absorption,Thermal reliability, | en |
dc.relation.page | 103 | - |
dc.identifier.doi | 10.6342/NTU202301379 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-07-10 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 應用物理研究所 | - |
顯示於系所單位: | 應用物理研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 此日期後於網路公開 2026-07-06 | 8.86 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。