請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91462
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 邱智賢 | zh_TW |
dc.contributor.advisor | Chih-Hsien Chiu | en |
dc.contributor.author | 江紀明 | zh_TW |
dc.contributor.author | Chi-Ming Chiang | en |
dc.date.accessioned | 2024-01-26T16:36:46Z | - |
dc.date.available | 2024-01-27 | - |
dc.date.copyright | 2024-01-26 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-01-22 | - |
dc.identifier.citation | Ahlstrom, M., Pekkinen, M., & Lamberg-Allardt, C. (2009). Dexamethasone downregulates the expression of parathyroid hormone-related protein (PTHrP) in mesenchymal stem cells [Article]. Steroids, 74(2), 277-282. https://doi.org/10.1016/j.steroids.2008.12.002
Ahlström, M., Pekkinen, M., & Lamberg-Allardt, C. (2009). Dexamethasone downregulates the expression of parathyroid hormone-related protein (PTHrP) in mesenchymal stem cells [Article]. Steroids, 74(2), 277-282. https://doi.org/10.1016/j.steroids.2008.12.002 Al Ghrbawy, N. M., Afify, R., Dyaa, N., & El Sayed, A. A. (2016). Differentiation of Bone Marrow: Derived Mesenchymal Stem Cells into Hepatocyte-like Cells [Article]. Indian Journal of Hematology and Blood Transfusion, 32(3), 276-283. https://doi.org/10.1007/s12288-015-0581-7 Ayroldi, E., & Riccardi, C. (2009). Glucocorticoid-induced leucine zipper (GILZ): a new important mediator of glucocorticoid action [Review]. Faseb Journal, 23(11), 3649-3658. https://doi.org/10.1096/fj.09-134684 Bagheri, L., Pellati, A., Rizzo, P., Aquila, G., Massari, L., De Mattei, M., & Ongaro, A. (2018). Notch pathway is active during osteogenic differentiation of human bone marrow mesenchymal stem cells induced by pulsed electromagnetic fields [Article]. Journal of Tissue Engineering and Regenerative Medicine, 12(2), 304-315. <Go to ISI>://WOS:000425184900058 Bateman, M. E., Strong, A. L., McLachlan, J. A., Burow, M. E., & Bunnell, B. A. (2017). The Effects of Endocrine Disruptors on Adipogenesis and Osteogenesis in Mesenchymal Stem Cells: A Review [Review]. Frontiers in Endocrinology, 7, 12, Article 171. https://doi.org/10.3389/fendo.2016.00171 Bhandari, A., & Mahajan, R. (2022). Skin Changes in Cirrhosis [Review]. Journal of Clinical and Experimental Hepatology, 12(4), 1215-1224. https://doi.org/10.1016/j.jceh.2021.12.013 Biggins, S. W., Angeli, P., Garcia-Tsao, G., Ginès, P., Ling, S. C., Nadim, M. K., Wong, F., & Kim, W. R. (2021). Diagnosis, Evaluation, and Management of Ascites, Spontaneous Bacterial Peritonitis and Hepatorenal Syndrome: 2021 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology, 74(2), 1014-1048. https://doi.org/10.1002/hep.31884 Bjelakovic, G., Nikolova, D., Bjelakovic, M., & Gluud, C. (2017). Vitamin D supplementation for chronic liver diseases in adults [Review]. Cochrane Database of Systematic Reviews(11), 81, Article Cd011564. https://doi.org/10.1002/14651858.CD011564.pub2 Bodine, P. V. N. (2008). Wnt signaling control of bone cell apoptosis [Review]. Cell Research, 18(2), 248-253. https://doi.org/10.1038/cr.2008.13 Bolarin, D. M., & Azinge, E. C. (2007). Biochemical markers, extracellular components in liver fibrosis and cirrhosis. Nig Q J Hosp Med, 17(1), 42-52. https://doi.org/10.4314/nqjhm.v17i1.12541 Bonewald, L. F., Kiel, D. P., Clemens, T. L., Esser, K., Orwoll, E. S., O''Keefe, R. J., & Fielding, R. A. (2013). Forum on bone and skeletal muscle interactions: Summary of the proceedings of an ASBMR workshop [Article]. Journal of Bone and Mineral Research, 28(9), 1857-1865. https://doi.org/10.1002/jbmr.1980 Bortvedt, S. F., & Lund, P. K. (2012). Insulin-like growth factor 1: common mediator of multiple enterotrophic hormones and growth factors [Review]. Current Opinion in Gastroenterology, 28(2), 89-98. https://doi.org/10.1097/MOG.0b013e32835004c6 Bouillon, R., Carmeliet, G., Verlinden, L., van Etten, E., Verstuyf, A., Luderer, H. F., Lieben, L., Mathieu, C., & Demay, M. (2008). Vitamin D and Human Health: Lessons from Vitamin D Receptor Null Mice [Review]. Endocrine Reviews, 29(6), 726-776. https://doi.org/10.1210/er.2008-0004 Boyle, W. J., Simonet, W. S., & Lacey, D. L. (2003). Osteoclast differentiation and activation [Review]. Nature, 423(6937), 337-342. https://doi.org/10.1038/nature01658 Canalis, E., Economides, A. N., & Gazzerro, E. (2003). Bone morphogenetic proteins, their antagonists, and the skeleton [Review]. Endocrine Reviews, 24(2), 218-235. https://doi.org/10.1210/er.2002-0023 Cappuccio, I., Calderone, A., Busceti, C. L., Biagioni, F., Pontarelli, F., Bruno, V., Storto, M., Terstappen, G. T., Gaviraghi, G., Fornai, F., Battaglia, G., Melchiorri, D., Zukin, S., Nicoletti, F., & Caricasole, A. (2005). Induction of Dickkopf-1, a negative modulator of the wnt pathway, is required for the development of ischemic neuronal death [Article]. Journal of Neuroscience, 25(10), 2647-2657. https://doi.org/10.1523/jneurosci.5230-04.2005 Cemborain, A., Castilla-Cortázar, I., García, M., Quiroga, J., Muguerza, B., Picardi, A., Santidrián, S., & Prieto, J. (1998). Osteopenia in rats with liver cirrhosis:: beneficial effects of IGF-I treatment [Article; Proceedings Paper]. Journal of Hepatology, 28(1), 122-131. https://doi.org/10.1016/s0168-8278(98)80211-0 Chang, D. J., Ji, C., Kim, K. K., Casinghino, S., McCarthy, T. L., & Centrella, M. (1998). Reduction in transforming growth factor β receptor I expression and transcription factor CBFa1 on bone cells by glucocorticoid [Article]. Journal of Biological Chemistry, 273(9), 4892-4896. https://doi.org/10.1074/jbc.273.9.4892 Chen, Q., Shou, P., Zheng, C., Jiang, M., Cao, G., Yang, Q., Cao, J., Xie, N., Velletri, T., Zhang, X., Xu, C., Zhang, L., Yang, H., Hou, J., Wang, Y., & Shi, Y. (2016). Fate decision of mesenchymal stem cells: adipocytes or osteoblasts? [Review]. Cell Death and Differentiation, 23(7), 1128-1139. https://doi.org/10.1038/cdd.2015.168 Choudhary, N., Tomar, M., Chawla, Y., Bhadada, S., Khandelwal, N., Dhiman, R., Duseja, A., & Bhansali, A. (2011). Hepatic osteodystrophy is common in patients with noncholestatic liver disease. Digestive diseases and sciences, 56, 3323-3327. Christakos, S., Dhawan, P., Verstuyf, A., Verlinden, L., & Carmeliet, G. (2016). VITAMIN D: METABOLISM, MOLECULAR MECHANISM OF ACTION, AND PLEIOTROPIC EFFECTS [Review]. Physiological Reviews, 96(1), 365-408. https://doi.org/10.1152/physrev.00014.2015 Chung, C., & Insogna, K. L. (2016). The liver throws the skeleton a bone (resorption factor). Hepatology, 64(3), 977-979. https://doi.org/10.1002/hep.28688 Cole, T. J., Blendy, J. A., Monaghan, A. P., Krieglstein, K., Schmid, W., Aguzzi, A., Fantuzzi, G., Hummler, E., Unsicker, K., & Schutz, G. (1995). TARGETED DISRUPTION OF THE GLUCOCORTICOID RECEPTOR GENE BLOCKS ADRENERGIC CHROMAFFIN CELL-DEVELOPMENT AND SEVERELY RETARDS LUNG MATURATION [Article]. Genes & Development, 9(13), 1608-1621. https://doi.org/10.1101/gad.9.13.1608 Corazza, G. R., Trevisani, F., Di Stefano, M., De Notariis, S., Veneto, G., Cecchetti, L., Minguzzi, L., Gasbarrini, G., & Bernardi, M. (2000). Early increase of bone resorption in patients with liver cirrhosis secondary to viral hepatitis [Article]. Digestive diseases and sciences, 45(7), 1392-1399. https://doi.org/10.1023/a:1005568406664 Daughaday, W. H., Hall, K., Raben, M. S., Salmon, W. D., Jr., van den Brande, J. L., & van Wyk, J. J. (1972). Somatomedin: proposed designation for sulphation factor. Nature, 235(5333), 107. https://doi.org/10.1038/235107a0 Daughaday, W. H., Laron, Z., Pertzelan, A., & Heins, J. N. (1969). Defective sulfation factor generation: a possible etiological link in dwarfism. Trans Assoc Am Physicians, 82, 129-140. Daughaday, W. H., & Rotwein, P. (1989). INSULIN-LIKE GROWTH FACTOR-I AND FACTOR-II - PEPTIDE, MESSENGER RIBONUCLEIC-ACID AND GENE STRUCTURES, SERUM, AND TISSUE CONCENTRATIONS [Review]. Endocrine Reviews, 10(1), 68-91. https://doi.org/10.1210/edrv-10-1-68 Daughaday, W. H., Salmon, W. D., & Alexander, F. (1959). SULFATION FACTOR ACTIVITY OF SERA FROM PATIENTS WITH PITUITARY DISORDERS [Article]. Journal of Clinical Endocrinology & Metabolism, 19(7), 743-758. https://doi.org/10.1210/jcem-19-7-743 De Boer, J., Wang, H. J., & Van Blitterswijk, C. (2004). Effects of Wnt signaling on proliferation and differentiation of human mesenchymal stem cells [Article]. Tissue Engineering, 10(3-4), 393-401. https://doi.org/10.1089/107632704323061753 Delany, A. M., Rydziel, S., & Canalis, E. (1996). Autocrine down-regulation of collagenase-3 in rat bone cell cultures by insulin-like growth factors [Article]. Endocrinology, 137(11), 4665-4670. https://doi.org/10.1210/en.137.11.4665 Diefenderfer, D. L., Osyczka, A. M., Garino, J. P., & Leboy, P. S. (2003). Regulation of BMP-induced transcription in cultured human bone marrow stromal cells [Article; Proceedings Paper]. Journal of Bone and Joint Surgery-American Volume, 85A, 19-28. https://doi.org/10.2106/00004623-200300003-00005 Díez-Ruiz, A., García-Saura, P. L., García-Ruiz, P., González-Calvin, J. L., Gallego-Rojo, F., & Fuchs, D. (2010). Bone Mineral Density, Bone Turnover Markers and Cytokines in Alcohol-Induced Cirrhosis [Article]. Alcohol and Alcoholism, 45(5), 427-430. https://doi.org/10.1093/alcalc/agq037 Dissanayake, S. K., Wade, M., Johnson, C. E., O''Connell, M. P., Leotlela, P. D., French, A. D., Shah, K. V., Hewitt, K. J., Rosenthal, D. T., Indig, F. E., Jiang, Y., Nickoloff, B. J., Taub, D. D., Trent, J. M., Moon, R. T., Bittner, M., & Weeraratna, A. T. (2007). The Wnt5A/protein kinase C pathway mediates motility in melanoma cells via the inhibition of metastasis suppressors and initiation of an epithelial to mesenchymal transition [Article]. Journal of Biological Chemistry, 282(23), 17259-17271. https://doi.org/10.1074/jbc.M700075200 Ducy, P., Amling, M., Takeda, S., Priemel, M., Schilling, A. F., Beil, F. T., Shen, J. H., Vinson, C., Rueger, J. M., & Karsenty, G. (2000). Leptin inhibits bone formation through a hypothalamic relay: A central control of bone mass [Article]. Cell, 100(2), 197-207. https://doi.org/10.1016/s0092-8674(00)81558-5 Ducy, P., Zhang, R., Geoffroy, V., Ridall, A. L., & Karsenty, G. (1997). Osf2/Cbfa1: A transcriptional activator of osteoblast differentiation [Article]. Cell, 89(5), 747-754. https://doi.org/10.1016/s0092-8674(00)80257-3 Eghbali-Fatourechi, G., Khosla, S., Sanyal, A., Boyle, W. J., Lacey, D. L., & Riggs, B. L. (2003). Role of RANK ligand in mediating increased bone resorption in early postmenopausal women [Article]. Journal of Clinical Investigation, 111(8), 1221-1230. https://doi.org/10.1172/jci200317215 Fujino, H., West, K. A., & Regan, J. W. (2002). Phosphorylation of glycogen synthase kinase-3 and stimulation of T-cell factor signaling following activation of EP<sub>2</sub> and EP<sub>4</sub> prostanoid receptors by prostaglandin E<sub>2</sub> [Article]. Journal of Biological Chemistry, 277(4), 2614-2619. https://doi.org/10.1074/jbc.M109440200 Glass, D. A., Bialek, P., Ahn, J. D., Starbuck, M., Patel, M. S., Clevers, H., Taketo, M. M., Long, F. X., McMahon, A. P., Lang, R. A., & Karsenty, G. (2005). Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation [Article]. Developmental Cell, 8(5), 751-764. https://doi.org/10.1016/j.devcel.2005.02.017 Goel, V., & Kar, P. (2010). Hepatic osteodystrophy. Tropical Gastroenterology, 31(2), 82-86. Gonzalez-Calvin, J. L., Gallego-Rojo, F., Fernandez-Perez, R., Casado-Caballero, F., Ruiz-Escolano, E., & Olivares, E. G. (2004). Osteoporosis, mineral metabolism, and serum soluble tumor necrosis factor receptor p55 in viral cirrhosis [Article]. Journal of Clinical Endocrinology & Metabolism, 89(9), 4325-4330. https://doi.org/10.1210/jc.2004-0077 Gordon, M. D., & Nusse, R. (2006). Wnt signaling: Multiple pathways, multiple receptors, and multiple transcription factors [Review]. Journal of Biological Chemistry, 281(32), 22429-22433. https://doi.org/10.1074/jbc.R600015200 Goubraim, R., Kabbaj, N., Salihoun, M., Chaoui, Z., Nya, M. H., & Amrani, N. (2013). Metabolic bone disease in viral cirrhosis: A prospective study. International Scholarly Research Notices, 2013. Guntur, A. R., & Rosen, C. J. (2013). IGF-1 regulation of key signaling pathways in bone. BoneKEy reports, 2. Hamidouche, Z., Fromigué, O., Nuber, U., Vaudin, P., Pages, J. C., Ebert, R., Jakob, F., Miraoui, H., & Marie, P. J. (2010). Autocrine Fibroblast Growth Factor 18 Mediates Dexamethasone-Induced Osteogenic Differentiation of Murine Mesenchymal Stem Cells [Article]. Journal of Cellular Physiology, 224(2), 509-515. https://doi.org/10.1002/jcp.22152 Hamidouche, Z., Haÿ, E., Vaudin, P., Charbord, P., Schüle, R., Marie, P. J., & Fromigué, O. (2008). FHL2 mediates Dexamethasone-induced mesenchymal cell differentiation into osteoblasts by activating Wnt/β-catenin signaling-dependent Runx2 expression [Article]. Faseb Journal, 22(11), 3813-3822. https://doi.org/10.1096/fj.08-106302 Han, V. K. M., Matsell, D. G., Delhanty, P. J. D., Hill, D. J., Shimasaki, S., & Nygard, K. (1996). IGF-binding protein mRNAs in the human fetus: Tissue and cellular distribution of developmental expression [Article; Proceedings Paper]. Hormone Research, 45(3-5), 160-166. https://doi.org/10.1159/000184780 Hanada, K., Dennis, J. E., & Caplan, A. I. (1997). Stimulatory effects of basic fibroblast growth factor and bone morphogenetic protein-2 on osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells [Article]. Journal of Bone and Mineral Research, 12(10), 1606-1614. https://doi.org/10.1359/jbmr.1997.12.10.1606 Harada, S., & Rodan, G. A. (2003). Control of osteoblast function and regulation of bone mass [Review]. Nature, 423(6937), 349-355. https://doi.org/10.1038/nature01660 Hecht, K., Carlstedt-Duke, J., Stierna, P., Gustafsson, J.-Å., Brönnegård, M., & Wikström, A.-C. (1997). Evidence That the β-Isoform of the Human Glucocorticoid Receptor Does Not Act as a Physiologically Significant Repressor*. Journal of Biological Chemistry, 272(42), 26659-26664. https://doi.org/https://doi.org/10.1074/jbc.272.42.26659 Holick, M. F. (2007). Vitamin D deficiency [Review]. New England Journal of Medicine, 357(3), 266-281. https://doi.org/10.1056/NEJMra070553 Hong, J. H., Hwang, E. S., McManus, M. T., Amsterdam, A., Tian, Y., Kalmukova, R., Mueller, E., Benjamin, T., Spiegelman, B. M., Sharp, P. A., Hopkins, N., & Yaffe, M. B. (2005). TAZ, a transcriptional modulator of mesenchymal stem cell differentiation [Article]. Science, 309(5737), 1074-1078. https://doi.org/10.1126/science.1110955 Huang, H. C., & Klein, P. S. (2004). The Frizzled family: receptors for multiple signal transduction pathways [Review]. Genome Biology, 5(7), 7, Article 234. https://doi.org/10.1186/gb-2004-5-7-234 Hwang, I., Seo, E. Y., & Ha, H. (2009). Wnt/β-catenin Signaling: A Novel Target for Therapeutic Intervention of Fibrotic Kidney Disease [Review]. Archives of Pharmacal Research, 32(12), 1653-1662. https://doi.org/10.1007/s12272-009-2200-3 Ikehara, S. (1996). Role of hepatocyte growth factor in hemopoiesis. Leukemia & lymphoma, 23(3-4), 297-303. Inagaki, T., Lin, V. Y., Goetz, R., Mohammadi, M., Mangelsdorf, D. J., & Kliewer, S. A. (2008). Inhibition of growth hormone signaling by the fasting-induced hormone FGF21. Cell Metab, 8(1), 77-83. https://doi.org/10.1016/j.cmet.2008.05.006 Inzucchi, S. E., & Robbins, R. J. (1994). CLINICAL REVIEW-61 - EFFECTS OF GROWTH-HORMONE ON HUMAN BONE BIOLOGY [Review]. Journal of Clinical Endocrinology & Metabolism, 79(3), 691-694. https://doi.org/10.1210/jc.79.3.691 Ito, S., Suzuki, N., Kato, S., Takahashi, T., & Takagi, M. (2007). Glucocorticoids induce the differentiation of a mesenchymal progenitor cell line, ROB-C26 into adipocytes and osteoblasts, but fail to induce terminal osteoblast differentiation [Article]. Bone, 40(1), 84-92. https://doi.org/10.1016/j.bone.2006.07.012 Iyer, S., Ambrogini, E., Bartell, S. M., Han, L., Roberson, P. K., de Cabo, R., Jilka, R. L., Weinstein, R. S., O''Brien, C. A., Manolagas, S. C., & Almeida, M. (2013). FOXOs attenuate bone formation by suppressing Wnt signaling [Article]. Journal of Clinical Investigation, 123(8), 3409-3419. https://doi.org/10.1172/jci68049 Jadlowiec, J., Koch, H., Zhang, X. Y., Campbell, P. G., Seyedain, M., & Sfeir, C. (2004). Phosphophoryn regulates the gene expression and differentiation of NIH3T3, MC3T3-E1, and human mesenchymal stem cells via the integrin/MAPK signaling pathway [Article]. Journal of Biological Chemistry, 279(51), 53323-53330. https://doi.org/10.1074/jbc.M404934200 Kang, Q., & Chen, A. (2009). Curcumin eliminates oxidized LDL roles in activating hepatic stellate cells by suppressing gene expression of lectin-like oxidized LDL receptor-1. Lab Invest, 89(11), 1275-1290. https://doi.org/10.1038/labinvest.2009.93 Kassem, M., Blum, W., Ristelli, J., Mosekilde, L., & Eriksen, E. F. (1993). Growth hormone stimulates proliferation and differentiation of normal human osteoblast-like cells in vitro. Calcif Tissue Int, 52(3), 222-226. https://doi.org/10.1007/bf00298723 Khoshnood, A., Toosi, M. N., Faravash, M. J., Esteghamati, A., Froutan, H., Ghofrani, H., Kalani, M., Miroliaee, A., Abdollahi, A., & Yasir, A. (2013). A Survey of Correlation Between Insulin-Like Growth Factor-I (IGF-I) Levels and Severity of Liver Cirrhosis [Article]. Hepatitis Monthly, 13(2), 6, Article e6181. https://doi.org/10.5812/hepatmon.6181 Kikuchi, A., Kishida, S., & Yamamoto, H. (2006). Regulation of Wnt signaling by protein-protein interaction and post-translational modifications [Review]. Experimental and Molecular Medicine, 38(1), 1-10. https://doi.org/10.1038/emm.2006.1 Kobayashi, Y., Uehara, S., Koide, M., & Takahashi, N. (2015). The regulation of osteoclast differentiation by Wnt signals. Bonekey Rep, 4, 713. https://doi.org/10.1038/bonekey.2015.82 Kordes, C., Sawitza, I., & Häussinger, D. (2008). Canonical Wnt signaling maintains the quiescent stage of hepatic stellate cells [Article]. Biochemical and Biophysical Research Communications, 367(1), 116-123. https://doi.org/10.1016/j.bbrc.2007.12.085 Kordes, C., Sawitza, I., & Häussinger, D. (2009). Hepatic and pancreatic stellate cells in focus [Article; Proceedings Paper]. Biological Chemistry, 390(10), 1003-1012. https://doi.org/10.1515/bc.2009.121 Krampera, M., Pizzolo, G., Aprili, G., & Franchini, M. (2006). Mesenchymal stem cells for bone, cartilage, tendon and skeletal muscle repair [Review]. Bone, 39(4), 678-683. https://doi.org/10.1016/j.bone.2006.04.020 Le Roith, D., Bondy, C., Yakar, S., Liu, J.-L., & Butler, A. (2001). The Somatomedin Hypothesis: 2001. Endocrine Reviews, 22(1), 53-74. https://doi.org/10.1210/edrv.22.1.0419 Le Roith, D., Bondy, C., Yakar, S., Liu, J. L., & Butler, A. (2001). The somatomedin hypothesis: 2001. Endocr Rev, 22(1), 53-74. https://doi.org/10.1210/edrv.22.1.0419 Li, W. T., Zhu, C. L., Chen, X. L., Li, Y., Gao, R. T., & Wu, Q. (2011). Pokeweed antiviral protein down-regulates Wnt/β-catenin signalling to attenuate liver fibrogenesis in vitro and in vivo [Article]. Digestive and Liver Disease, 43(7), 559-566. https://doi.org/10.1016/j.dld.2011.02.016 Lips, P., & van Schoor, N. M. (2011). The effect of vitamin D on bone and osteoporosis [Article]. Best Practice & Research Clinical Endocrinology & Metabolism, 25(4), 585-591. https://doi.org/10.1016/j.beem.2011.05.002 Liu, J. P., Baker, J., Perkins, A. S., Robertson, E. J., & Efstratiadis, A. (1993). MICE CARRYING NULL MUTATIONS OF THE GENES ENCODING INSULIN-LIKE GROWTH FACTOR-I (IGF-1) AND TYPE-1 IGF RECEPTOR (IGF1R) [Article]. Cell, 75(1), 59-72. https://doi.org/10.1016/0092-8674(93)90679-k Liu, L., Carron, B., Yee, H. T., Yie, T. A., Hajjou, M., & Rom, W. N. (2009). Wnt Pathway in Pulmonary Fibrosis in the Bleomycin Mouse Model [Article]. Journal of Environmental Pathology Toxicology and Oncology, 28(2), 99-108. https://doi.org/10.1615/JEnvironPatholToxicolOncol.v28.i2.20 Liu, Y., Nakagawa, Y., Wang, Y., Sakurai, R., Tripathi, P. V., Lutfy, K., & Friedman, T. C. (2005). Increased Glucocorticoid Receptor and 11β-Hydroxysteroid Dehydrogenase Type 1 Expression in Hepatocytes May Contribute to the Phenotype of Type 2 Diabetes in db/db Mice. Diabetes, 54(1), 32-40. https://doi.org/10.2337/diabetes.54.1.32 Long, F. X. (2012). Building strong bones: molecular regulation of the osteoblast lineage [Review]. Nature Reviews Molecular Cell Biology, 13(1), 27-38. https://doi.org/10.1038/nrm3254 Lorenzo, J. A. (2020). The Role of Interleukin-6 in Bone [Editorial Material]. Journal of the Endocrine Society, 4(10), 3, Article bvaa112. https://doi.org/10.1210/jendso/bvaa112 Manolagas, S. C. (2010). From Estrogen-Centric to Aging and Oxidative Stress: A Revised Perspective of the Pathogenesis of Osteoporosis [Review]. Endocrine Reviews, 31(3), 266-300. https://doi.org/10.1210/er.2009-0024 Mansueto, P., Carroccio, A., Seidita, A., Di Fede, G., & Craxì, A. (2013). Osteodystrophy in chronic liver diseases [Review]. Internal and Emergency Medicine, 8(5), 377-388. https://doi.org/10.1007/s11739-012-0753-5 Masuzaki, H., Paterson, J., Shinyama, H., Morton, N. M., Mullins, J. J., Seckl, J. R., & Flier, J. S. (2001). A transgenic model of visceral obesity and the metabolic syndrome [Article]. Science, 294(5549), 2166-2170. https://doi.org/10.1126/science.1066285 McKenna, M. J. (1992). DIFFERENCES IN VITAMIN-D STATUS BETWEEN COUNTRIES IN YOUNG-ADULTS AND THE ELDERLY [Review]. American Journal of Medicine, 93(1), 69-77. https://doi.org/10.1016/0002-9343(92)90682-2 Miroliaee, A., Nasiri-Toosi, M., Khalilzadeh, O., Esteghamati, A., Abdollahi, A., & Mazloumi, M. (2010). Disturbances of parathyroid hormone–vitamin D axis in non-cholestatic chronic liver disease: a cross-sectional study. Hepatology international, 4, 634-640. Naclerio, E. H., & McKee, M. D. (2022). Approach to Humeral Shaft Nonunion: Evaluation and Surgical Techniques [Review]. Journal of the American Academy of Orthopaedic Surgeons, 30(2), 50-59. https://doi.org/10.5435/jaaos-d-21-00634 Nifuji, A., Kellermann, O., & Noda, M. (2004). Noggin Inhibits Chondrogenic But Not Osteogenic Differentiation in Mesodermal Stem Cell Line C1 and Skeletal Cells. Endocrinology, 145(7), 3434-3442. https://doi.org/10.1210/en.2003-0685 Nilsson, S. K., & Bertoncello, I. (1994). THE DEVELOPMENT AND ESTABLISHMENT OF HEMATOPOIESIS IN FETAL AND NEWBORN OSTEOPETROTIC (OP/OP) MICE [Article]. Developmental Biology, 164(2), 456-462. https://doi.org/10.1006/dbio.1994.1215 Nita, I., Hostettler, K., Tamo, L., Medová, M., Bombaci, G., Zhong, J., Allam, R., Zimmer, Y., Roth, M., Geiser, T., & Gazdhar, A. (2017). Hepatocyte growth factor secreted by bone marrow stem cell reduce ER stress and improves repair in alveolar epithelial II cells [Article]. Scientific Reports, 7, 14, Article 41901. https://doi.org/10.1038/srep41901 Nussler, A. K., Wildemann, B., Freude, T., Litzka, C., Soldo, P., Friess, H., Hammad, S., Hengstler, J. G., Braun, K. F., Trak-Smayra, V., Godoy, P., & Ehnert, S. (2014a). Chronic CCl₄ intoxication causes liver and bone damage similar to the human pathology of hepatic osteodystrophy: a mouse model to analyse the liver-bone axis. Arch Toxicol, 88(4), 997-1006. https://doi.org/10.1007/s00204-013-1191-5 Nussler, A. K., Wildemann, B., Freude, T., Litzka, C., Soldo, P., Friess, H., Hammad, S., Hengstler, J. G., Braun, K. F., Trak-Smayra, V., Godoy, P., & Ehnert, S. (2014b). Chronic CCl<sub>4</sub> intoxication causes liver and bone damage similar to the human pathology of hepatic osteodystrophy: a mouse model to analyse the liver-bone axis [Article]. Archives of Toxicology, 88(4), 997-1006. https://doi.org/10.1007/s00204-013-1191-5 Oakley, R. H., Jewell, C. M., Yudt, M. R., Bofetiado, D. M., & Cidlowski, J. A. (1999). The dominant negative activity of the human glucocorticoid receptor β isoform -: Specificity and mechanisms of action [Article]. Journal of Biological Chemistry, 274(39), 27857-27866. https://doi.org/10.1074/jbc.274.39.27857 Oakley, R. H., Sar, M., & Cidlowski, J. A. (1996). The human glucocorticoid receptor beta isoform. Expression, biochemical properties, and putative function. J Biol Chem, 271(16), 9550-9559. https://doi.org/10.1074/jbc.271.16.9550 Orphanidou-Vlachou, E., Tziakouri-Shiakalli, C., & Georgiades, C. S. (2014). Extramedullary Hemopoiesis [Article]. Seminars in Ultrasound Ct and Mri, 35(3), 255-262. https://doi.org/10.1053/j.sult.2013.12.001 Park, D., Spencer, J. A., Koh, B. I., Kobayashi, T., Fujisaki, J., Clemens, T. L., Lin, C. P., Kronenberg, H. M., & Scadden, D. T. (2012). Endogenous Bone Marrow MSCs Are Dynamic, Fate-Restricted Participants in Bone Maintenance and Regeneration [Article]. Cell Stem Cell, 10(3), 259-272. https://doi.org/10.1016/j.stem.2012.02.003 Phillips, J. E., Gersbach, C. A., Wojtowicz, A. M., & García, A. J. (2006). Glucocorticoid-induced osteogenesis is negatively regulated by Runx2/Cbfa1 serine phosphorylation [Article]. Journal of Cell Science, 119(3), 581-591. https://doi.org/10.1242/jcs.02758 Pujols, L., Mullol, J., Roca-Ferrer, J., Torrego, A., Xaubet, A., Cidlowski, J. A., & Picado, C. (2002). Expression of glucocorticoid receptor α- and β-isoforms in human cells and tissues [Article]. American Journal of Physiology-Cell Physiology, 283(4), C1324-C1331. https://doi.org/10.1152/ajpcell.00363.2001 Raszeja-Wyszomirska, J., & Miazgowski, T. (2014). Osteoporosis in primary biliary cirrhosis of the liver. Gastroenterology Review/Przegląd Gastroenterologiczny, 9(2), 82-87. Rifas, L. (2007). The role of noggin in human mesenchymal stem cell differentiation [Article]. Journal of Cellular Biochemistry, 100(4), 824-834. https://doi.org/10.1002/jcb.21132 Rodda, S. J., & McMahon, A. P. (2006). Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors [Article]. Development, 133(16), 3231-3244. https://doi.org/10.1242/dev.02480 Rosen, C. J., Ackert-Bicknell, C., Rodriguez, J. P., & Pino, A. M. (2009). Marrow Fat and the Bone Microenvironment: Developmental, Functional, and Pathological Implications. 19(2), 109-124. https://doi.org/10.1615/CritRevEukarGeneExpr.v19.i2.20 Salmon, W. D., & Daughaday, W. H. (1957). A HORMONALLY CONTROLLED SERUM FACTOR WHICH STIMULATES SULFATE INCORPATION BY CARTILAGE INVITRO [Article]. Journal of Laboratory and Clinical Medicine, 49(6), 825-836. <Go to ISI>://WOS:A1957WD62700001 Sarem, M., Znaidak, R., Macías, M., & Rey, R. (2006). [Hepatic stellate cells: it''s role in normal and pathological conditions]. Gastroenterologia y hepatologia, 29(2), 93-101. https://doi.org/10.1157/13083906 Sato, M., Grasser, W., Endo, N., Akins, R., Simmons, H., Thompson, D. D., Golub, E., & Rodan, G. A. (1991). BISPHOSPHONATE ACTION - ALENDRONATE LOCALIZATION IN RAT BONE AND EFFECTS ON OSTEOCLAST ULTRASTRUCTURE [Article]. Journal of Clinical Investigation, 88(6), 2095-2105. https://doi.org/10.1172/jci115539 Shao, J., Zhang, Y., Yang, T. Y., Qi, J., Zhang, L. F., & Deng, L. F. (2015). HIF-1α disturbs osteoblasts and osteoclasts coupling in bone remodeling by up-regulating OPG expression [Article]. In Vitro Cellular & Developmental Biology-Animal, 51(8), 808-814. https://doi.org/10.1007/s11626-015-9895-x Solmesky, L. J., Abekasis, M., Bulvik, S., & Weil, M. (2009). Bone Morphogenetic Protein Signaling Is Involved in Human Mesenchymal Stem Cell Survival in Serum-Free Medium [Article]. Stem Cells and Development, 18(9), 1283-1291. https://doi.org/10.1089/scd.2009.0020 Soriano, S., Kang, D. E., Fu, M. F., Pestell, R., Chevallier, N., Zheng, H., & Koo, E. H. (2001). Presenilin 1 negatively regulates β-catenin/T cell factor/lymphoid enhancer factor-1 signaling independently of β-amyloid precursor protein and Notch processing [Article]. Journal of Cell Biology, 152(4), 785-794. https://doi.org/10.1083/jcb.152.4.785 Susperregui, A. R. G., Vinals, F., Ho, P. W. M., Gillespie, M. T., Martin, T. J., & Ventura, F. (2008). BMP-2 regulation of PTHrP and osteoclastogenic factors during osteoblast differentiation of C2C12 cells [Article]. Journal of Cellular Physiology, 216(1), 144-152. https://doi.org/10.1002/jcp.21389 Susperregui, A. R. G., Viñals, F., Ho, P. W. M., Gillespie, M. T., Martin, T. J., & Ventura, F. (2008). BMP-2 regulation of PTHrP and osteoclastogenic factors during osteoblast differentiation of C2C12 cells [Article]. Journal of Cellular Physiology, 216(1), 144-152. https://doi.org/10.1002/jcp.21389 Tat, S. K., Pelletier, J. P., Lajeunesse, D., Fahmi, H., Duval, N., & Martel-Pelletier, J. (2009). Differential modulation of RANKL isoforms by human osteoarthritic subchondral bone osteoblasts: Influence of osteotropic factors (vol 43, pg 284, 2008) [Correction]. Bone, 44(2), 387-387. https://doi.org/10.1016/j.bone.2008.10.043 Teitelbaum, S. L. (2000). Bone resorption by osteoclasts [Review]. Science, 289(5484), 1504-1508. https://doi.org/10.1126/science.289.5484.1504 Timens, W., & Kamps, W. A. (1997). Hemopoiesis in human fetal and embryonic liver [Article]. Microscopy Research and Technique, 39(5), 387-397. https://doi.org/10.1002/(sici)1097-0029(19971201)39:5<387::Aid-jemt1>3.0.Co;2-e Van den Brande, J. L. (1999). A personal view on the early history of the insulin-like growth factors. Horm Res, 51 Suppl 3, 149-175. https://doi.org/10.1159/000053178 Vermeer, C. (2012). Vitamin K: the effect on health beyond coagulation - an overview [Article]. Food & Nutrition Research, 56, 6, Article 5329. https://doi.org/10.3402/fnr.v56i0.5329 Walenkamp, M. J., & Wit, J. M. (2006). Genetic disorders in the growth hormone - insulin-like growth factor-I axis. Horm Res, 66(5), 221-230. https://doi.org/10.1159/000095161 Wang, X., Wei, W., Krzeszinski, J. Y., Wang, Y., & Wan, Y. (2015). A liver-bone endocrine relay by IGFBP1 promotes osteoclastogenesis and mediates FGF21-induced bone resorption. Cell Metabolism, 22(5), 811-824. Wariaghli, G., Allali, F., El Maghraoui, A., & Hajjaj-Hassouni, N. (2010). Osteoporosis in patients with primary biliary cirrhosis [Review]. European Journal of Gastroenterology & Hepatology, 22(12), 1397-1401. https://doi.org/10.1097/MEG.0b013e3283405939 Watts, L. M., Manchem, V. P., Leedom, T. A., Rivard, A. L., McKay, R. A., Bao, D. J., Neroladakis, T., Monia, B. P., Bodenmiller, D. M., Cao, J. X. C., Zhang, H. Y., Cox, A. L., Jacobs, S. J., Michael, M. D., Sloop, K. W., & Bhanot, S. (2005). Reduction of hepatic and adipose tissue glucocorticoid receptor expression with antisense oligonucleotides improves hyperglycemia and hyperlipidemia in diabetic rodents without causing systemic glucocorticoid antagonism [Article]. Diabetes, 54(6), 1846-1853. https://doi.org/10.2337/diabetes.54.6.1846 Wei, W., Zeve, D., Suh, J. M., Wang, X. Q., Du, Y., Zerwekh, J. E., Dechow, P. C., Graff, J. M., & Wan, Y. H. (2011). Biphasic and Dosage-Dependent Regulation of Osteoclastogenesis by β-Catenin [Article]. Molecular and Cellular Biology, 31(23), 4706-4719. https://doi.org/10.1128/mcb.05980-11 Wibaux, C., Legroux-Gerot, I., Dharancy, S., Boleslawski, E., Declerck, N., Canva, V., Mathurin, P., Pruvot, F.-R., & Cortet, B. (2011). Assessing bone status in patients awaiting liver transplantation. Joint Bone Spine, 78(4), 387-391. Wu, L., Zhang, G., Guo, C., & Pan, Y. (2020). Intracellular Ca2+ signaling mediates IGF-1-induced osteogenic differentiation in bone marrow mesenchymal stem cells. Biochemical and Biophysical Research Communications, 527(1), 200-206. https://doi.org/https://doi.org/10.1016/j.bbrc.2020.04.048 Xiao, G. Z., Jiang, D., Thomas, P., Benson, M. D., Guan, K. L., Karsenty, G., & Franceschi, R. T. (2000). MAPK pathways activate and phosphorylate the osteoblast-specific transcription factor, Cbfa1 [Article]. Journal of Biological Chemistry, 275(6), 4453-4459. https://doi.org/10.1074/jbc.275.6.4453 Xiong, J. H., Onal, M., Jilka, R. L., Weinstein, R. S., Manolagas, S. C., & O''Brien, C. A. (2011). Matrix-embedded cells control osteoclast formation [Article]. Nature Medicine, 17(10), 1235-U1262. https://doi.org/10.1038/nm.2448 Yakar, S., Rosen, C. J., Beamer, W. G., Ackert-Bicknell, C. L., Wu, Y. P., Liu, J. L., Ooi, G. T., Setser, J., Frystyk, J., Boisclair, Y. R., & LeRoith, D. (2002). Circulating levels of IGF-1 directly regulate bone growth and density [Article]. Journal of Clinical Investigation, 110(6), 771-781. https://doi.org/10.1172/jci200215463 Young, D. W., Hassan, M. Q., Pratap, J., Galindo, M., Zaidi, S. K., Lee, S. H., Yang, X. Q., Xie, R. L., Javed, A., Underwood, J. M., Furcinitti, P., Imbalzano, A. N., Penman, S., Nickerson, J. A., Montecino, M. A., Lian, J. B., Stein, J. L., van Wijnen, A. J., & Stein, G. S. (2007). Mitotic occupancy and lineage-specific transcriptional control of <i>rRNA</i> genes by Runx2 [Article]. Nature, 445(7126), 442-446. https://doi.org/10.1038/nature05473 Youssef, A., Aboalola, D., & Han, V. K. (2017). The Roles of Insulin-Like Growth Factors in Mesenchymal Stem Cell Niche. Stem Cells Int, 2017, 9453108. https://doi.org/10.1155/2017/9453108 Zachos, T., Diggs, A., Weisbrode, S., Bartlett, J., & Bertone, A. (2007). Mesenchymal stem cell-mediated gene delivery of bone morphogenetic protein-2 in an articular fracture model [Article]. Molecular Therapy, 15(8), 1543-1550. https://doi.org/10.1038/sj.mt.6300192 Zaidi, M., Yuen, T., & Iqbal, J. (2022). Reverse cholesterol transport and hepatic osteodystrophy [Editorial Material]. Cell Metabolism, 34(3), 347-349. https://doi.org/10.1016/j.cmet.2022.02.007 Zhang, S. K., Liu, Y. Y., & Liang, Q. W. (2018). Low-dose Dexamethasone affects osteoblast viability by inducing autophagy via intracellular ROS [Article]. Molecular Medicine Reports, 17(3), 4307-4316. https://doi.org/10.3892/mmr.2018.8461 Zhang, W., Yang, N., & Shi, X.-M. (2008). Regulation of mesenchymal stem cell osteogenic differentiation by glucocorticoid-induced leucine zipper (GILZ) [Article]. Journal of Biological Chemistry, 283(8), 4723-4729. https://doi.org/10.1074/jbc.M704147200 Zhou, H., Mak, W., Zheng, Y., Dunstan, C. R., & Seibel, M. J. (2008). Osteoblasts directly control lineage commitment of mesenchymal progenitor cells through Wnt signaling [Article]. Journal of Biological Chemistry, 283(4), 1936-1945. https://doi.org/10.1074/jbc.M702687200 Zimmerman, L. B., DeJesusEscobar, J. M., & Harland, R. M. (1996). The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4 [Article]. Cell, 86(4), 599-606. https://doi.org/10.1016/s0092-8674(00)80133-6 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91462 | - |
dc.description.abstract | 臨床上,如果肝臟受到慢性損傷,諸如酒精傷害、感染病毒、或藥物影響,將導致骨量減少。研究指出,近20%慢性病毒性肝炎患者有骨質疏鬆或是骨質減少的情形。尤其是患有慢性膽囊炎的患者,超過60%出現骨量減少的問題;而患有酒精性或病毒性肝硬化的患者,出現發生骨質疏鬆症的機率甚至高達90%以上。
生理學上IGF-1對於骨骼的生展發育至關重要,它主要由肝臟分泌,可以刺激骨原細胞成為成骨細胞,進而增加成骨細胞的總量。此外,IGF-1還能抑制骨的吸收,降低骨中的膠原蛋白被分解,有助於維持骨量。因此,當體內IGF-1的水平下降,可能會影響骨量,從而導致骨質疏鬆或其他相關的骨骼問題。 本研究先從臨床的觀點出發,探討肝性骨病變與肝骨軸的相互影響。根據內分泌體介導素假說(somatomedin hypothesis),當肝硬化發生時,可以推斷由肝臟生產的IGF-1水平會降低,而IGF-1負責調控骨細胞數量。然而,VitD3為固醇類類似物,所以使用VitD3治療又為避免發炎而輔以Dexthamethasome(Dex)成功將患者治癒。其次,動物模型實驗結果顯示,在四氯化碳誘導的肝性骨病變大鼠中,IGF-1並不影響大鼠間質幹細胞的增殖或分化。這一發現引起了對肝骨軸機制的重新評估, IGF-1或許不是調控分化間質幹細胞的關鍵。此外,以MTT assay和real-time PCR(q PCR)技術,分析人類成骨細胞(hFOB 1.19)和小鼠成骨細胞(7F2)的增生能力及mRNA基因表現量,顯示Vit D3和低劑量Dexamethasone顯著提升成骨細胞的增殖和形成骨礦化,且低劑量類固醇能顯著上調IGF-1受體表現量,將使更多的IGF-1受體接收IGF-1,克服肝性骨病變患者胰臟分泌IGF-1不足之困境。 此研究成果對於臨床治療有著極其重要的意義。首先,推翻過去臨床長期使用Dexamethasone造成骨鬆之顧慮,低劑量Dexamethasone反而對成骨細胞增生與礦化有益,低劑量類固醇的使用可能成為一種有潛力的治療策略。 其次,由於Vit D3為脂溶性維生素,代謝不易,臨床治療需密切監控體內血鈣濃度,防止血鈣中毒。因此本研究提供以Dexamethasone取代Vit D3的治療方案。 最後Dexamethasone上調IGFR總表現量,在肝骨軸路徑可使肝性骨病變患者,肝臟分泌之IGF接收更為全面,反證IGF-1在肝骨軸協同骨癒合極具重要性。本研究為肝性骨病變之治癒提供了一個全面而深入的框架,這將有助於進一步解析肝性骨病變和相關疾病的複雜機制。 | zh_TW |
dc.description.abstract | This study focuses on exploring the interplay between hepatic bone disease and the liver-bone axis. According to the somatomedin hypothesis, cirrhosis may lead to a decrease in liver-produced IGF-1 levels. However, the study found that treatment with VitD3 (a form of Vitamin D3) and low-dose Dexamethasone (a steroid medication) effectively combats hepatic bone disease. Notably, low-dose Dexamethasone significantly enhances the proliferation and mineralization of osteoblasts and upregulates the expression of IGF-1 receptors, overcoming the deficiency in liver-secreted IGF-1.
These findings have significant implications for clinical treatment. They indicate that low-dose Dexamethasone not only does not lead to osteoporosis but actually benefits the proliferation and mineralization of osteoblasts. Additionally, considering the lipophilic nature and metabolic characteristics of Vit D3, it is crucial in clinical treatments to closely monitor blood calcium levels to prevent hypercalcemia. Therefore, replacing Vit D3 with Dexamethasone might be an effective treatment strategy. Moreover, the role of Dexamethasome in upregulating the total expression of IGFR (IGF-1 receptor) highlights the importance of IGF-1 in the liver-bone axis for bone healing. Overall, this study provides a comprehensive and in-depth framework for the treatment of hepatic bone disease, which will aid in further unraveling the complex mechanisms of hepatic bone disease and related disorders. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-01-26T16:36:46Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-01-26T16:36:46Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
謝 辭 ii 中文摘要 iv Abstract vi 目次 viii 圖次 x 表次 xii 第一章 序 論 1 1.1 肝骨軸的生理學基礎 1 第二章 文獻回顧 6 2.1 肝硬化與骨代謝障礙 6 2.2 肝性骨病變 7 2.3 類胰島素生長因子(Insulin Like Growth Factor 1, IGF-1) 11 2.4 IGF結合蛋白(Insulin Like Growth Factor binding protein) 13 2.5 生長激素與類胰島素生長因子軸GH/IGF-1 axis 16 2.6 內分泌體介素假說Somatomedin Hypothesis 19 第三章 研究材料與方法 21 3.1 肝性骨病變的動物建模與骨髓MSC與HSC的比較 21 3.1.1肝性骨病變之臨床案例 21 3.1.2肝性骨病變的動物建模 29 (1)建立實驗主體 29 (2)設定實驗的週期 29 (3)骨髓細胞檢體製備 30 (4) 運用Hematoxylin & Eosin(H&E)染色技術 30 3.1.3 骨髓濃縮物萃取分析 31 3.2 肝骨軸的細胞學實驗 32 3.2.1研究目的 32 3.2.2 研究材料 33 (1)細胞樣本 33 (2)培養基成分 33 3.2.3 研究方法 34 (1) MTT assay 34 (2)即時量化聚合酶鏈反應(Real-time Quantitative Polymerase. Chain Reaction, q-PCR ) 34 (3)西方墨點(Western Blot) 39 第四章 結 果 42 4.1 模式動物結果 42 4.1.1 肝性骨病變建模完成 42 4.1.2 濃縮骨髓萃取物的流式細胞儀分析結果 42 4.2 細胞學實驗結果 43 4.2.1透過MTT assay了解成骨細胞的活性 43 4.2.2量化聚合酶鏈反應解釋肝骨軸的作用與機制 44 4.2.3西方墨點(Western Blot) 46 4.3 肝骨軸的細胞學原理 46 4.3.1 類固醇與維他命D3對細胞的關聯性 46 4.3.2 Ki-67和PCNA兩種物質可能促進細胞增殖 47 4.3.3 類固醇受體以及維他命D受體促進骨形成和代謝過程 47 4.3.4 類固醇在骨代謝中的作用具有重要意義 48 4.3.5 低劑量類固醇對成骨細胞中膠原蛋白I(collagen I)和骨鈣蛋白(osteocalcin)基因表達顯著增加。 48 4.3.6 低劑量類固醇能夠促進成骨細胞的增殖 49 4.3.7 低劑量類固醇顯著增加了膠原蛋白I(collagen I)和骨鈣蛋白(osteocalcin)的蛋白質 49 第五章 討論 78 5.1 四氯化碳誘導肝性骨病變大鼠模型中骨髓幹細胞的流式細胞儀分析 78 5.2 IGF-I(Insulin-like growth factor 1) 與(Mesenchymal Stem Cells, MSCs) 78 5.3 內分泌體介素假說的疑問 81 5.4 糖皮質激素與糖皮質激素受體 83 5.5低劑量類固醇與IGF-1信號傳遞 85 第六章 結 論 90 參考資料 97 | - |
dc.language.iso | zh_TW | - |
dc.title | 肝性骨病變之肝骨軸研究 | zh_TW |
dc.title | Study on the Liver-Bone Axis of Hepatic Osteodystrophy | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-1 | - |
dc.description.degree | 博士 | - |
dc.contributor.oralexamcommittee | 張振慧;陳億乘;黃啟彰;徐慶琳 | zh_TW |
dc.contributor.oralexamcommittee | Jen-huei Chang;Yi-Cheng Chen;Chi-Chang Huang;Chin-Lin Hsu | en |
dc.subject.keyword | 糖皮質激素受體,維他命D,維他命D受體,Wnts訊號,肝骨軸,內分泌體介導素假說, | zh_TW |
dc.subject.keyword | Glucocorticoid Receptor,Vitamin D,Vitamin D Receptor,Wnt Signaling,Liver-Bone Axis,Somatomedin Hypothesis, | en |
dc.relation.page | 112 | - |
dc.identifier.doi | 10.6342/NTU202400138 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-01-23 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 動物科學技術學系 | - |
顯示於系所單位: | 動物科學技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-1.pdf | 4.77 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。