Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91464
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝馬利歐zh_TW
dc.contributor.advisorMario Hofmannen
dc.contributor.author姚郁祺zh_TW
dc.contributor.authorYu-Chi Yaoen
dc.date.accessioned2024-01-26T16:37:16Z-
dc.date.available2024-01-27-
dc.date.copyright2024-01-26-
dc.date.issued2024-
dc.date.submitted2024-01-17-
dc.identifier.citation1. Wu, F., et al., Vertical MoS2 transistors with sub-1-nm gate lengths. Nature, 2022. 603(7900): p. 259-+.
2. Akinwande, D., et al., Graphene and two-dimensional materials for silicon technology. Nature, 2019. 573(7775): p. 507-518.
3. Cenker, J., et al., Direct observation of two-dimensional magnons in atomically thin CrI3. Nature Physics, 2021. 17(1): p. 7.
4. Higashitarumizu, N., et al., Purely in-plane ferroelectricity in monolayer SnS at room temperature. Nature Communications, 2020. 11(1): p. 9.
5. Liu, Y., et al., Promises and prospects of two-dimensional transistors. Nature, 2021. 591(7848): p. 43-53.
6. Xiong, Y.H., et al., P-Type 2D Semiconductors for Future Electronics. Advanced Materials, 2023: p. 34.
7. Lemme, M.C., et al., 2D materials for future heterogeneous electronics. Nature Communications, 2022. 13(1): p. 5.
8. Zhao, H., et al., Two-dimensional materials for nanophotonics application. Nanophotonics, 2015. 4(2): p. 128-142.
9. Manzeli, S., et al., 2D transition metal dichalcogenides. 2017. 2(8): p. 1-15.
10. Lopez-Sanchez, O., et al., Ultrasensitive photodetectors based on monolayer MoS2. Nature Nanotechnology, 2013. 8(7): p. 497-501.
11. Li, L.F., et al., Room-temperature valleytronic transistor. Nature Nanotechnology, 2020. 15(9): p. 743-+.
12. Jung, E., et al., Unusually large exciton binding energy in multilayered 2H-MoTe2. Scientific Reports, 2022. 12(1): p. 10.
13. Ramasubramaniam, A., Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Physical Review B, 2012. 86(11): p. 6.
14. Li, T., et al., Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nature Nanotechnology, 2021. 16(11): p. 1201-1207.
15. Rhodes, D., et al., Disorder in van der Waals heterostructures of 2D materials. Nature Materials, 2019. 18(6): p. 541-549.
16. Ly, T.H., et al., Misorientation-angle-dependent electrical transport across molybdenum disulfide grain boundaries. Nature Communications, 2016. 7: p. 7.
17. Zhou, W., et al., Intrinsic Structural Defects in Monolayer Molybdenum Disulfide. Nano Letters, 2013. 13(6): p. 2615-2622.
18. Liu, M.X., et al., Temperature-Triggered Sulfur Vacancy Evolution in Monolayer MoS2/Graphene Heterostructures. Small, 2017. 13(40): p. 8.
19. Shang, J.Z., et al., Revealing electronic nature of broad bound exciton bands in two-dimensional semiconducting WS2 and MoS2. Physical Review Materials, 2017. 1(7): p. 10.
20. Kim, C., et al., Fermi Level Pinning at Electrical Metal Contacts of Monolayer Molybdenum Dichalcogenides. Acs Nano, 2017. 11(2): p. 1588-1596.
21. Zhang, Y.B., et al., Origin of spatial charge inhomogeneity in graphene. Nature Physics, 2009. 5(10): p. 722-726.
22. Mouri, S., Y. Miyauchi, and K. Matsuda, Tunable Photoluminescence of Monolayer MoS2 via Chemical Doping. Nano Letters, 2013. 13(12): p. 5944-5948.
23. Amani, M., et al., Near-unity photoluminescence quantum yield in MoS2. Science, 2015. 350(6264): p. 1065-1068.
24. Dolui, K., et al., Possible doping strategies for MoS2 monolayers: An ab initio study. Physical Review B, 2013. 88(7): p. 9.
25. Azcatl, A., et al., Covalent Nitrogen Doping and Compressive Strain in MoS2 by Remote N-2 Plasma Exposure. Nano Letters, 2016. 16(9): p. 5437-5443.
26. Nan, H.Y., et al., Strong Photoluminescence Enhancement of MoS2 through Defect Engineering and Oxygen Bonding. Acs Nano, 2014. 8(6): p. 5738-5745.
27. Qian, Q.K., et al., Photoluminescence Induced by Substitutional Nitrogen in Single-Layer Tungsten Disulfide. Acs Nano, 2022. 16(5): p. 7428-7437.
28. Qu, D.S., et al., Carrier-Type Modulation and Mobility Improvement of Thin MoTe2. Advanced Materials, 2017. 29(39): p. 11.
29. Lin, Y.C., et al., Realizing Large-Scale, Electronic-Grade Two-Dimensional Semiconductors. Acs Nano, 2018. 12(2): p. 965-975.
30. Qin, Z.Y., et al., Growth of Nb-Doped Monolayer WS2 by Liquid-Phase Precursor Mixing. Acs Nano, 2019. 13(9): p. 10768-10775.
31. Shen, P.C., et al., Healing of donor defect states in monolayer molybdenum disulfide using oxygen-incorporated chemical vapour deposition. Nature Electronics, 2022. 5(1): p. 28-36.
32. Tang, J., et al., In Situ Oxygen Doping of Monolayer MoS2 for Novel Electronics. Small, 2020. 16(42): p. 8.
33. Li, S.S., et al., Vapour-liquid-solid growth of monolayer MoS2 nanoribbons. Nature Materials, 2018. 17(6): p. 535-+.
34. Luo, Z.T., et al., Effect of Substrate Roughness and Feedstock Concentration on Growth of Wafer-Scale Graphene at Atmospheric Pressure. Chemistry of Materials, 2011. 23(6): p. 1441-1447.
35. Wu, M.H., et al., Seeded growth of large single-crystal copper foils with high-index facets. Nature, 2020. 581(7809): p. 406-+.
36. Frank, F. and J. Van Der Merwe. Proc. R. Soc. London A. in Ser. A. 1949.
37. Hiramatsu, K., et al., Growth mechanism of GaN grown on sapphire with A1N buffer layer by MOVPE. 1991. 115(1-4): p. 628-633.
38. Jung, W.S., Transmission electron microscopy study of the nitridated sapphire under a mixed gas flow of nitrogen and methane. Journal of the Ceramic Society of Japan, 2012. 120(1405): p. 382-385.
39. Dwikusuma, F. and T.F. Kuech, X-ray photoelectron spectroscopic study on sapphire nitridation for GaN growth by hydride vapor phase epitaxy: Nitridation mechanism. Journal of Applied Physics, 2003. 94(9): p. 5656-5664.
40. Sun, L., et al., Chemical vapour deposition. Nature Reviews Methods Primers, 2021. 1(1): p. 5.
41. Hsu, W.F., et al., Monolayer MoS2 Enabled Single-Crystalline Growth of AlN on Si(100) Using Low-Temperature Helicon Sputtering. Acs Applied Nano Materials, 2019. 2(4): p. 1964-1969.
42. Chen, T.A., et al., Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111). Nature, 2020. 579(7798): p. 219-+.
43. Shivayogimath, A., et al., A universal approach for the synthesis of two-dimensional binary compounds. Nature Communications, 2019. 10: p. 7.
44. Ma, Z.P., et al., Epitaxial Growth of Rectangle Shape MoS2 with Highly Aligned Orientation on Twofold Symmetry a-Plane Sapphire. Small, 2020. 16(16): p. 9.
45. Chen, W., et al., Oxygen-Assisted Chemical Vapor Deposition Growth of Large Single-Crystal and High-Quality Monolayer MoS2. Journal of the American Chemical Society, 2015. 137(50): p. 15632-15635.
46. Wang, Q.Q., et al., Wafer-Scale Highly Oriented Monolayer MoS2 with Large Domain Sizes. Nano Letters, 2020. 20(10): p. 7193-7199.
47. Griffiths, P.R.J.S., Fourier transform infrared spectrometry. 1983. 222(4621): p. 297-302.
48. Mukherjee, S.J.N.S.S. and B. Media, The science of clays. 2013.
49. Keresztury, G., et al., Raman Spectroscopy: Theory in Handbook of Vibrational Spectroscopy, vol. 1. 2002.
50. Antosiewicz, J.M. and D.J.B.R. Shugar, UV–Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 1: Basic principles and properties of tyrosine chromophore. 2016. 8(2): p. 151-161.
51. TCSPC and Time Tagging Electronics. 2023. Available from: https://www.picoquant.com/products/category/tcspc-and-time-tagging-modules/timeharp-260-tcspc-and-mcs-board-with-pcie-interface.
52. Stevie, F.A., et al., Introduction to x-ray photoelectron spectroscopy. 2020. 38(6): p. 063204.
53. Suslick, K.S.J.S. and r.e.E.S.L. sonochemistry, Massachusetts, Encyclopedia of physical science and technology. 2001: p. 1-20.
54. Bashouti, M.Y., et al., A non-oxidative approach towards hybrid silicon nanowire-based solar cell heterojunctions. 2014.
55. attocube. Atomic force microscopes (AFM). 2023. Available from: https://www.attocube.com/en/products/microscopes/fundamentals/atomic-force-microscopy.
56. Probes. 2023. Available from: https://www.brukerafmprobes.com/c-15-probes.aspx.
57. Atomic force microscope now available in the KNI cleanroom. 2023. Available from: https://mmrc.caltech.edu/AFM%20Dimension%20Icon/Bruker%20Training/Surface%20potential%20manual.pdf.
58. Kelvin Probe Force Microscopy (KPFM). 2023. Available from: https://www.attocube.com/en/products/microscopes/fundamentals/kelvin-probe-force-microscopy.
59. Hübschen, G., et al., Materials characterization using nondestructive evaluation (NDE) methods. 2016: Woodhead publishing.
60. high-angle annular dark-field scanning transmission electron microscopy, HAADF-STEM. 2023. Available from: https://www.jeol.com/words/emterms/20121023.031059.php#gsc.tab=0.
61. Fultz, B. and J.M. Howe, Transmission electron microscopy and diffractometry of materials. 2012: Springer Science & Business Media.
62. wavelength of electron. 2023. Available from: https://www.jeol.com/words/emterms/20121023.071258.php#gsc.tab=0.
63. Hussain, S., Structural and optical characterization of green-yellow light emitting devices with high indium concentrated (In, Ga) N quantum wells. 2014, Université Nice Sophia Antipolis.
64. Fujimoto, F., A. Mazel, and J. Sevely, IMAGE-FORMATION BY INELASTICALLY SCATTERED ELECTRONS IN TEM AND STEM. Ultramicroscopy, 1994. 55(3): p. 253-257.
65. Bonaccorso, F., et al., Production and processing of graphene and 2d crystals. Materials Today, 2012. 15(12): p. 564-589.
66. Scriven, L.J.M.O.P.L., Physics and applications of dip coating and spin coating. 1988. 121: p. 717.
67. Birnie, D.P., A Model for Drying Control Cosolvent Selection for Spin-Coating Uniformity: The Thin Film Limit. Langmuir, 2013. 29(29): p. 9072-9078.
68. 機械式旋轉塗佈機 SP-M1-S. 2023. Available from: http://apisc.com/Spin_Coater_SP-M1-S.htm.
69. Guo, Y.B., Laser Peening and Wear, in Encyclopedia of Tribology, Q.J. Wang and Y.-W. Chung, Editors. 2013, Springer US: Boston, MA. p. 1934-1938.
70. Ku, C.Y., T.F. Lei, and D.S. Cheng, Monitoring lithographic focus and tilting performance by off-line overlay measurement tools. Journal of Vacuum Science & Technology B, 2001. 19(5): p. 1915-1924.
71. Mack, C.A. Resolution and depth of focus in optical lithography. in Microlithographic Techniques in IC Fabrication. 1997. SPIE.
72. AZ 5200-E Photoresist. 2023. Available from: https://www.microchemicals.com/micro/tds_az_5209e_photoresist.pdf.
73. Diffusion Pump -Overview, Parts, Working, Pumping Speed Equation. 2023. Available from: http://www.mechanicalwalkins.com/diffusion-pump-overview-parts-working-pumping-speed-equation/.
74. Eernisse, E.P., R.W. Ward, and R.B. Wiggins, SURVEY OF QUARTZ BULK RESONATOR SENSOR TECHNOLOGIES. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, 1988. 35(3): p. 323-330.
75. Manos, D.M. and D.L.J.A.P. Flamm, Inc., Plasma etching: an introduction.(retroactive coverage). 1989: p. 476.
76. Yoon, M.Y., et al., Plasma etching of the trench pattern with high aspect ratio mask under ion tilting. Applied Surface Science, 2022. 595: p. 9.
77. Xiao, H.J.P.i., Introduction to Semiconductor Manufacturing Technology, —Chapter 10: CVD and Dielectric Thin Film. 2012.
78. Compact Etcher RIE-1C. 2023. Available from: https://www.samco.co.jp/en/products/etching/Compact_Etcher_RIE-1C.php.
79. Liu, L., et al., Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire. Nature, 2022. 605(7908): p. 69-+.
80. Li, J., et al., Facile and rigorous route to distinguish the boundary structure of monolayer MoS2 domains by oxygen etching. Applied Surface Science, 2020. 510: p. 8.
81. Lawniczak-Jablonska, K., et al., Chemical bonding of nitrogen formed by nitridation of crystalline and amorphous aluminum oxide studied by X-ray photoelectron spectroscopy. Rsc Advances, 2020. 10(47): p. 27932-27939.
82. Bhaviripudi, S., et al., Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst. Nano Letters, 2010. 10(10): p. 4128-4133.
83. Pető, J., et al., Moderate strain induced indirect bandgap and conduction electrons in MoS2 single layers. 2019. 3(1): p. 39.
84. Mitterreiter, E., et al., The role of chalcogen vacancies for atomic defect emission in MoS2. Nature Communications, 2021. 12(1): p. 8.
85. Golovynskyi, S., et al., Exciton and trion in few-layer MoS2: Thickness- and temperature-dependent photoluminescence. Applied Surface Science, 2020. 515: p. 7.
86. Joshi, J., et al., Localized Excitons in NbSe2-MoSe2 Heterostructures. Acs Nano, 2020. 14(7): p. 8528-8538.
87. Shi, H.Y., et al., Exciton Dynamics in Suspended Mono layer and Few-Layer MoS2 2D Crystals. Acs Nano, 2013. 7(2): p. 1072-1080.
88. Lin, M.F., et al., Ultrafast non-radiative dynamics of atomically thin MoSe2. Nature Communications, 2017. 8(1): p. 8.
89. Das, A., et al., Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nature Nanotechnology, 2008. 3(4): p. 210-215.
90. Li, M.G., et al., P-type Doping in Large-Area Monolayer MoS2 by Chemical Vapor Deposition. Acs Applied Materials & Interfaces, 2020. 12(5): p. 6276-6282.
91. Lee, J.E., et al., Optical separation of mechanical strain from charge doping in graphene. Nature Communications, 2012. 3: p. 8.
92. Polumati, G., et al., Modulation of Schottky Barrier Height by Nitrogen Doping and Its Influence on Responsivity of Monolayer MoS2 Photodetector. Advanced Materials Interfaces, 2023: p. 12.
93. Luo, W.M., Z.G. Shao, and M. Yang, Photogalvanic Effect in Nitrogen-Doped Monolayer MoS2 from First Principles. Nanoscale Research Letters, 2019. 14(1): p. 8.
94. Wang, Y., et al., Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature, 2019. 568(7750): p. 70-+.
95. Wang, Y., et al., P-type electrical contacts for 2D transition-metal dichalcogenides. Nature, 2022. 610(7930): p. 61-+.
96. Kim, B.K., et al., Origins of genuine Ohmic van der Waals contact between indium and MoS2. Npj 2d Materials and Applications, 2021. 5(1): p. 10.
97. Kang, J.H., et al., Computational Study of Metal Contacts to Monolayer Transition-Metal Dichalcogenide Semiconductors. Physical Review X, 2014. 4(3): p. 14.
98. Kim, G.S., et al., Schottky Barrier Height Engineering for Electrical Contacts of Multilayered MoS2 Transistors with Reduction of Metal-Induced Gap States. Acs Nano, 2018. 12(6): p. 6292-6300.
99. Zhao, Q.H., et al., The role of traps in the photocurrent generation mechanism in thin InSe photodetectors. Materials Horizons, 2020. 7(1): p. 252-262.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91464-
dc.description.abstract二維過渡金屬二硫屬化物(2D TMDCs)由於其獨特的電學和光學性質,在光電領域引起了相當大的關注。然而,在合成過程中產生的原子級缺陷限制了它們的真正潛力。雖然目前學界較常見的後處理技術可以一定程度地減輕這些缺陷,但這些技術不僅引入了複雜性,同時也對過渡金屬硫氧化物的品質產生了不利影響。在這項研究中,我們提出了一種簡單且有效的替代方案,利用生長用基板之預處理作為解決二氧化鉬中原子缺陷所帶來的問題。透過在生長前對藍寶石基板進行低溫氨化處理,光譜表徵與原子級顯微鏡證實了藍寶石表面的氮能鈍化二氧化鉬晶格內的硫空缺;同時,第一原理計算結果以及光、電性量測說明了被氮原子填補的硫空缺可消除能隙中之缺陷態密度,並呈現了P型參雜的行為。不僅如此,於金屬異質接面的載子傳輸性質也得到改善,修復缺陷後的二氧化鉬使其接觸電阻下降了三倍並大幅地提升光偵測器性能達到十倍以上。這些發現為未來高性能二維電子器件的開發開辟了令人興奮的可能性。zh_TW
dc.description.abstract2D transition metal dichalcogenides (2D TMDCs) have garnered considerable attention in the field of optoelectronics due to their unique electric and optical properties. However, the presence of atomic vacancies during the synthesis process has imposed limitations on their potential. Although post-treatment techniques have been employed to mitigate these vacancies, they introduce complexities and adversely impact the quality of TMDCs. In this study, we propose an alternative approach that leverages pretreatment as a simple yet effective solution to address the vacancy issue in MoS2. By conducting a low-temperature nitridation of the sapphire substrate prior to growth, we demonstrate a non-destructive method for modifying MoS2 without introducing additional processing steps or raising the thermal budget. Through spectroscopic characterization and atomic-resolution microscopy, we unveil the incorporation of nitrogen from the surface layer of the pre-treated sapphire into chalcogen vacancies within the MoS2 lattice. The resulting nitrogen-saturated MoS2 exhibits a reduction in mid-gap states and demonstrates a p-type doping behavior, which is confirmed through ab-initio calculations and optoelectronic measurements. The effectiveness of the pretreatment approach is evidenced by a threefold decrease in contact resistance and a tenfold improvement in the performance of 2D photodetectors. These findings open up exciting possibilities for the development of high-performance 2D electronics in the future.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-01-26T16:37:16Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-01-26T16:37:16Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iv
ABSTRACT v
TABLE OF CONTENTS vi
LIST OF FIGURES & TABLES viii
Chapter 1 Introduction 1
1.1 Two-dimensional materials 2
1.2 Transition metal dichalcogenides (TMDCs) 4
1.3 Atomic disorder in 2D materials 6
1.4 State of research: Post-treatments & in-situ processes 9
1.4.1 Charge transfer doping 9
1.4.2 Substitutional doping: Post-treatment and in-situ process 10
1.5 Substrate pretreatments: sapphire nitridation 15
Chapter 2 Experimental Section 17
2.1 Materials synthesis 18
2.1.1 Chemical vapor deposition (CVD) 18
2.1.2 Synthesis of MoS2 and precursor contaminations 19
2.1.3 Nitridation of c-sapphires 21
2.2 Optical characterizations 22
2.2.1 Raman spectroscopy 22
2.2.2 Photoluminescence and time-resolved photoluminescence (PL) 23
2.2.3 X-ray photoelectron spectroscopy (XPS) 25
2.3 Morphology and structural analysis 27
2.3.1 Atomic force microscope (AFM) 27
2.3.2 Kelvin-probe force microscope (KPFM) 27
2.4 Device fabrication 32
2.4.1 Spin coater 32
2.4.2 Photolithography 33
2.4.3 Thermal evaporator 35
2.4.4 Reactive ion etching (RIE) 37
Chapter 3 Results and Discussions 39
3.1 MoS2 synthesis and parameters effect 40
3.2 Nitridation mechanism 42
3.3 Structural characterizations 45
3.4 Vacancy saturation and its effects 50
3.5 Modified electrical properties 54
3.6 Enhanced device performances 58
Chapter 4 Conclusion and Outlook 63
References 64
-
dc.language.isoen-
dc.subject光致發光zh_TW
dc.subject光電子學zh_TW
dc.subject二維材料zh_TW
dc.subject低溫前處理zh_TW
dc.subject傳輸性質zh_TW
dc.subject缺陷工程zh_TW
dc.subjectOptoelectronicsen
dc.subject2D materialsen
dc.subjectLow-temperature pretreatmentsen
dc.subjectDefect engineeringen
dc.subjectTransport propertiesen
dc.subjectPhotoluminescenceen
dc.title透過氨化前處理基板修復二氧化鉬之硫空缺zh_TW
dc.titleNitrogen-pretreatment of Growth Substrates for Vacancy-saturated MoS2en
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.coadvisor謝雅萍zh_TW
dc.contributor.coadvisorYa-Ping Hsiehen
dc.contributor.oralexamcommittee陳永芳;藍彥文zh_TW
dc.contributor.oralexamcommitteeYang-Fang Chen;Yann-Wen Lanen
dc.subject.keyword二維材料,低溫前處理,缺陷工程,傳輸性質,光致發光,光電子學,zh_TW
dc.subject.keyword2D materials,Low-temperature pretreatments,Defect engineering,Transport properties,Photoluminescence,Optoelectronics,en
dc.relation.page72-
dc.identifier.doi10.6342/NTU202400091-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-01-19-
dc.contributor.author-college理學院-
dc.contributor.author-dept物理學系-
dc.date.embargo-lift2029-01-14-
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  未授權公開取用
6.44 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved