請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91485完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 游景雲 | zh_TW |
| dc.contributor.advisor | Gene J-Y You | en |
| dc.contributor.author | 郭胤賢 | zh_TW |
| dc.contributor.author | Yin-Sian Kuo | en |
| dc.date.accessioned | 2024-01-28T16:12:43Z | - |
| dc.date.available | 2024-01-29 | - |
| dc.date.copyright | 2024-01-27 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-23 | - |
| dc.identifier.citation | Anderson, E. I. (2003). An analytical solution representing groundwater–surface water interaction. Water Resources Research, 39(3).
Bencala, K. E. (1983). Simulation of solute transport in a mountain pool‐and‐riffle stream with a kinetic mass transfer model for sorption. Water resources research, 19(3), 732-738. Bencala, K. E., Gooseff, M. N., & Kimball, B. A. (2011). Rethinking hyporheic flow and transient storage to advance understanding of stream‐catchment connections. Water Resources Research, 47(3). Boulton, A. J., Findlay, S., Marmonier, P., Stanley, E. H., & Valett, H. M. (1998). The functional significance of the hyporheic zone in streams and rivers. Annual review of Ecology and systematics, 59-81. Boulton, A. J., & Hancock, P. J. (2006). Rivers as groundwater-dependent ecosystems: a review of degrees of dependency, riverine processes, and management implications. australian Journal of Botany, 54(2), 133-144. Brunke, M., & Gonser, T. O. M. (1997). The ecological significance of exchange processes between rivers and groundwater. Freshwater Biology, 37(1), 1-33. Brunner, P., Cook, P. G., & Simmons, C. T. (2009). Hydrogeologic controls on disconnection between surface water and groundwater. Water Resources Research, 45(1). Brunner, P., Simmons, C. T., & Cook, P. G. (2009). Spatial and temporal aspects of the transition from connection to disconnection between rivers, lakes, and groundwater. Journal of Hydrology, 376(1-2), 159-169. Brunner, P., Simmons, C. T., & Cook, P. G. (2009). Spatial and temporal aspects of the transition from connection to disconnection between rivers, lakes, and groundwater. Journal of Hydrology, 376(1-2), 159-169. Brunner, P., Simmons, C. T., Cook, P. G., & Therrien, R. (2010). Modeling surface water‐groundwater interaction with MODFLOW: Some considerations. Groundwater, 48(2), 174-180 Brunner, P., Cook, P. G., & Simmons, C. T. (2011). Disconnected surface water and groundwater: from theory to practice. Groundwater, 49(4), 460-467. Boano, F., Camporeale, C., Revelli, R., & Ridolfi, L. (2006). Sinuosity‐driven hyporheic exchange in meandering rivers. Geophysical Research Letters, 33(18). Boano, F., Harvey, J. W., Marion, A., Packman, A. I., Revelli, R., Ridolfi, L., & Wörman, A. (2014). Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications. Reviews of Geophysics, 52(4), 603-679. Cardenas, M. B. (2015). Hyporheic zone hydrologic science: A historical account of its emergence and a prospectus. Water Resources Research, 51(5), 3601-3616. Castro, N. M., & Hornberger, G. M. (1991). Surface‐subsurface water interactions in an alluviated mountain stream channel. Water Resources Research, 27(7), 1613-1621. Chen, C., Packman, A. I., Zhang, D., & Gaillard, J. F. (2010). A multi‐scale investigation of interfacial transport, pore fluid flow, and fine particle deposition in a sediment bed. Water Resources Research, 46(11). Doppler, T., Franssen, H. J. H., Kaiser, H. P., Kuhlman, U., & Stauffer, F. (2007). Field evidence of a dynamic leakage coefficient for modelling river–aquifer interactions. Journal of Hydrology, 347(1-2), 177-187. Dwivedi, D., Steefel, I. C., Arora, B., & Bisht, G. (2017). Impact of intra-meander hyporheic flow on nitrogen cycling. Procedia Earth and Planetary Science, 17, 404-407. Elliott, A. H., & Brooks, N. H. (1997). Transfer of nonsorbing solutes to a streambed with bed forms: Theory. Water Resources Research, 33(1), 123-136. Elliott, A. H., & Brooks, N. H. (1997). Transfer of nonsorbing solutes to a streambed with bed forms: Laboratory experiments. Water Resources Research, 33(1), 137-151. Fabian, M. W., Endreny, T. A., Bottacin‐Busolin, A., & Lautz, L. K. (2011). Seasonal variation in cascade‐driven hyporheic exchange, northern Honduras. Hydrological Processes, 25(10), 1630-1646. Faulkner, B. R., Brooks, J. R., Forshay, K. J., & Cline, S. P. (2012). Hyporheic flow patterns in relation to large river floodplain attributes. Journal of hydrology, 448, 161-173. Fernald, A. G., Wigington Jr, P. J., & Landers, D. H. (2001). Transient storage and hyporheic flow along the Willamette River, Oregon: Field measurements and model estimates. Water Resources Research, 37(6), 1681-1694.to Fischer, H. B., List, J. E., Koh, C. R., Imberger, J., Koh, R. C., & Brooks, N. H. (1979). Mixing in inland and coastal waters. Academic press. Fox, A., Laube, G., Schmidt, C., Fleckenstein, J. H., & Arnon, S. (2016). The effect of losing and gaining flow conditions on hyporheic exchange in heterogeneous streambeds. Water Resources Research, 52(9), 7460-7477. Gerecht, K. E., Cardenas, M. B., Guswa, A. J., Sawyer, A. H., Nowinski, J. D., & Swanson, T. E. (2011). Dynamics of hyporheic flow and heat transport across a bed‐to‐bank continuum in a large regulated river. Water Resources Research, 47(3). Gooseff, M. N., Wondzell, S. M., Haggerty, R., & Anderson, J. (2003). Comparing transient storage modeling and residence time distribution (RTD) analysis in geomorphically varied reaches in the Lookout Creek basin, Oregon, USA. Advances in Water Resources, 26(9), 925-937. Grimm, N. B., & Fisher, S. G. (1984). Exchange between interstitial and surface water: implications for stream metabolism and nutrient cycling. Hydrobiologia, 111, 219-228. Harvey, J. W., Wagner, B. J., & Bencala, K. E. (1996). Evaluating the reliability of the stream tracer approach to characterize stream‐subsurface water exchange. Water resources research, 32(8), 2441-2451. Harvey, J. W. (2000). Quantifying hydrologic interactions between streams and their subsurface hyporheic structure. Streams and ground waters, 3-44. Hester, E. T., & Doyle, M. W. (2008). In‐stream geomorphic structures as drivers of hyporheic exchange. Water Resources Research, 44(3). Hester, E. T., & Gooseff, M. N. (2010). Moving beyond the banks: Hyporheic restoration is fundamental to restoring ecological services and functions of streams. Jones Jr, J. B., & Holmes, R. M. (1996). Surface-subsurface interactions in stream ecosystems. Trends in Ecology & Evolution, 11(6), 239-242. Kacimov, A. R., & Obnosov, Y. V. (2019). Modelling of 2-D seepage from aquifer towards stream via clogged bed: The toth-trefftz legacy conjugated. Advances in Water Resources, 131, 103372. Kasahara, T., & Wondzell, S. M. (2003). Geomorphic controls on hyporheic exchange flow in mountain streams. Water Resources Research, 39(1), SBH-3. Langevin, C.D., Hughes, J.D., Banta, E.R., Niswonger, R.G., Panday, Sorab, and Provost, A.M., 2017, Documentation for the MODFLOW 6 Groundwater Flow Model: U.S. Geological Survey Techniques and Methods, book 6, chap. A55, 197 p., https://doi.org/10.3133/tm6A55. Lautz, L. K., & Siegel, D. I. (2006). Modeling surface and ground water mixing in the hyporheic zone using MODFLOW and MT3D. Advances in Water Resources, 29(11), 1618-1633. Miracapillo, C., & Morel‐Seytoux, H. J. (2014). Analytical solutions for stream‐aquifer flow exchange under varying head asymmetry and river penetration: Comparison to numerical solutions and use in regional groundwater models. Water Resources Research, 50(9), 7430-7444. Moore, J. E., & Jenkins, C. T. (1966). An evaluation of the effect of groundwater pumpage on the infiltration rate of a semipervious streambed. Water Resources Research, 2(4), 691-696. Morrice, J. A., Valett, H. M., Dahm, C. N., & Campana, M. E. (1997). Alluvial characteristics, groundwater–surface water exchange and hydrological retention in headwater streams. Hydrological processes, 11(3), 253-267. Morway, E. D., Langevin, C. D., & Hughes, J. D. (2021). Use of the MODFLOW 6 water mover package to represent natural and managed hydrologic connections. Groundwater, 59(6), 913-924. Nawalany, M., Sinicyn, G., Grodzka-Łukaszewska, M., & Mirosław-Świątek, D. (2020). Groundwater–surface water interaction—analytical approach. Water, 12(6), 1792. Nowinski, J. D., Cardenas, M. B., & Lightbody, A. F. (2011). Evolution of hydraulic conductivity in the floodplain of a meandering river due to hyporheic transport of fine materials. Geophysical Research Letters, 38(1). Osman, Y. Z., & Bruen, M. P. (2002). Modelling stream–aquifer seepage in an alluvial aquifer: an improved loosing-stream package for MODFLOW. Journal of Hydrology, 264(1-4), 69-86. Osman, Y. Z., & Bruen, M. P. (2002). Modelling stream–aquifer seepage in an alluvial aquifer: an improved loosing-stream package for MODFLOW. Journal of Hydrology, 264(1-4), 69-86. Ou, G., Chen, X., Kilic, A., Bartelt-Hunt, S., Li, Y., & Samal, A. (2013). Development of a cross-section based streamflow routing package for MODFLOW. Environmental modelling & software, 50, 132-143. Packman, A. I., & MacKay, J. S. (2003). Interplay of stream‐subsurface exchange, clay particle deposition, and streambed evolution. Water Resources Research, 39(4). Peterson, E. W., & Sickbert, T. B. (2006). Stream water bypass through a meander neck, laterally extending the hyporheic zone. Hydrogeology Journal, 14(8), 1443-1451. Poole, G. C. (2010). Stream hydrogeomorphology as a physical science basis for advances in stream ecology. Journal of the North American Benthological Society, 29(1), 12-25. Prudic, D. E., Konikow, L. F., & Banta, E. R. (2004). A new streamflow-routing (SFR1) package to simulate stream-aquifer interaction with MODFLOW-2000. Revelli, R., Boano, F., Camporeale, C., & Ridolfi, L. (2008). Intra‐meander hyporheic flow in alluvial rivers. Water Resources Research, 44(12). Rodriguez, L. B., Cello, P. A., Vionnet, C. A., & Goodrich, D. (2008). Fully conservative coupling of HEC-RAS with MODFLOW to simulate stream–aquifer interactions in a drainage basin. Journal of Hydrology, 353(1-2), 129-142. Salehin, M., Packman, A. I., & Paradis, M. (2004). Hyporheic exchange with heterogeneous streambeds: Laboratory experiments and modeling. Water Resources Research, 40(11). Sawyer, A. H., & Cardenas, M. B. (2009). Hyporheic flow and residence time distributions in heterogeneous cross‐bedded sediment. Water Resources Research, 45(8). Sheibley, R. W., Jackman, A. P., Duff, J. H., & Triska, F. J. (2003). Numerical modeling of coupled nitrification–denitrification in sediment perfusion cores from the hyporheic zone of the Shingobee River, MN. Advances in Water Resources, 26(9), 977-987. Stewart, R. J., Wollheim, W. M., Gooseff, M. N., Briggs, M. A., Jacobs, J. M., Peterson, B. J., & Hopkinson, C. S. (2011). Separation of river network–scale nitrogen removal among the main channel and two transient storage compartments. Water Resources Research, 47(10). Thibodeaux, L. J., & Boyle, J. D. (1987). Bedform-generated convective transport in bottom sediment. Nature, 325(6102), 341-343. Tonina, D., & Buffington, J. M. (2009). Hyporheic exchange in mountain rivers I: Mechanics and environmental effects. Geography Compass, 3(3), 1063-1086. Valentine, E. M., & Wood, I. R. (1977). Longitudinal dispersion with dead zones. Journal of the Hydraulics Division, 103(9), 975-990. Vaux, W. G. (1968), Intragravel flow and interchange of water in a stream-bed,Fish. Bull.,66 (3), 479–489. White, D. S. (1993). Perspectives on defining and delineating hyporheic zones. Journal of the North American Benthological Society, 12(1), 61-69. Winter, T. C. (1999). Ground water and surface water: a single resource (Vol. 1139). Diane Publishing. Xu, S., Frey, S. K., Erler, A. R., Khader, O., Berg, S. J., Hwang, H. T., ... & Sudicky, E. A. (2021). Investigating groundwater-lake interactions in the Laurentian Great Lakes with a fully-integrated surface water-groundwater model. Journal of Hydrology, 594, 125911. 經濟部中央地質調查所彙刊(2004)。「屏東平原地下水補注量及抽水量之評估」 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91485 | - |
| dc.description.abstract | 這些年伏流水在台灣為新興水源,台灣所討論的伏流水是關注在水資源上的應用,與國外研究的議題在本質上有明顯的區別,國外伏流水相關研究大多討論其物理機制及關連水文參數的影響,文獻常著重在河道地形地質條件及河床底下的生態系統與溶質、養分及汙染物在河道中的傳輸。考量國內對於伏流水的定位及過往相關研究,本研究旨在藉由數值模擬MODFLOW來探討在河道水文系統中主導伏流水移動的水文參數以提供對於伏流水更完整的理解,瞭解是否能提供量化伏流水之含量。因此本研究採用多方面的討論,包括文獻探討、概念模式及案例研究。文獻探討整合國外對於伏流水的各項研究來釐清伏流水的定義及其討論的面向。概念模式採用MODFLOW進行河道中的敏感度分析,並以此來探討主導的水文參數對於伏流水的影響。本研究也以實地案例來討論伏流水與地下水之間的相互作用。台灣南部地區的水資源不足一直是政府重視及棘手的問題,至此高屏溪在近幾年有許多的伏流水工程開發及啟用,以補足南部在旱期時的水資源不足。為助於提升對於伏流水與地下水之間的交互作用的認知及理解,本案例選定高屏溪的上游進行兩個場址,也為伏流水開發的預定區域。綜合上述各個面向,研究做出相關數值模擬進一步觀察及分析呈現伏流水的現象以具體其物理機制,希望能助於提高對地表水及地下系統的理解。 | zh_TW |
| dc.description.abstract | In recent years, hyporheic flow has emerged as a significant water source in Taiwan. However, the current understanding of hyporheic flow in Taiwan primarily focuses on its utilization for water resources, which differs largely from the academic discourse on the subject. Previous research has explored the driving forces behind hyporheic flow, emphasizing the interaction between stream morphology, ecosystem dynamics, and the transport of solutes, nutrients, and contaminants in river ecosystems. The objective of this thesis is to provide a comprehensive understanding of hyporheic flow through numerical simulation using MODFLOW. The study aims to investigate the dominant hydrological factors influencing hyporheic flow processes. To achieve this, a multifaceted approach is employed, including literature review, a simplified model simulation, and a case study. The literature review examines the various issues regarding hyporheic flow, assisting to establish a clear and accurate definition of hyporheic flow. By reviewing existing research, the true essence and significance of hyporheic flow can be realized. The simplified model utilizes MODFLOW to analyze the sensitivity of hyporheic flow within the hydraulic system. This model allows for an examination of how different factors influence the occurrence and characteristics of hyporheic flow. By simulating different scenarios, the study can identify the key hydrological factors that drive hyporheic flow. Additionally, a case study is conducted to observe and analyze the hyporheic flow and the interactions between the stream and groundwater. The study area is located at the Kaoping River in Southern Taiwan, with several hyporheic flow projects constructed or planned in recent years. These observations could provide valuable insights into hyporheic flow dynamics and contribute to the advancement of knowledge regarding surface-subsurface systems. It is important to note that water scarcity in Southern Taiwan has long been a pressing issue for the government. Given this context, the study area's selection is particularly relevant, as it allows for a comprehensive exploration of hyporheic flow while addressing the region's water resource challenges. Overall, this thesis aims to enhance our understanding of hyporheic flow by integrating theoretical knowledge, numerical simulations, and real-world observations. By advancing insights into surface-subsurface systems and hyporheic flow dynamics, this research has the potential to contribute to the management and utilization of water resources in Taiwan. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-01-28T16:12:43Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-01-28T16:12:43Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 iii ABSTRACT v CONTENTS vii LIST OF FIGURES xiii LIST OF TABLES xix Chapter 1 Introduction 1 1.1 Problem Statement 1 1.2 Research Objectives 3 Chapter 2 Literature Review 6 2.1 Definitions and Mechanisms 6 2.1.1 Definition of Hyporheic Flow 6 2.1.2 Mechanism of Hyporheic Flow 8 2.2 Hyporheic Flow Issues 10 2.2.1 Hyporheic zone and Transient Storage 10 2.2.2 Stream Morphodynamics 13 2.2.3 Nuterient and Biota in Hyporheic Flow 14 2.2.4 Connected and Disconnected State 15 2.3 Modeling Approach 17 2.3.1 MODFLOW 17 2.3.2 MODFLOW Application 19 2.4 Case Studies in other countries 20 Chapter 3 Methodology 24 3.1 MODFLOW 24 3.1.1 MODFLOW formulation 24 3.1.2 Governing equations 25 3.1.3 Finite-difference method 26 3.1.4 Preconditioned Conjugate-Gradient Package (PCG) 29 3.2 Package in MODFLOW 29 3.2.1 General Head Boundary Package (GHB) 30 3.2.2 Streamflow Routing package (SFR) 31 3.2.3 MODPATH package 36 3.3 Numerical simulation procedure 38 3.3.1 ModelMuse 38 3.3.2 Procedure for Modeling 41 Chapter 4 Model Simulation Results and Analysis 43 4.1 The conceptual model of stream 43 4.1.1 Different groundwater levels in the stream 45 4.1.2 Different flow in the stream 50 4.1.3 Different stream depths and widths 52 4.1.4 Different slopes in the stream 57 4.1.5 Different hydraulic conductivity in the aquifer 60 4.2 Pathline beneath the stream 62 4.2.1 Geography in the stream 62 4.2.2 Pathline in different stream topography 64 Chapter 5 Case Study 73 5.1 Study Area 73 5.2 Model Buildup 75 5.2.1 Study reach selection 75 5.2.2 Hydraulic properties and parameters input 77 5.3 Simulation Scenarios and Result explanation 89 5.4 Results and Discussion 90 5.4.1 Ligang case 90 5.4.2 Dashu case 96 5.4.3 Different distances of Pumping well in Ligang and Dashu 101 Chapter 6 Conclusions and Recommendations 106 6.1 Conclusions 106 6.2 Recommendations 108 REFERENCES 110 Appendix A 118 | - |
| dc.language.iso | en | - |
| dc.subject | 伏流水 | zh_TW |
| dc.subject | 地下水系統 | zh_TW |
| dc.subject | 水文過程 | zh_TW |
| dc.subject | Darcy'Law | zh_TW |
| dc.subject | 有限差分法 | zh_TW |
| dc.subject | MODLFOW | zh_TW |
| dc.subject | 敏感度分析 | zh_TW |
| dc.subject | groundwater system | en |
| dc.subject | sensitivity analysis | en |
| dc.subject | MODFLOW | en |
| dc.subject | finite-difference method | en |
| dc.subject | Darcy'Law | en |
| dc.subject | hydraulic process | en |
| dc.subject | hyporheic flow | en |
| dc.title | 伏流水物理傳輸現象之模擬探討 | zh_TW |
| dc.title | Simulation on the Physical Transportation of Hyporheic Flow | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳憲宗;孫建平;陳佳正;胡明哲 | zh_TW |
| dc.contributor.oralexamcommittee | SIAN-ZONG CHEN;JIAN-PING SUN;JIA-JHENG CHEN;MING-JHE HU | en |
| dc.subject.keyword | 伏流水,地下水系統,水文過程,Darcy' Law,有限差分法,MODLFOW,敏感度分析, | zh_TW |
| dc.subject.keyword | hyporheic flow,groundwater system,hydraulic process,Darcy' Law,finite-difference method,MODFLOW,sensitivity analysis, | en |
| dc.relation.page | 122 | - |
| dc.identifier.doi | 10.6342/NTU202301539 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-07-24 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2028-07-20 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 8.34 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
