Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91476Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 陳俊豪 | zh_TW |
| dc.contributor.advisor | Chun-Hao Chen | en |
| dc.contributor.author | 游凱安 | zh_TW |
| dc.contributor.author | Kai-An You | en |
| dc.date.accessioned | 2024-01-28T16:10:03Z | - |
| dc.date.available | 2023-07-26 | - |
| dc.date.copyright | 2024-01-27 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-27 | - |
| dc.identifier.citation | Barrios, A., Nurrish, S., & Emmons, S. W. (2008). Sensory regulation of C. elegans male mate-searching behavior. Curr Biol, 18(23), 1865-1871.
https://doi.org/10.1016/j.cub.2008.10.050 Cao, M., Chai, C., Liu, J., & Sternberg, P. (2018). Application of the red-shifted channel rhodopsin Chrimson for the Caenorhabditis elegans cGAL bipartite system. MicroPubl Biol, 2018. https://doi.org/10.17912/2jgw-fj52 Chen, T. Y. (2022). The role of male-specific ray neurons in mate recognition in C. elegans Unpublished master's thesis, National Taiwan University, Institute of Molecular and Cellular Biology, Taipei. Chiang, Y. C., Liao, C. P., & Pan, C. L. (2022). A serotonergic circuit regulates aversive associative learning under mitochondrial stress in C. elegans. Proc Natl Acad Sci U S A, 119(11), e2115533119. https://doi.org/10.1073/pnas.2115533119 Choi, S., Taylor, K. P., Chatzigeorgiou, M., Hu, Z., Schafer, W. R., & Kaplan, J. M. (2015). Sensory Neurons Arouse C. elegans Locomotion via Both Glutamate and Neuropeptide Release. PLoS Genet, 11(7), e1005359. https://doi.org/10.1371/journal.pgen.1005359 Cook, S. J., Jarrell, T. A., Brittin, C. A., Wang, Y., Bloniarz, A. E., Yakovlev, M. A., Nguyen, K. C. Q., Tang, L. T., Bayer, E. A., Duerr, J. S., Bulow, H. E., Hobert, O., Hall, D. H., & Emmons, S. W. (2019). Whole-animal connectomes of both Caenorhabditis elegans sexes. Nature, 571(7763), 63-71. https://doi.org/10.1038/s41586-019-1352-7 Diaz-Verdugo, C., Sun, G. J., Fawcett, C. H., Zhu, P., & Fishman, M. C. (2019). Mating Suppresses Alarm Response in Zebrafish. Curr Biol, 29(15), 2541-2546 e2543. https://doi.org/10.1016/j.cub.2019.06.047 Edison, A. S. (2009). Caenorhabditis elegans pheromones regulate multiple complex behaviors. Curr Opin Neurobiol, 19(4), 378-388. https://doi.org/10.1016/j.conb.2009.07.007 Flavell, S. W., Gogolla, N., Lovett-Barron, M., & Zelikowsky, M. (2022). The emergence and influence of internal states. Neuron, 110(16), 2545-2570. https://doi.org/10.1016/j.neuron.2022.04.030 Flavell, S. W., Pokala, N., Macosko, E. Z., Albrecht, D. R., Larsch, J., & Bargmann, C. I. (2013). Serotonin and the neuropeptide PDF initiate and extend opposing behavioral states in C. elegans. Cell, 154(5), 1023-1035. https://doi.org/10.1016/j.cell.2013.08.001 Flavell, S. W., Raizen, D. M., & You, Y. J. (2020). Behavioral States. Genetics, 216(2), 315-332. https://doi.org/10.1534/genetics.120.303539 Florman, J. T., & Alkema, M. J. (2022). Co-transmission of neuropeptides and monoamines choreograph the C. elegans escape response. PLoS Genet, 18(3), e1010091. https://doi.org/10.1371/journal.pgen.1010091 Gallagher, T., Kim, J., Oldenbroek, M., Kerr, R., & You, Y. J. (2013). ASI regulates satiety quiescence in C. elegans. J Neurosci, 33(23), 9716-9724. https://doi.org/10.1523/JNEUROSCI.4493-12.2013 Jee, C., Goncalves, J. F., LeBoeuf, B., & Garcia, L. R. (2016). CRF-like receptor SEB-3 in sex-common interneurons potentiates stress handling and reproductive drive in C. elegans. Nat Commun, 7, 11957. https://doi.org/10.1038/ncomms11957 Jung, Y., Kennedy, A., Chiu, H., Mohammad, F., Claridge-Chang, A., & Anderson, D. J. (2020). Neurons that Function within an Integrator to Promote a Persistent Behavioral State in Drosophila. Neuron, 105(2), 322-333 e325. https://doi.org/10.1016/j.neuron.2019.10.028 Koo, P. K., Bian, X., Sherlekar, A. L., Bunkers, M. R., & Lints, R. (2011). The robustness of Caenorhabditis elegans male mating behavior depends on the distributed properties of ray sensory neurons and their output through core and male-specific targets. J Neurosci, 31(20), 7497-7510. https://doi.org/10.1523/JNEUROSCI.6153-10.2011 Lee, K., & Mylonakis, E. (2017). An Intestine-Derived Neuropeptide Controls Avoidance Behavior in Caenorhabditis elegans. Cell Rep, 20(10), 2501-2512. https://doi.org/10.1016/j.celrep.2017.08.053 Lipton, J., Kleemann, G., Ghosh, R., Lints, R., & Emmons, S. W. (2004). Mate searching in Caenorhabditis elegans: a genetic model for sex drive in a simple invertebrate. J Neurosci, 24(34), 7427-7434. https://doi.org/10.1523/JNEUROSCI.1746-04.2004 Liu, K. S., & Sternberg, P. W. (1995). Sensory regulation of male mating behavior in Caenorhabditis elegans. Neuron, 14(1), 79-89. https://doi.org/10.1016/0896-6273(95)90242-2 Loer, C. M., & Kenyon, C. J. (1993). Serotonin Deficient Mutants and Male Mating Behavior in the Nematode Caenorhabditis elegans. J Neurosci, 13(12):5407-5417. https://doi.org/10.1523/JNEUROSCI.13-12-05407.1993 Marques, J. C., Li, M., Schaak, D., Robson, D. N., & Li, J. M. (2020). Internal state dynamics shape brainwide activity and foraging behaviour. Nature, 577(7789), 239-243. https://doi.org/10.1038/s41586-019-1858-z Nathoo, A. N., Moeller, R. A., Westlund, B. A., & Hart, A. C. (2001). Identification of neuropeptide-like protein gene families in Caenorhabditis elegans and other species. Proc Natl Acad Sci U S A, 98(24), 14000-14005. https://doi.org/10.1073/pnas.241231298 Oram, T. B., & Card, G. M. (2022). Context-dependent control of behavior in Drosophila. Curr Opin Neurobiol, 73, 102523. https://doi.org/10.1016/j.conb.2022.02.003 Pokala, N., Liu, Q., Gordus, A., & Bargmann, C. I. (2014). Inducible and titratable silencing of Caenorhabditis elegans neurons in vivo with histamine-gated chloride channels. Proc Natl Acad Sci U S A, 111(7), 2770-2775. https://doi.org/10.1073/pnas.1400615111 Simon, J. M., & Sternberg, P. W. (2002). Evidence of a mate-finding cue in the hermaphrodite nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A, 99(3), 1598-1603. https://doi.org/10.1073/pnas.032225799 Srinivasan, J., von Reuss, S. H., Bose, N., Zaslaver, A., Mahanti, P., Ho, M. C., O'Doherty, O. G., Edison, A. S., Sternberg, P. W., & Schroeder, F. C. (2012). A modular library of small molecule signals regulates social behaviors in Caenorhabditis elegans. PLoS Biol, 10(1), e1001237. https://doi.org/10.1371/journal.pbio.1001237 Tao, J., Ma, Y. C., Yang, Z. S., Zou, C. G., & Zhang, K. Q. (2016). Octopamine connects nutrient cues to lipid metabolism upon nutrient deprivation. Sci Adv, 2(5), e1501372. https://doi.org/10.1126/sciadv.1501372 Thornquist, S. C., Langer, K., Zhang, S. X., Rogulja, D., & Crickmore, M. A. (2020). CaMKII Measures the Passage of Time to Coordinate Behavior and Motivational State. Neuron, 105(2), 334-345 e339. https://doi.org/10.1016/j.neuron.2019.10.018 Toda, H., Zhao, X., & Dickson, B. J. (2012). The Drosophila female aphrodisiac pheromone activates ppk23(+) sensory neurons to elicit male courtship behavior. Cell Rep, 1(6), 599-607. https://doi.org/10.1016/j.celrep.2012.05.007 Wan, X., Zhou, Y., Chan, C. M., Yang, H., Yeung, C., & Chow, K. L. (2019). SRD-1 in AWA neurons is the receptor for female volatile sex pheromones in C. elegans males. EMBO Rep, 20(3). https://doi.org/10.15252/embr.201846288 White, J. Q., Nicholas, T. J., Gritton, J., Truong, L., Davidson, E. R., & Jorgensen, E. M. (2007). The sensory circuitry for sexual attraction in C. elegans males. Curr Biol, 17(21), 1847-1857. https://doi.org/10.1016/j.cub.2007.09.011 Wu, T., Duan, F., Yang, W., Liu, H., Caballero, A., Fernandes de Abreu, D. A., Dar, A. R., Alcedo, J., Ch'ng, Q., Butcher, R. A., & Zhang, Y. (2019). Pheromones Modulate Learning by Regulating the Balanced Signals of Two Insulin-like Peptides. Neuron, 104(6), 1095-1109.e1095. https://doi.org/10.1016/j.neuron.2019.09.006 Xu, H., Shi, X., Li, X., Zou, J., Zhou, C., Liu, W., Shao, H., Chen, H., & Shi, L. (2020). Neurotransmitter and neuropeptide regulation of mast cell function: a systematic review. J Neuroinflammation, 17(1), 356. https://doi.org/10.1186/s12974-020-02029-3 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91476 | - |
| dc.description.abstract | 動物會整合環境變化和生理需求並做出行為反應,從而提供靈活和持久的適應行為。 先前的研究表明,雄性秀麗隱桿線蟲在接觸合適的伴侶時表現出行動範圍的下降,而其神經機制仍須進一步研究。在這篇研究中表明,雄性線蟲在辨識到合適的伴侶,會誘發持久性的行動範圍下降,其藉由增加移動中的後退,來達到限制行動的範圍。先前已得知是藉由雄性尾巴的 B型輻射狀神經與伴侶的物理接觸,可以驅使雄性線蟲從大範圍的移動轉變為小範圍搜索,並且其行為改變無須環境中的費洛蒙;此外我們也發現,對於雄性尾巴的 B型輻射狀神經 (RnBs)利用光遺傳學的方式刺激神經活性,再現了反復後退和搜索範圍降低的持續性行為變化。我們發現谷氨酸能LUA中間神經元對於維持刺激RnBs所誘導的降低搜索範圍的行動是必要的。經由分析神經連結表明,LUA 可能通過多個谷氨酸受體在神經元之間傳遞谷氨酸信號,進而引發反覆後退、降低搜索範圍的行為狀態。我們發現CRF-like GPCR 受體中的SEB-3蛋白也參與行為狀態的改變。我們的研究揭示了雄性在接觸合適的伴侶後誘發的局部搜索行為是藉由谷氨酸神經迴路來傳遞,並提供了感覺誘發的行為狀態改變下的神經分子機制。 | zh_TW |
| dc.description.abstract | Animals integrate internal needs and environmental cues to display behavioral states that offer flexible, scalable, and persistent actions for adaptations. Previous studies indicate that C. elegans males show a long-term reduction of locomotion coverage upon contacting suitable mates, while the circuit mechanism remains unknown. Here, we find that brief contact with suitable mates is able to evoke a persistent behavioral state that abruptly restricts locomotion coverage by increasing reversals for minutes. The local search state requires physical contact by male tails but not pheromones, suggesting that tail sensilla are needed. Indeed, transient optogenetic activation of ray-type B neurons (RnBs), a group of sensory neurons for contact response in males, recapitulates persistent behavioral changes associated with the recurrent activity. In addition, we show that glutamatergic LUA interneurons are necessary to sustain the local search state evoked by RnBs activation. Genetic analyses indicate that LUAs likely distribute glutamate signals through multiple glutamatergic receptors for repeated reversals. Moreover, we found CRF-like GPCR receptor SEB-3 is involved in the altered behavioral state. Furthermore, we found that glutamate mutants are in the persistence of restrictive behavior. Our study thus uncovers a glutamatergic circuit underlying the local search state of males upon contacting suitable mates and provides molecular insights into neural mechanisms of sensory-evoked behavioral states. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-01-28T16:10:02Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-01-28T16:10:03Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv Chapter 1 Introduction 1 1.1 Overview of behavioral states 1 1.2 Neural mechanisms of persistent behavioral states 2 1.3 Males alter locomotion strategies in response to potential mates 3 Chapter 2 Material and mothods 5 2.1 C. elegans strains and genetics 5 2.2 Molecular cloning 6 2.3 Preparation of animals for optogenetic 8 2.4 Optogenetic experiments 8 2.5 Chemogenetic of HisCl1 8 2.6 Calculation of locomotion index 9 2.7 Calculation of dynamic locomotion coverage 9 2.8 Statistics analysis 9 Chapter 3 Results 10 3.1 Glutamate, tyramine, and octopamine are required for sensory-evoked behavioral states 10 3.2 Neural activity of LUAs promotes the local search state in males 12 3.3 Transient activation of LUAs is not sufficient to evoke the local search state 13 3.4 A CRF-like GPCR receptor SEB-3 is required for the local search state 13 3.5 Multiple glutamate receptors are required in the local search state 12 3.6 Neuropeptides signaling is likely involved in the RnB-LUA circuit 15 3.7 Potential roles of CEMs in the local search state 15 Chapter 4 Discussion 16 4.1 Circuit Logic Controlling the Local Search State 17 4.2 ceh-30 is required for controlling behavioral states 17 4.3 Possible roles of tyramine and octopamine signaling in behavioral states 18 4.4 Neuropeptide and neurotransmitter signaling regulates behavioral states 18 4.5 The local search state increases the chance of a persistent stay with hermaphrodites 19 Chapter 5 Figures 20 Figure 1. Model of experiments setting 20 Figure 2. Screening of neurotransmitters by optogenetic stimulations 22 Figure 3. Comparison of locomotion activity in different neurotransmitter mutants with optogenetic 24 Figure 4. Locomotion coverage of wild-type males 26 Figure 5. Locomotion coverage of tph-1 mutant 28 Figure 6. Locomotion coverage of cat-2 mutant 30 Figure 7. Locomotion coverage of tdc-1 mutant 32 Figure 8. Locomotion coverage of tbh-1 mutant 34 Figure 9. Locomotion coverage of eat-4 mutant 36 Figure 10. The ratio of locomotion index of eat-4 mutant rescue via eat-4 promoter 38 Figure 11. Locomotion coverage of eat-4 mutant recuse via eat-4 promoter 40 Figure 12. The ratio of locomotion index of eat-4 mutant rescue via LUA-specific promoter 42 Figure 13. Locomotion coverage of eat-4 mutant recuse via LUA-specific promoter 44 Figure 14. The ratio of locomotion index of suppressing LUAs neuron activity via histamine chloride channel 1 46 Figure 15. Locomotion coverage of suppressing LUAs activity presence or absence of histamine under the absence of ATR treatment 48 Figure 16. Locomotion coverage of suppressing LUAs activity with or without histamine under ATR treatment 50 Figure 17. The ratio of locomotion index of sensitization of LUAs can reduce the threshold of sensory-evoke behavioral states via PKC-1(A160E) 52 Figure 18. Locomotion coverage of sensitization of LUAs activity can alter the local search behavior under 5 times stimulations 54 Figure 19. Locomotion coverage of sensitization of LUAs activity can alter the local search behavior under 20 times stimulations 56 Figure 20. The ratio of locomotion index of activation LUAs via express Chrimson 58 Figure 21. Locomotion coverage of activation LUAs via express Chrimson 60 Figure 22. The ratio of locomotion index of seb-3(lf) mutant significantly abolished the local search state 62 Figure 23. The ratio of locomotion index in specific rescue seb-3 via LUAs promoter in seb-3(lf) mutant that did not rescue the local search state 64 Figure 24. The ratio of locomotion index of seb-3(E316K) did not facilitate the switch of the local search state 66 Figure 25. The ratio of locomotion index of glutamate receptor mutants 68 Figure 26. Comparison of locomotion activity in different glutamate receptor mutants with optogenetic 70 Figure 27. The ratio of locomotion index of nlp-13 abolished the switch of that behavioral states 72 Figure 28. Locomotion coverage of nlp-13 mutant 74 Figure 29. The ratio of locomotion index of ceh-30 abolished the switch of that behavioral states 76 Figure 30. Model of mate recognition circuit in C. elegans males 78 Chapter 6 Appendix Figures 80 Appendix Figure 1. The ratio of locomotion index of male alone and recognition with unc-13 hermaphrodite 80 Appendix Figure 2. The ratio of locomotion index of light-induced altered behavioral states at different times 82 Appendix Figure 3. Locomotion coverage of male alone and recognition with unc-13 hermaphrodite 84 Appendix Figure 4. Expressing pattern of pkd-2 and ceh-30 promoters 86 REFERENCE 88 | - |
| dc.language.iso | en | - |
| dc.subject | 輻射狀神經 | zh_TW |
| dc.subject | 伴侶辨識 | zh_TW |
| dc.subject | 感覺誘發之行為改變 | zh_TW |
| dc.subject | 谷氨酸信號 | zh_TW |
| dc.subject | 持續性行為狀態 | zh_TW |
| dc.subject | persistent behavioral states | en |
| dc.subject | ray-neurons | en |
| dc.subject | mating recognition | en |
| dc.subject | sensory-evoked behavioral states | en |
| dc.subject | glutamate signal | en |
| dc.title | 秀麗隱桿線蟲伴侶辨識神經迴路和其分子機制研究 | zh_TW |
| dc.title | Circuit Mechanism of Behavioral States for Mate Recognition in C. elegans Males | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 周銘翊;潘俊良 | zh_TW |
| dc.contributor.oralexamcommittee | Ming-Yi Chou;Chun-Liang Pan | en |
| dc.subject.keyword | 輻射狀神經,伴侶辨識,感覺誘發之行為改變,谷氨酸信號,持續性行為狀態, | zh_TW |
| dc.subject.keyword | ray-neurons,mating recognition,sensory-evoked behavioral states,glutamate signal,persistent behavioral states, | en |
| dc.relation.page | 90 | - |
| dc.identifier.doi | 10.6342/NTU202302062 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-07-31 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | - |
| dc.date.embargo-lift | 2028-07-26 | - |
| Appears in Collections: | 分子與細胞生物學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-111-2.pdf Until 2028-07-26 | 3.01 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
