請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91488
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 管傑雄 | zh_TW |
dc.contributor.advisor | Chieh-Hsiung Kuan | en |
dc.contributor.author | 陳博鈞 | zh_TW |
dc.contributor.author | Po-Chun Chen | en |
dc.date.accessioned | 2024-01-28T16:13:30Z | - |
dc.date.available | 2024-01-29 | - |
dc.date.copyright | 2024-01-27 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-08 | - |
dc.identifier.citation | 參考文獻
[1] Cheng, J., Sun, X., Zhou, S., Pu, X., Xu, N., Xu, Y., & Liu, W. (2019). Ultra-compact structured light projector with all-dielectric metalenses for 3D sensing. AIP Advances, 9(10). [2] Dummer, M., Johnson, K., Rothwell, S., Tatah, K., & Hibbs-Brenner, M. (2021, March). The role of VCSELs in 3D sensing and LiDAR. In Optical Interconnects XXI (Vol. 11692, pp. 42-55). SPIE. [3] Geng, J. (2011). Structured-light 3D surface imaging: a tutorial. Advances in optics and photonics, 3(2), 128-160. [4] Ohara. (2021, March 8). 精密模压非球面透镜用光学玻璃. https://www.ohara-inc.co.jp/cn/product/low_tg/ [5] Liu, Y., & Zhang, X. (2011). Metamaterials: a new frontier of science and technology. Chemical Society Reviews, 40(5), 2494-2507. [6] Veselago, V. G. (1967). Electrodynamics of substances with simultaneously negative and. Usp. fiz. nauk, 92(7), 517. [7] Shelby, R. A., Smith, D. R., & Schultz, S. (2001). Experimental verification of a negative index of refraction. science, 292(5514), 77-79. [8] Hu, J., Bandyopadhyay, S., Liu, Y. H., & Shao, L. Y. (2021). A review on metasurface: from principle to smart metadevices. Frontiers in Physics, 8, 586087. [9] Xie, Y. Y., Ni, P. N., Wang, Q. H., Kan, Q., Briere, G., Chen, P. P., ... & Genevet, P. (2020). Metasurface-integrated vertical cavity surface-emitting lasers for programmable directional lasing emissions. Nature nanotechnology, 15(2), 125-130. [10] Yu, N., Genevet, P., Kats, M. A., Aieta, F., Tetienne, J. P., Capasso, F., & Gaburro, Z. (2011). Light propagation with phase discontinuities: generalized laws of reflection and refraction. science, 334(6054), 333-337. [11] Zetie, K. P., Adams, S. F., & Tocknell, R. M. (2000). How does a Mach-Zehnder interferometer work?. Physics Education, 35(1), 46. [12] Physicsopenlab. (2020, May 28). Mach – Zehnder Interferometer. https://physicsopenlab.org/2020/05/28/mach-zehnder-interferometer/ [13] Thierry ruchon. (2013). Orbital and Spin Angular Momenta of XUV Light. https://iramis.cea.fr/LIDYL/ATTO/Published/research/OAMSAM.html [14] Padgett, M. J. (2013, March). Light in a twist: optical angular momentum. In Complex Light and Optical Forces VII (Vol. 8637, p. 863702). SPIE. [15] Masters, B. R., & Masters, B. R. (2020). Stimulated Emission Depletion Microscopy and Related Techniques. Superresolution Optical Microscopy: The Quest for Enhanced Resolution and Contrast, 261-305. [16] Massari, M., Ruffato, G., Gintoli, M., Ricci, F., & Romanato, F. (2015). Fabrication and characterization of high-quality spiral phase plates for optical applications. Applied Optics, 54(13), 4077-4083. [17] Wang, X., Nie, Z., Liang, Y., Wang, J., Li, T., & Jia, B. (2018). Recent advances on optical vortex generation. Nanophotonics, 7(9), 1533-1556. [18] Ozer, A., Yilmaz, N., Kocer, H., & Kurt, H. (2018). Polarization-insensitive beam splitters using all-dielectric phase gradient metasurfaces at visible wavelengths. Optics Letters, 43(18), 4350-4353. [19] Chen, X., Huang, L., Mühlenbernd, H., Li, G., Bai, B., Tan, Q., ... & Zentgraf, T. (2012). Dual-polarity plasmonic metalens for visible light. Nature communications, 3(1), 1198. [20] Zhang, D., Ren, M., Wu, W., Gao, N., Yu, X., Cai, W., ... & Xu, J. (2018). Nanoscale beam splitters based on gradient metasurfaces. Optics letters, 43(2), 267-270. [21] Hsiao, H. H., Chu, C. H., & Tsai, D. P. (2017). Fundamentals and applications of metasurfaces. Small Methods, 1(4), 1600064. [22] Papatryfonos, K., Angelova, T., Brimont, A., Reid, B., Guldin, S., Smith, P. R., ... & Selviah, D. R. (2021). Refractive indices of MBE-grown AlxGa (1− x) As ternary alloys in the transparent wavelength region. AIP Advances, 11(2). [23] Pedersen, H., & Elliott, S. D. (2014). Studying chemical vapor deposition processes with theoretical chemistry. Theoretical Chemistry Accounts, 133, 1-10. [24] Vasudev, M. C., Anderson, K. D., Bunning, T. J., Tsukruk, V. V., & Naik, R. R. (2013). Exploration of plasma-enhanced chemical vapor deposition as a method for thin-film fabrication with biological applications. ACS applied materials & interfaces, 5(10), 3983-3994. [25] Elveflow. HOW TO CHOOSE THE RIGHT SPIN COATER FOR THE PHOTOLITHOGRAPHY OF THE SU-8 MICROFLUIDIC MOLD? https://www.elveflow.com/microfluidic-reviews/soft-lithography-microfabrication/su-8-photolithography-spin-coater/ [26] Altissimo, M. (2010). E-beam lithography for micro-/nanofabrication. Biomicrofluidics, 4(2). [27] 俊尚科技. (2021). 真空鍍膜技術簡介. https://www.junsun.com.tw/zh/fundamentals-cht/vacuum-coating-technologies-cht [28] Karouta, F. (2014). A practical approach to reactive ion etching. Journal of Physics D: Applied Physics, 47(23), 233501. [29] Huff, M. (2021). Recent advances in reactive ion etching and applications of high-aspect-ratio microfabrication. Micromachines, 12(8), 991. [30] López de la Rosa, F., Sánchez-Reolid, R., Gómez-Sirvent, J. L., Morales, R., & Fernández-Caballero, A. (2021). A review on machine and deep learning for semiconductor defect classification in scanning electron microscope images. Applied Sciences, 11(20), 9508. [31] Akhtar, K., Khan, S. A., Khan, S. B., & Asiri, A. M. (2018). Scanning electron microscopy: Principle and applications in nanomaterials characterization. Handbook of materials characterization, 113-145. [32] Lim, W. T., Baek, I. G., Jung, P. G., Lee, J. W., Cho, G. S., Lee, J. I., ... & Pearton, S. J. (2004). Investigation of GaAs dry etching in a planar inductively coupled BCl3 plasma. Journal of the Electrochemical Society, 151(3), G163. [33] Vigneron, P. B., Joint, F., Isac, N., Colombelli, R., & Herth, E. (2018). Advanced and reliable GaAs/AlGaAs ICP-DRIE etching for optoelectronic, microelectronic and microsystem applications. Microelectronic Engineering, 202, 42-50. [34] Booker, K., Mayon, Y. O., Jones, C., Stocks, M., & Blakers, A. (2020). Deep, vertical etching for GaAs using inductively coupled plasma/reactive ion etching. Journal of Vacuum Science & Technology B, 38(1). [35] Omry morag. (n.d.). INTERFEROMETRY. https://www.tau.ac.il/~phchlab/exp-interferometry-theory.html | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91488 | - |
dc.description.abstract | 近年來,隨著3D感測器的應用範圍擴展到手機等攜帶式裝置的應用上,傳統3D感測器體積大的問題需要得到解決。傳統3D感測器是由許多透鏡組合而成,因此體積上較大也較笨重,如果使用的是超穎表面,將可以大大的縮小體積,對於整合進攜帶式裝置也較方便。因此本論文將利用超穎表面解決傳統光學元件體積大、重量重,功能較單一的缺點,並開發特殊的渦漩結構光,未來可應用在3D感測上。
本實驗為利用優化結構之砷化鎵奈米柱,並結合幾何相位分佈設計法(Pancharatnam-Berry Phase),開發出直徑分別為100微米以及50微米的砷化鎵超穎表面。砷化鎵奈米柱尺寸優化,為使用CST光學模擬系統進行數值模擬。在製程上,為了達到高深寬比的砷化鎵奈米柱,使用了感應耦合式電漿蝕刻(ICP-RIE)進行電漿蝕刻,該機台是一種能夠實現高深寬比的乾式蝕刻機台,我們在蝕刻參數上進行優化。並透過電子顯微鏡進行檢測,確保砷化鎵奈米柱的尺寸符合我們的設計。最後,在光學量測上,進行光強度的分析,以及使用馬赫-曾德爾干涉儀(Mach–Zehnder Interferometer)進行光干涉的量測。 | zh_TW |
dc.description.abstract | In recent years, with the expansion of the 3D sensing applications to portable devices such as mobile phones, the issue of the large size of traditional 3D sensors needs to be addressed. Traditional 3D sensors are composed of multiple lenses, making them bulky and heavy. By utilizing metasurfaces, the feature sizes of devices can be significantly reduced, making integration into portable devices more convenient. Therefore, this work aims to utilize metasurfaces to address the drawbacks of large size, heavy weight, and limited functionality in traditional optical components, and to develop specialized vortex-structured light that can be applied in future 3D sensing applications.
This study focuses on utilizing optimized gallium arsenide (GaAs) nanofins together with the Pancharatnam-Berry Phase design principle to develop metasurfaces with diameters of 100 and 50 µm, respectively. The optimization of GaAs nanofin dimensions was carried out using the CST software for numerical simulations. In the fabrication process, in order to achieve high-aspect-ratio GaAs nanofins, inductively coupled plasma reactive ion etching (ICP-RIE) was employed for plasma etching. ICP-RIE is capable of achieving high-aspect ratios in dry etching, and we optimized the etching parameters. Verification of the GaAs nanofin dimensions was conducted through scanning electron microscope (SEM) to ensure they matched our design. Finally, in terms of optical measurements, an analysis of light intensity was conducted, and a Mach–Zehnder Interferometer was used to measure optical interference. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-01-28T16:13:30Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-01-28T16:13:30Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審定書 ii
致謝 iii 摘要 iv Abstract v 目錄 vi 圖目錄 ix 表目錄 xiii 1 第一章 緒論 1 1.1 前言 1 1.2 3D感測技術 1 1.3 結構光(Structured Light) 2 1.4 傳統光學元件 3 1.5 超穎材料(Metamaterials) 4 1.6 超穎表面(Metasurface) 5 1.7 廣義司乃耳定律(Generlized Snell’s law) 6 1.8 菲涅耳方程式(Fresnel equations) 7 1.9 馬赫-曾德爾干涉儀(Mach–Zehnder interferometer) 8 1.10 光學角動量 11 1.11 光學渦漩光束 12 1.12 渦漩光束的生成 13 1.12.1 傳統方法的生成 13 1.12.2 超穎透鏡生成 14 2 第二章 元件設計 18 2.1 超穎表面材料選用 18 2.2 超穎表面相位分布 19 2.2.1 數值孔徑 20 2.2.2 結構週期 21 2.2.3 單元結構高度 21 2.3 超穎表面結合PB相位製作超穎透鏡 22 2.4 光路架構 23 2.4.1 光強度量測光路 23 2.4.2 光干涉量測光路 24 3 第三章 實驗儀器介紹 26 3.1 電漿輔助化學氣相沉積 26 3.2 旋轉塗佈機 28 3.3 電子束微影系統 28 3.4 電子束蒸鍍 30 3.5 反應離子蝕刻 32 3.6 感應耦合式電漿蝕刻 33 3.7 掃描式電子顯微鏡 34 4 第四章 製程步驟 36 4.1 材料選用 36 4.2 樣品清洗 36 4.3 PECVD沉積二氧化矽薄膜 36 4.4 旋塗光阻以及E-spacer 37 4.5 電子束微影製程 39 4.6 顯影 40 4.7 E-gun蒸鍍鉻金屬薄膜 41 4.8 去除光阻(Lift off) 41 4.9 RIE蝕刻二氧化矽 42 4.10 去除鉻金屬 43 4.11 ICP-RIE蝕刻砷化鎵 44 4.12 去除二氧化矽 45 5 第五章 實驗結果分析 46 5.1 超穎透鏡樣品檢測 46 5.2 量測與結果分析 49 5.2.1 ICP-RIE蝕刻砷化鎵奈米柱 49 5.2.2 光學量測 58 6 第六章 結論與未來展望 63 7 參考文獻 64 | - |
dc.language.iso | zh_TW | - |
dc.title | 應用於可見光波段的砷化鎵超穎表面 | zh_TW |
dc.title | Gallium Arsenide Metasurfaces at Visible Wavelengths | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 蘇國棟;蘇文生 | zh_TW |
dc.contributor.coadvisor | Guo-Dung Su;Vin-Cent Su | en |
dc.contributor.oralexamcommittee | 陳孟忻;孫允武;孫建文 | zh_TW |
dc.contributor.oralexamcommittee | Meng-Hsin Chen;Yuen-Wuu Suen;Kien-Wen Sun | en |
dc.subject.keyword | 超穎表面,砷化鎵,3D感測,結構光,感應耦合式電漿蝕刻, | zh_TW |
dc.subject.keyword | Metasuafaces,Gallium Arsenide,3D Sensing,Structured Light,ICP-RIE, | en |
dc.relation.page | 67 | - |
dc.identifier.doi | 10.6342/NTU202303449 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2023-08-10 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 光電工程學研究所 | - |
dc.date.embargo-lift | 2028-08-07 | - |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 目前未授權公開取用 | 4.26 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。