Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91465
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳育任zh_TW
dc.contributor.advisorYuh-Renn Wuen
dc.contributor.author解鈞皓zh_TW
dc.contributor.authorChun-Hao Hsiehen
dc.date.accessioned2024-01-26T16:37:31Z-
dc.date.available2024-01-27-
dc.date.copyright2024-01-26-
dc.date.issued2024-
dc.date.submitted2024-01-19-
dc.identifier.citation[1] K. Bertness, S. R. Kurtz, D. J. Friedman, A. Kibbler, C. Kramer, and J. Olson, "29.5%‐efficient GaInP/GaAs tandem solar cells," Applied Physics Letters, vol. 65, no. 8, pp. 989-991, 1994.
[2] F. Dimroth, "High‐efficiency solar cells from III‐V compound semiconductors," physica status solidi c, vol. 3, no. 3, pp. 373-379, 2006.
[3] J. Olson, D. Friedman, and S. Kurtz, "High‐efficiency III‐V multijunction solar cells," Handbook of Photovoltaic Science and Engineering, pp. 359-411, 2003.
[4] M. Yamaguchi, T. Takamoto, K. Araki, and N. Ekins-Daukes, "Multi-junction III–V solar cells: current status and future potential," Solar Energy, vol. 79, no. 1, pp. 78-85, 2005.
[5] S. A. Ringel et al., "Single‐junction InGaP/GaAs solar cells grown on Si substrates with SiGe buffer layers," Progress in Photovoltaics: Research and Applications, vol. 10, no. 6, pp. 417-426, 2002.
[6] S. Rühle, "Tabulated values of the Shockley–Queisser limit for single junction solar cells," Solar energy, vol. 130, pp. 139-147, 2016.
[7] B. M. Kayes et al., "27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination," in 2011 37th IEEE Photovoltaic Specialists Conference, 2011: IEEE, pp. 4-8.
[8] Y. Wang et al., "Fabrication and characterization of single junction GaAs solar cells on Si with As-doped Ge buffer," Solar Energy Materials and Solar Cells, vol. 172, pp. 140-144, 2017.
[9] K. Yoshikawa et al., "Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%," Nature energy, vol. 2, no. 5, pp. 1-8, 2017.
[10] F. Fertig et al., "Mass production of p-type Cz silicon solar cells approaching average stable conversion efficiencies of 22%," Energy Procedia, vol. 124, pp. 338-345, 2017.
[11] B. Min et al., "A roadmap toward 24% efficient PERC solar cells in industrial mass production," IEEE Journal of Photovoltaics, vol. 7, no. 6, pp. 1541-1550, 2017.
[12] N. V. Yastrebova, "High-efficiency multi-junction solar cells: Current status and future potential," Centre for Research in Photonics, University of Ottawa, p. 17, 2007.
[13] Q. Jiang et al., "Surface reaction for efficient and stable inverted perovskite solar cells," Nature, vol. 611, no. 7935, pp. 278-283, 2022.
[14] J. J. Yoo et al., "Efficient perovskite solar cells via improved carrier management," Nature, vol. 590, no. 7847, pp. 587-593, 2021.
[15] T. Singh and T. Miyasaka, "Stabilizing the efficiency beyond 20% with a mixed cation perovskite solar cell fabricated in ambient air under controlled humidity," Advanced Energy Materials, vol. 8, no. 3, p. 1700677, 2018.
[16] Z. Qiu et al., "Monolithic perovskite/Si tandem solar cells exceeding 22% efficiency via optimizing top cell absorber," Nano Energy, vol. 53, pp. 798-807, 2018.
[17] M. Abdi-Jalebi et al., "Maximizing and stabilizing luminescence from halide perovskites with potassium passivation," Nature, vol. 555, no. 7697, pp. 497-501, 2018.
[18] Y. Wu et al., "Monolithic perovskite/silicon-homojunction tandem solar cell with over 22% efficiency," Energy & Environmental Science, vol. 10, no. 11, pp. 2472-2479, 2017.
[19] M. Saliba et al., "Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency," Energy & environmental science, vol. 9, no. 6, pp. 1989-1997, 2016.
[20] M. Saliba et al., "Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance," Science, vol. 354, no. 6309, pp. 206-209, 2016.
[21] K. A. Bush et al., "23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability," Nature Energy, vol. 2, no. 4, pp. 1-7, 2017.
[22] B. Chen et al., "Efficient semitransparent perovskite solar cells for 23.0%‐efficiency perovskite/silicon four‐terminal tandem cells," Advanced Energy Materials, vol. 6, no. 19, p. 1601128, 2016.
[23] M. Filipič et al., "CH3NH3PbI3 perovskite/silicon tandem solar cells: characterization based optical simulations," Optics express, vol. 23, no. 7, pp. A263-A278, 2015.
[24] S. Foster and S. John, "Light-trapping design for thin-film silicon-perovskite tandem solar cells," Journal of Applied Physics, vol. 120, no. 10, p. 103103, 2016.
[25] P. Löper et al., "Organic–inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells," Physical Chemistry Chemical Physics, vol. 17, no. 3, pp. 1619-1629, 2015.
[26] J. P. Mailoa et al., "A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction," Applied Physics Letters, vol. 106, no. 12, p. 121105, 2015.
[27] D. P. McMeekin et al., "A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells," Science, vol. 351, no. 6269, pp. 151-155, 2016.
[28] J. Werner et al., "Efficient monolithic perovskite/silicon tandem solar cell with cell area > 1 cm2," The journal of physical chemistry letters, vol. 7, no. 1, pp. 161-166, 2016.
[29] Q. Zhao et al., "High efficiency perovskite quantum dot solar cells with charge separating heterostructure," Nature communications, vol. 10, no. 1, p. 2842, 2019.
[30] D. H. Kang and N. G. Park, "On the current–voltage hysteresis in perovskite solar cells: dependence on perovskite composition and methods to remove hysteresis," Advanced Materials, vol. 31, no. 34, p. 1805214, 2019.
[31] T. Leijtens, K. A. Bush, R. Prasanna, and M. D. McGehee, "Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors," Nature Energy, vol. 3, no. 10, pp. 828-838, 2018.
[32] F. Sahli et al., "Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency," Nature materials, vol. 17, no. 9, pp. 820-826, 2018.
[33] M. L. Brongersma, Y. Cui, and S. Fan, "Light management for photovoltaics using high-index nanostructures," Nature materials, vol. 13, no. 5, pp. 451-460, 2014.
[34] E. Yablonovitch and G. D. Cody, "Intensity enhancement in textured optical sheets for solar cells," IEEE Transactions on electron devices, vol. 29, no. 2, pp. 300-305, 1982.
[35] A. W. Walker, O. Thériault, M. M. Wilkins, J. F. Wheeldon, and K. Hinzer, "Tunnel-junction-limited multijunction solar cell performance over concentration," IEEE Journal of Selected Topics in Quantum Electronics, vol. 19, no. 5, pp. 1-8, 2013.
[36] K.-Y. Ho, C.-K. Li, H.-J. Syu, Y. Lai, C.-F. Lin, and Y.-R. Wu, "Analysis of the PEDOT: PSS/Si nanowire hybrid solar cell with a tail state model," Journal of Applied Physics, vol. 120, no. 21, p. 215501, 2016.
[37] J.-Y. Huang, E.-W. Chang, and Y.-R. Wu, "Optimization of MAPbI3-Based Perovskite Solar Cell With Textured Surface," IEEE Journal of Photovoltaics, vol. 9, no. 6, pp. 1686-1692, 2019.
[38] C.-Y. Lee, C.-M. Yeh, Y.-T. Liu, C.-M. Fan, C.-F. Huang, and Y.-R. Wu, "The optimization study of textured a-Si: H solar cells," Journal of Renewable and Sustainable Energy, vol. 6, no. 2, p. 023111, 2014.
[39] S. Mariotti et al., "Interface engineering for high-performance, triple-halide perovskite–silicon tandem solar cells," Science, vol. 381, no. 6653, pp. 63-69, 2023.
[40] X. Y. Chin et al., "Interface passivation for 31.25%-efficient perovskite/silicon tandem solar cells," Science, vol. 381, no. 6653, pp. 59-63, 2023.
[41] E. Aydin et al., "Enhanced optoelectronic coupling for perovskite-silicon tandem solar cells," Nature, pp. 1-3, 2023.
[42] A. Al-Ashouri et al., "Monolithic perovskite/silicon tandem solar cell with> 29% efficiency by enhanced hole extraction," Science, vol. 370, no. 6522, pp. 1300-1309, 2020.
[43] M. I. Hossain, W. Qarony, S. Ma, L. Zeng, D. Knipp, and Y. H. Tsang, "Perovskite/silicon tandem solar cells: From detailed balance limit calculations to photon management," Nano-micro letters, vol. 11, pp. 1-24, 2019.
[44] J. J. Hench and Z. Strakoš, "The RCWA method-a case study with open questions and perspectives of algebraic computations," Electronic Transactions on Numerical Analysis, vol. 31, pp. 331-357, 2008.
[45] M. Moharam and T. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," JOSA, vol. 71, no. 7, pp. 811-818, 1981.
[46] Y. Hou et al., "Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon," Science, vol. 367, no. 6482, pp. 1135-1140, 2020.
[47] E. Raoult et al., "Optical characterizations and modelling of semitransparent perovskite solar cells for tandem applications," in 36th European Photovoltaic Solar Energy Conference and Exhibition, 2019, pp. 757-763.
[48] M. A. Green, "Improved silicon optical parameters at 25° C, 295 K and 300 K including temperature coefficients," Progress in Photovoltaics: Research and Applications, vol. 30, no. 2, pp. 164-179, 2022.
[49] M. Addonizio, A. Spadoni, A. Antonaia, I. Usatii, and E. Bobeico, "Hydrogen-doped In2O3 for silicon heterojunction solar cells: Identification of a critical threshold for water content and rf sputtering power," Solar Energy Materials and Solar Cells, vol. 220, p. 110844, 2021.
[50] B. A. Hasan and R. M. Abdallah, "The role of tin oxide concentration on the x-ray diffraction, morphology and optical properties of In2O3: SnO2 thin films," in Journal of Physics: Conference Series, 2018, vol. 1003, no. 1: IOP Publishing, p. 012129.
[51] S. Manzoor et al., "Optical modeling of wide-bandgap perovskite and perovskite/silicon tandem solar cells using complex refractive indices for arbitrary-bandgap perovskite absorbers," Optics express, vol. 26, no. 21, pp. 27441-27460, 2018.
[52] J. M. Siqueiros, R. Machorro, and L. E. Regalado, "Determination of the optical constants of MgF2 and ZnS from spectrophotometric measurements and the classical oscillator method," Applied optics, vol. 27, no. 12, pp. 2549-2553, 1988.
[53] M. A. Leilaeioun et al., "Power losses in the front transparent conductive oxide layer of silicon heterojunction solar cells: design guide for single-junction and four-terminal tandem applications," IEEE Journal of Photovoltaics, vol. 10, no. 2, pp. 326-334, 2019.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91465-
dc.description.abstract在本篇論文中,我們對鈣鈦礦/單晶矽串聯式太陽能電池進行了優化。首先嘗試將模擬模型的計算結果符合已發表的實驗元件效能,接著繼續優化這些結構,並探討優化鈣鈦礦/單晶矽串聯式太陽能電池後效能提升的可能性,其中包含了使用二維嚴格耦合波分析法(2D RCWA)求解器對電流匹配問題進行的光學優化,以及使用2D Poisson’s & drift-diffusion求解器(DDCC)對非輻射複合損耗和穿隧接面問題的電性優化。結構優化方面,我們嘗試在元件的不同層中加入三角形的紋理結構,根據模擬結果可發現相較於平面結構,全紋理結構可有效將反射掉的光電流密度從4.605 mA/cm2減少至2.096 mA/cm2。透過紋理結構優化並考慮電流匹配,與平面結構相比,效能最佳的紋理結構將Jsc從17.9 mA/cm2提高到20.87 mA/cm2,PCE從25.8%提升至35.9%。此外,若可將鈣鈦礦薄膜品質和穿隧接面的效率提升,能讓元件有較小的電壓損失,則元件整體的能量轉換效率可以可以進一步提升至38.13%,此結果顯示鈣鈦礦/單晶矽串聯式太陽能電池在未來還有很大的進步空間。最後我們得知對於不同紋理結構的優化可以透過我們的模型模擬。zh_TW
dc.description.abstractIn this thesis, we optimized perovskite/silicon tandem solar cells (TSCs). We try to fit our simulation model into published experimental work. After that, we try to optimize these structures and check the possibility of optimizing this tandem solar cell. This includes the optical optimization for the current matching condition using the 2D Rigorous coupled-wave analysis (2D-RCWA) solver and electrical optimization, including the nonradiative loss and tunneling junction issues with the 2D Poisson and drift-diffusion solver (2D-DDCC). In terms of structural optimization, we tried to add a triangular texture structure to different layers of the device. According to the simulation results, it can be found that compared with the planar structure, the fully textured structure can effectively reduce the reflected photocurrent density from 4.605 mA/cm2 to 2.096 mA/cm2. With the texture structure optimization and considering current matching, the optimal textured structure improves the short circuit current density (Jsc) from 17.9 mA/cm2 to 20.87 mA/cm2 compared to the planar structure. It also improves the power conversion efficiency (PCE) from 25.8% to 35.9% with a design texture structure and the current matching condition. Furthermore, if the quality of the referenced perovskite thin film and tunneling junction efficiency with a smaller voltage penalty can be improved, the efficiency can be further improved to 38.13%. This indicates that this tandem solar cell still has much room for improvement. Finally, it is concluded that the optimization of texture structure can be carried out through our simulation model.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-01-26T16:37:31Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-01-26T16:37:31Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee #
Acknowledgments i
摘要 ii
Abstract iii
Contents iv
List of Figures vi
List of Tables ix
Chapter 1 Introduction 1
1.1 Background 1
1.2 Literature review 2
1.3 Motivation 5
1.4 Principle of solar cells 8
1.4.1 Two Terminal Tandem Solar cells 9
1.5 Rigorous Coupled Wave Analysis Algorithm 12
1.6 TE and TM mode in Sunlight 19
Chapter 2 Methodology 21
2.1 Simulation of Optical Properties 21
2.2 Simulation of Electrical Properties 25
Chapter 3 Results and Discussion 29
3.1 The Influence of Triangular Textured Surface 29
3.2 Optimization of the triangular textured structure 37
3.3 The efficiency optimization of fully textured structure 40
3.3.1 The Influence of Current Matching on 2T Tandem Solar Cells 40
3.3.2 Electrical Results Under Current Matching Structures 42
3.4 The impact of different triangular texture structures on the efficiency of PVK/Si TSCs 49
Chapter 4 Conclusion 51
Appendix 53
References 55
-
dc.language.isoen-
dc.subject紋理結構zh_TW
dc.subject鈣鈦礦/單晶矽串聯式太陽能電池zh_TW
dc.subject2D RCWAzh_TW
dc.subject2D Poisson’s & drift-diffusion solverzh_TW
dc.subjecttexture structureen
dc.subject2D Poisson’s & drift-diffusion solveren
dc.subject2D RCWA solveren
dc.subjectperovskite/silicon tandem solar cellen
dc.title二接點紋理化鈣鈦礦/矽串聯型太陽能電池光學及電性優化之研究zh_TW
dc.titleOptimization of Optical and Electrical Properties of Two Terminal Textured Perovskite/Silicon Tandem Solar Cell Structureen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳奕君;陳方中;陳建彰zh_TW
dc.contributor.oralexamcommitteeI-Chun Cheng;Fang-Chung Chen;Jian-Zhang Chenen
dc.subject.keyword2D Poisson’s & drift-diffusion solver,2D RCWA,鈣鈦礦/單晶矽串聯式太陽能電池,紋理結構,zh_TW
dc.subject.keyword2D Poisson’s & drift-diffusion solver,2D RCWA solver,perovskite/silicon tandem solar cell,texture structure,en
dc.relation.page61-
dc.identifier.doi10.6342/NTU202400118-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-01-22-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
10.57 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved