Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91476
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor陳俊豪zh_TW
dc.contributor.advisorChun-Hao Chenen
dc.contributor.author游凱安zh_TW
dc.contributor.authorKai-An Youen
dc.date.accessioned2024-01-28T16:10:03Z-
dc.date.available2023-07-26-
dc.date.copyright2024-01-27-
dc.date.issued2023-
dc.date.submitted2023-07-27-
dc.identifier.citationBarrios, A., Nurrish, S., & Emmons, S. W. (2008). Sensory regulation of C. elegans male mate-searching behavior. Curr Biol, 18(23), 1865-1871.
https://doi.org/10.1016/j.cub.2008.10.050
Cao, M., Chai, C., Liu, J., & Sternberg, P. (2018). Application of the red-shifted channel rhodopsin Chrimson for the Caenorhabditis elegans cGAL bipartite system. MicroPubl Biol, 2018. https://doi.org/10.17912/2jgw-fj52
Chen, T. Y. (2022). The role of male-specific ray neurons in mate recognition in C. elegans Unpublished master's thesis, National Taiwan University, Institute of Molecular and Cellular Biology, Taipei.
Chiang, Y. C., Liao, C. P., & Pan, C. L. (2022). A serotonergic circuit regulates aversive associative learning under mitochondrial stress in C. elegans. Proc Natl Acad Sci U S A, 119(11), e2115533119. https://doi.org/10.1073/pnas.2115533119
Choi, S., Taylor, K. P., Chatzigeorgiou, M., Hu, Z., Schafer, W. R., & Kaplan, J. M. (2015). Sensory Neurons Arouse C. elegans Locomotion via Both Glutamate and Neuropeptide Release. PLoS Genet, 11(7), e1005359. https://doi.org/10.1371/journal.pgen.1005359
Cook, S. J., Jarrell, T. A., Brittin, C. A., Wang, Y., Bloniarz, A. E., Yakovlev, M. A., Nguyen, K. C. Q., Tang, L. T., Bayer, E. A., Duerr, J. S., Bulow, H. E., Hobert, O., Hall, D. H., & Emmons, S. W. (2019). Whole-animal connectomes of both Caenorhabditis elegans sexes. Nature, 571(7763), 63-71. https://doi.org/10.1038/s41586-019-1352-7
Diaz-Verdugo, C., Sun, G. J., Fawcett, C. H., Zhu, P., & Fishman, M. C. (2019). Mating Suppresses Alarm Response in Zebrafish. Curr Biol, 29(15), 2541-2546 e2543. https://doi.org/10.1016/j.cub.2019.06.047
Edison, A. S. (2009). Caenorhabditis elegans pheromones regulate multiple complex behaviors. Curr Opin Neurobiol, 19(4), 378-388. https://doi.org/10.1016/j.conb.2009.07.007
Flavell, S. W., Gogolla, N., Lovett-Barron, M., & Zelikowsky, M. (2022). The emergence and influence of internal states. Neuron, 110(16), 2545-2570. https://doi.org/10.1016/j.neuron.2022.04.030
Flavell, S. W., Pokala, N., Macosko, E. Z., Albrecht, D. R., Larsch, J., & Bargmann, C. I. (2013). Serotonin and the neuropeptide PDF initiate and extend opposing behavioral states in C. elegans. Cell, 154(5), 1023-1035. https://doi.org/10.1016/j.cell.2013.08.001
Flavell, S. W., Raizen, D. M., & You, Y. J. (2020). Behavioral States. Genetics, 216(2), 315-332. https://doi.org/10.1534/genetics.120.303539
Florman, J. T., & Alkema, M. J. (2022). Co-transmission of neuropeptides and monoamines choreograph the C. elegans escape response. PLoS Genet, 18(3), e1010091. https://doi.org/10.1371/journal.pgen.1010091
Gallagher, T., Kim, J., Oldenbroek, M., Kerr, R., & You, Y. J. (2013). ASI regulates satiety quiescence in C. elegans. J Neurosci, 33(23), 9716-9724. https://doi.org/10.1523/JNEUROSCI.4493-12.2013
Jee, C., Goncalves, J. F., LeBoeuf, B., & Garcia, L. R. (2016). CRF-like receptor SEB-3 in sex-common interneurons potentiates stress handling and reproductive drive in C. elegans. Nat Commun, 7, 11957. https://doi.org/10.1038/ncomms11957
Jung, Y., Kennedy, A., Chiu, H., Mohammad, F., Claridge-Chang, A., & Anderson, D. J. (2020). Neurons that Function within an Integrator to Promote a Persistent Behavioral State in Drosophila. Neuron, 105(2), 322-333 e325. https://doi.org/10.1016/j.neuron.2019.10.028
Koo, P. K., Bian, X., Sherlekar, A. L., Bunkers, M. R., & Lints, R. (2011). The robustness of Caenorhabditis elegans male mating behavior depends on the distributed properties of ray sensory neurons and their output through core and male-specific targets. J Neurosci, 31(20), 7497-7510. https://doi.org/10.1523/JNEUROSCI.6153-10.2011
Lee, K., & Mylonakis, E. (2017). An Intestine-Derived Neuropeptide Controls Avoidance Behavior in Caenorhabditis elegans. Cell Rep, 20(10), 2501-2512. https://doi.org/10.1016/j.celrep.2017.08.053
Lipton, J., Kleemann, G., Ghosh, R., Lints, R., & Emmons, S. W. (2004). Mate searching in Caenorhabditis elegans: a genetic model for sex drive in a simple invertebrate. J Neurosci, 24(34), 7427-7434. https://doi.org/10.1523/JNEUROSCI.1746-04.2004
Liu, K. S., & Sternberg, P. W. (1995). Sensory regulation of male mating behavior in Caenorhabditis elegans. Neuron, 14(1), 79-89. https://doi.org/10.1016/0896-6273(95)90242-2
Loer, C. M., & Kenyon, C. J. (1993). Serotonin Deficient Mutants and Male Mating Behavior in the Nematode Caenorhabditis elegans. J Neurosci, 13(12):5407-5417. https://doi.org/10.1523/JNEUROSCI.13-12-05407.1993
Marques, J. C., Li, M., Schaak, D., Robson, D. N., & Li, J. M. (2020). Internal state dynamics shape brainwide activity and foraging behaviour. Nature, 577(7789), 239-243. https://doi.org/10.1038/s41586-019-1858-z
Nathoo, A. N., Moeller, R. A., Westlund, B. A., & Hart, A. C. (2001). Identification of neuropeptide-like protein gene families in Caenorhabditis elegans and other species. Proc Natl Acad Sci U S A, 98(24), 14000-14005. https://doi.org/10.1073/pnas.241231298
Oram, T. B., & Card, G. M. (2022). Context-dependent control of behavior in Drosophila. Curr Opin Neurobiol, 73, 102523. https://doi.org/10.1016/j.conb.2022.02.003
Pokala, N., Liu, Q., Gordus, A., & Bargmann, C. I. (2014). Inducible and titratable silencing of Caenorhabditis elegans neurons in vivo with histamine-gated chloride channels. Proc Natl Acad Sci U S A, 111(7), 2770-2775. https://doi.org/10.1073/pnas.1400615111
Simon, J. M., & Sternberg, P. W. (2002). Evidence of a mate-finding cue in the hermaphrodite nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A, 99(3), 1598-1603. https://doi.org/10.1073/pnas.032225799
Srinivasan, J., von Reuss, S. H., Bose, N., Zaslaver, A., Mahanti, P., Ho, M. C., O'Doherty, O. G., Edison, A. S., Sternberg, P. W., & Schroeder, F. C. (2012). A modular library of small molecule signals regulates social behaviors in Caenorhabditis elegans. PLoS Biol, 10(1), e1001237. https://doi.org/10.1371/journal.pbio.1001237
Tao, J., Ma, Y. C., Yang, Z. S., Zou, C. G., & Zhang, K. Q. (2016). Octopamine connects nutrient cues to lipid metabolism upon nutrient deprivation. Sci Adv, 2(5), e1501372. https://doi.org/10.1126/sciadv.1501372
Thornquist, S. C., Langer, K., Zhang, S. X., Rogulja, D., & Crickmore, M. A. (2020). CaMKII Measures the Passage of Time to Coordinate Behavior and Motivational State. Neuron, 105(2), 334-345 e339. https://doi.org/10.1016/j.neuron.2019.10.018
Toda, H., Zhao, X., & Dickson, B. J. (2012). The Drosophila female aphrodisiac pheromone activates ppk23(+) sensory neurons to elicit male courtship behavior. Cell Rep, 1(6), 599-607. https://doi.org/10.1016/j.celrep.2012.05.007
Wan, X., Zhou, Y., Chan, C. M., Yang, H., Yeung, C., & Chow, K. L. (2019). SRD-1 in AWA neurons is the receptor for female volatile sex pheromones in C. elegans males. EMBO Rep, 20(3). https://doi.org/10.15252/embr.201846288
White, J. Q., Nicholas, T. J., Gritton, J., Truong, L., Davidson, E. R., & Jorgensen, E. M. (2007). The sensory circuitry for sexual attraction in C. elegans males. Curr Biol, 17(21), 1847-1857. https://doi.org/10.1016/j.cub.2007.09.011
Wu, T., Duan, F., Yang, W., Liu, H., Caballero, A., Fernandes de Abreu, D. A., Dar, A. R., Alcedo, J., Ch'ng, Q., Butcher, R. A., & Zhang, Y. (2019). Pheromones Modulate Learning by Regulating the Balanced Signals of Two Insulin-like Peptides. Neuron, 104(6), 1095-1109.e1095. https://doi.org/10.1016/j.neuron.2019.09.006
Xu, H., Shi, X., Li, X., Zou, J., Zhou, C., Liu, W., Shao, H., Chen, H., & Shi, L. (2020). Neurotransmitter and neuropeptide regulation of mast cell function: a systematic review. J Neuroinflammation, 17(1), 356. https://doi.org/10.1186/s12974-020-02029-3
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91476-
dc.description.abstract動物會整合環境變化和生理需求並做出行為反應,從而提供靈活和持久的適應行為。 先前的研究表明,雄性秀麗隱桿線蟲在接觸合適的伴侶時表現出行動範圍的下降,而其神經機制仍須進一步研究。在這篇研究中表明,雄性線蟲在辨識到合適的伴侶,會誘發持久性的行動範圍下降,其藉由增加移動中的後退,來達到限制行動的範圍。先前已得知是藉由雄性尾巴的 B型輻射狀神經與伴侶的物理接觸,可以驅使雄性線蟲從大範圍的移動轉變為小範圍搜索,並且其行為改變無須環境中的費洛蒙;此外我們也發現,對於雄性尾巴的 B型輻射狀神經 (RnBs)利用光遺傳學的方式刺激神經活性,再現了反復後退和搜索範圍降低的持續性行為變化。我們發現谷氨酸能LUA中間神經元對於維持刺激RnBs所誘導的降低搜索範圍的行動是必要的。經由分析神經連結表明,LUA 可能通過多個谷氨酸受體在神經元之間傳遞谷氨酸信號,進而引發反覆後退、降低搜索範圍的行為狀態。我們發現CRF-like GPCR 受體中的SEB-3蛋白也參與行為狀態的改變。我們的研究揭示了雄性在接觸合適的伴侶後誘發的局部搜索行為是藉由谷氨酸神經迴路來傳遞,並提供了感覺誘發的行為狀態改變下的神經分子機制。zh_TW
dc.description.abstractAnimals integrate internal needs and environmental cues to display behavioral states that offer flexible, scalable, and persistent actions for adaptations. Previous studies indicate that C. elegans males show a long-term reduction of locomotion coverage upon contacting suitable mates, while the circuit mechanism remains unknown. Here, we find that brief contact with suitable mates is able to evoke a persistent behavioral state that abruptly restricts locomotion coverage by increasing reversals for minutes. The local search state requires physical contact by male tails but not pheromones, suggesting that tail sensilla are needed. Indeed, transient optogenetic activation of ray-type B neurons (RnBs), a group of sensory neurons for contact response in males, recapitulates persistent behavioral changes associated with the recurrent activity. In addition, we show that glutamatergic LUA interneurons are necessary to sustain the local search state evoked by RnBs activation. Genetic analyses indicate that LUAs likely distribute glutamate signals through multiple glutamatergic receptors for repeated reversals. Moreover, we found CRF-like GPCR receptor SEB-3 is involved in the altered behavioral state. Furthermore, we found that glutamate mutants are in the persistence of restrictive behavior. Our study thus uncovers a glutamatergic circuit underlying the local search state of males upon contacting suitable mates and provides molecular insights into neural mechanisms of sensory-evoked behavioral states.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-01-28T16:10:02Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-01-28T16:10:03Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
Chapter 1 Introduction 1
1.1 Overview of behavioral states 1
1.2 Neural mechanisms of persistent behavioral states 2
1.3 Males alter locomotion strategies in response to potential mates 3
Chapter 2 Material and mothods 5
2.1 C. elegans strains and genetics 5
2.2 Molecular cloning 6
2.3 Preparation of animals for optogenetic 8
2.4 Optogenetic experiments 8
2.5 Chemogenetic of HisCl1 8
2.6 Calculation of locomotion index 9
2.7 Calculation of dynamic locomotion coverage 9
2.8 Statistics analysis 9
Chapter 3 Results 10
3.1 Glutamate, tyramine, and octopamine are required for sensory-evoked behavioral states 10
3.2 Neural activity of LUAs promotes the local search state in males 12
3.3 Transient activation of LUAs is not sufficient to evoke the local search state 13
3.4 A CRF-like GPCR receptor SEB-3 is required for the local search state 13
3.5 Multiple glutamate receptors are required in the local search state 12
3.6 Neuropeptides signaling is likely involved in the RnB-LUA circuit 15
3.7 Potential roles of CEMs in the local search state 15
Chapter 4 Discussion 16
4.1 Circuit Logic Controlling the Local Search State 17
4.2 ceh-30 is required for controlling behavioral states 17
4.3 Possible roles of tyramine and octopamine signaling in behavioral states 18
4.4 Neuropeptide and neurotransmitter signaling regulates behavioral states 18
4.5 The local search state increases the chance of a persistent stay with hermaphrodites 19
Chapter 5 Figures 20
Figure 1. Model of experiments setting 20
Figure 2. Screening of neurotransmitters by optogenetic stimulations 22
Figure 3. Comparison of locomotion activity in different neurotransmitter mutants with optogenetic 24
Figure 4. Locomotion coverage of wild-type males 26
Figure 5. Locomotion coverage of tph-1 mutant 28
Figure 6. Locomotion coverage of cat-2 mutant 30
Figure 7. Locomotion coverage of tdc-1 mutant 32
Figure 8. Locomotion coverage of tbh-1 mutant 34
Figure 9. Locomotion coverage of eat-4 mutant 36
Figure 10. The ratio of locomotion index of eat-4 mutant rescue via eat-4 promoter 38
Figure 11. Locomotion coverage of eat-4 mutant recuse via eat-4 promoter 40
Figure 12. The ratio of locomotion index of eat-4 mutant rescue via LUA-specific promoter 42
Figure 13. Locomotion coverage of eat-4 mutant recuse via LUA-specific promoter 44
Figure 14. The ratio of locomotion index of suppressing LUAs neuron activity via histamine chloride channel 1 46
Figure 15. Locomotion coverage of suppressing LUAs activity presence or absence of histamine under the absence of ATR treatment 48
Figure 16. Locomotion coverage of suppressing LUAs activity with or without histamine under ATR treatment 50
Figure 17. The ratio of locomotion index of sensitization of LUAs can reduce the threshold of sensory-evoke behavioral states via PKC-1(A160E) 52
Figure 18. Locomotion coverage of sensitization of LUAs activity can alter the local search behavior under 5 times stimulations 54
Figure 19. Locomotion coverage of sensitization of LUAs activity can alter the local search behavior under 20 times stimulations 56
Figure 20. The ratio of locomotion index of activation LUAs via express Chrimson 58
Figure 21. Locomotion coverage of activation LUAs via express Chrimson 60
Figure 22. The ratio of locomotion index of seb-3(lf) mutant significantly abolished the local search state 62
Figure 23. The ratio of locomotion index in specific rescue seb-3 via LUAs promoter in seb-3(lf) mutant that did not rescue the local search state 64
Figure 24. The ratio of locomotion index of seb-3(E316K) did not facilitate the switch of the local search state 66
Figure 25. The ratio of locomotion index of glutamate receptor mutants 68
Figure 26. Comparison of locomotion activity in different glutamate receptor mutants with optogenetic 70
Figure 27. The ratio of locomotion index of nlp-13 abolished the switch of that behavioral states 72
Figure 28. Locomotion coverage of nlp-13 mutant 74
Figure 29. The ratio of locomotion index of ceh-30 abolished the switch of that behavioral states 76
Figure 30. Model of mate recognition circuit in C. elegans males 78
Chapter 6 Appendix Figures 80
Appendix Figure 1. The ratio of locomotion index of male alone and recognition with unc-13 hermaphrodite 80
Appendix Figure 2. The ratio of locomotion index of light-induced altered behavioral states at different times 82
Appendix Figure 3. Locomotion coverage of male alone and recognition with unc-13 hermaphrodite 84
Appendix Figure 4. Expressing pattern of pkd-2 and ceh-30 promoters 86
REFERENCE 88
-
dc.language.isoen-
dc.subject輻射狀神經zh_TW
dc.subject伴侶辨識zh_TW
dc.subject感覺誘發之行為改變zh_TW
dc.subject谷氨酸信號zh_TW
dc.subject持續性行為狀態zh_TW
dc.subjectpersistent behavioral statesen
dc.subjectray-neuronsen
dc.subjectmating recognitionen
dc.subjectsensory-evoked behavioral statesen
dc.subjectglutamate signalen
dc.title秀麗隱桿線蟲伴侶辨識神經迴路和其分子機制研究zh_TW
dc.titleCircuit Mechanism of Behavioral States for Mate Recognition in C. elegans Malesen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee周銘翊;潘俊良zh_TW
dc.contributor.oralexamcommitteeMing-Yi Chou;Chun-Liang Panen
dc.subject.keyword輻射狀神經,伴侶辨識,感覺誘發之行為改變,谷氨酸信號,持續性行為狀態,zh_TW
dc.subject.keywordray-neurons,mating recognition,sensory-evoked behavioral states,glutamate signal,persistent behavioral states,en
dc.relation.page90-
dc.identifier.doi10.6342/NTU202302062-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-07-31-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept分子與細胞生物學研究所-
dc.date.embargo-lift2028-07-26-
Appears in Collections:分子與細胞生物學研究所

Files in This Item:
File SizeFormat 
ntu-111-2.pdf
  Until 2028-07-26
3.01 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved