請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91442
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 莊昀叡 | zh_TW |
dc.contributor.advisor | Yun-Ruei Chuang | en |
dc.contributor.author | 蔣友維 | zh_TW |
dc.contributor.author | You-Wei Jiang | en |
dc.date.accessioned | 2024-01-26T16:31:37Z | - |
dc.date.available | 2024-01-27 | - |
dc.date.copyright | 2024-01-26 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-01-22 | - |
dc.identifier.citation | 1067 公厘軌距軌道橋隧檢查養護規範(2003)。交通部,民國 92 年。
何春蓀 (1975) 。臺灣地質概論。經濟部地質調查所,共 118 頁。 李俊賢(2020) 。估計台灣高鐵里程 TK331 段高架橋結構變位及評估其影響: 使用GPS, 水準, 角邊測量技術. 國立成功大學測量及空間資訊學系博士論文,共99 頁。 林啟文、張徽正、陳勉銘、盧詩丁、石同生、黃文正(2000)。活動斷層概論,五十萬分之一灣活動斷層分布圖說明,第二版。經濟部中央地質調查所特刊,第 13 號,共 122 頁。 林啟文, 盧詩丁, 石同生, 劉彥求, 林偉雄, 林燕慧(2007)。臺灣西南部的活動斷層:二萬五千分之一活動斷層條帶圖說明書。經濟部中央地質調查所特刊,第17 號。 林啟文、陳文山、劉彥求、陳柏村(2009)。臺灣東部與南部的活動斷層:二萬五千分之一活動斷層條帶圖說明書。經濟部中央地質調查所特刊,第 23 號。 胡植慶、劉啟清、饒瑞鈞、李元希、鄭錦桐、張午龍、陳卉瑄、景國恩、唐昭榮(2012)。「斷層活動性觀測研究第二階段斷層監測與潛勢分析研究(4/4)」(第四年度),計畫編號:101-5226904000-01-01,經濟部中央地質調查所101 年度委託專業服務計畫執行期末報告書,共 422 頁。 孫習之、施垚鑫 (1960) 。 高雄縣大崗山至鳳山區間地質調查報告,中油內部報告耿文溥 (1967)。臺灣南部甲仙及旗山間之地質。臺灣省地質調查所彙刊,第 19 號,1-13 頁。 鳥居敬造(1932)。台南州新化油田調查報告。臺灣總督府殖產局,609 號,共 29頁。 張中白、王志添、王皓正、陳錕山(2004)。應用雷達差分干涉法監測都會型地表變形:以中壢工業區為例。航測及遙測學刊,第九卷,第三期,第 9-14 頁。 陳文山、黃能偉、游能悌、周飛宏、顏一勤、宋時驊、楊志成、楊小青 (2005)。 地震地質調查及活動斷層資料庫建置計畫–槽溝開挖與古地震研究計畫(4/5)–旗山與龍船斷層條帶地質圖說明書。經濟部中央地質調查所報告第 94-08-2 號,共 48 頁。 陳柏村 (2005)。旗山斷層南段變形特性研究。國立成功大學地球科學研究所碩士論文,共 125 頁。 陳柏村、林啟文、江婉綺、劉彥求、林慶偉 (2009)。臺灣南部旗山斷層的構造特性研究。經濟部中央地質調查所彙刊,第 22 號,63-98 頁。 陳文山、松多信尚、石瑞銓、楊志成、游能悌、朱耀國、陳志壕、林啟文、劉桓吉、盧詩丁、劉彥求、林燕慧、陳柏村(2010)。臺灣西部平原區隱伏在全新世沉積層下的新期構造-以小崗山斷層為例。經濟部中央地質調查所特刊,第 24 號,第 75-92 頁。 陳文山、黃能偉、楊志成(2011)。臺灣西南部更新世沉積層序特性與前陸盆地演化。經濟部中央地質調查所特刊,第 25 號,1-38 頁。 陳文山、游能悌、楊小青(2012)。重要活動斷層帶構造特性調查研究計畫-斷層活動特性分析與評估 (2/4) ,經濟部中央地質調查所報告,計畫編號:101-5226904000-05-03,共 130 頁。 景國恩、胡植慶、陳宏宇、張午龍、鄭凱謙、莊昀叡(2019)。斷層活動性觀測研究第四階段-地表變形觀測資料處理分析與斷層模型反演評估(3/4)。經濟部中央地質調查所報告,計畫編號:108-5226904000-05-01,共 269 頁。 趙荃敏(2016)。利用大地測量及 PSInSAR 技術探討鳳山斷層之運動特性。國立成功大學地球科學系碩士論文,共 89 頁。 劉彥求、林啟文(2019)。臺灣南部車瓜林斷層的構造特性研究。經濟部中央地質調查所特刊,第 34 號,第 53-82 頁。 鄭宏祺(2000)。台灣西南部至屏東地區地質構造之研究,國立中央大學應用地質研究所碩士論文,共 92 頁。 謝嘉聲 、 史 天 元 (2006)。 以 雷 達 干 涉 技 術 偵 測 地 表 變 形 之 研 究 (Doctoral dissertation). 饒瑞鈞、余致義、洪日豪、胡植慶、李建成、詹瑜璋、許麗文(2006)。活動斷層監測系統計畫(5/5)。經濟部中央地質調查所報告,計畫編號:計畫編號:5226902000-02-95-03,共 256 頁。 重要活動斷層地區地表變形觀測與斷層潛勢評估(2022)。國立成功大學。經濟部中央地質調查所 111 年度委託專業服務期末報告書,計畫編號:B11130。 A. Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek and K. P. Papathanassiou (2013). "A tutorial on synthetic aperture radar," in IEEE Geoscience and Remote Sensing Magazine, vol. 1, no. 1, pp.-43, March 2013, doi: 10.1109/MGRS.2013.2248301. Bekaert, D.P.S., Hooper, A.J., and Wright, T.J. (2015a). A spatially-variable power-law tropospheric correction technique for InSAR data, JGR, doi:10.1029/2014JB011558 Bekaert, D.P.S., Walters, R.J., Wright, T.J., Hooper, A.J., and Parker, D.J.(2015c). Statistical comparison of InSAR tropospheric correction techniques, RemoteSensing of Environment, doi: 10.1016/j.rse.2015.08.035 Bekaert, D. P. S., Hamlington, B. D., Buzzanga, B., and Jones, C. E. (2017). Spaceborne synthetic aperture radar survey of subsidence in Hampton Roads, Virginia (USA). Scientific reports, 7(1), 14752. Chen, Y. G. and T. K. Liu (2000). Holocene uplift and subsidence along an active tectonic margin southwestern Taiwan. Quat. Sci. Rev., 19, 923-930, doi: 10.1016/S0277-3791(99)00076-1. Chen, W. S. (2010). Research of long-term slip rates and recurrence intervals of faults (overall report), earthquake geology and potential deformation analysis projects. Cent. Geol. Surv. Rep. 99-09, Taipei, 141 pp. (in Chinese) Chen, W. S., N. T. Yu, and H. C. Yang (2012). Active characteristics analysis and assessment of faults (2/4), structural characteristics investigation of important active faults research projects. Cent. Geol. Surv. Rep. 101-9, Taipei, 130 pp. (in Chinese) Chen, S. C., Hsu, S. K., Wang, Y., Chung, S. H., Chen, P. C., Tsai, C. H., and Lee, Y. W. (2014). Distribution and characters of the mud diapirs and mud volcanoes off southwest Taiwan. Journal of Asian Earth Sciences, 92, 201-214. Chen, L., Wang, H. Y., Wang, T. S., and Kou, C. H. (2019). Remote sensing for detecting changes of land use in Taipei City, Taiwan. Journal of the Indian Society of Remote Sensing, 47, 1847-1856. Chen, T. H. K., Prishchepov, A. V., Fensholt, R., and Sabel, C. E. (2019). Detecting and monitoring long-term landslides in urbanized areas with nighttime light data and multi-seasonal Landsat imagery across Taiwan from 1998 to 2017. Remote Sensing of Environment, 225, 317-327. Chen, K. H., Chuang, R. Y., and Ching, K. E. (2020). Realization approach of non-linear postseismic deformation model for Taiwan semi-kinematic reference frame. Earth, Planets and Space, 72, 1-13. Chi W.R. (1981). Nannofossils, Exploration and Development Research Center, p. 407 (in Chinese). Ching, K.‐E., R.‐J. Rau, and Y. Zeng (2007a), Coseismic source model of the 2003 Mw6.8 Chengkung earthquake, Taiwan, determined from GNSS measurements, J. Geophys. Res., 112, B06422, doi:10.1029/2006JB004439. Ching, K. E., Rau, R. J., Lee, J. C., & Hu, J. C. (2007). Contemporary deformation of tectonic escape in SW Taiwan from GNSS observations, 1995–2005. Earth and Planetary Science Letters, 262(3-4), 601-619. Ching, K. E., Hsieh, M. L., Johnson, K. M., Chen, K. H., Rau, R. J., and Yang, M. (2011). Modern vertical deformation rates and mountain building in Taiwan from precise leveling and continuous GNSS observations, 2000–2008. Journal of Geophysical Research: Solid Earth, 116(B8). Ching, K.-E., Rau, R.-J., Johnson, K.M., Lee, J.-C., and Hu, J.-C. (2011). Present-day kinematics of active mountain building in Taiwan from GNSS observations during 1995–2005.J. Geophys. Res. 116, B09405. Ching, K. E., Gourley, J. R., Lee, Y. H., Hsu, S. C., Chen, K. H., and Chen, C. L. (2016). Rapid deformation rates due to development of diapiric anticline in southwestern Taiwan from geodetic observations. Tectonophysics, 692, 241-251. Ding, C., Lee, C., & Ho, S. Characteristics of the Chekualin Fault in the Yanchao area, Kaohsiung City. Ezeoke, M., Tong, K., and Shi, S. (2014). Modeling synthetic aperture radar signature of agbabu oil sand for petroleum exploration. WIT Transactions on Ecology and the Environment, 190, 1283-1295. Ferretti, A., C. Prati, and F. Rocca (2000). Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry, Geoscience and Remote Sensing, IEEE Trans. Geosci. Remote Sens, 38(5), 2202-2212. Ferretti, A., C. Prati, and F. Rocca (2001). Permanent scatterers in SAR interferometry, IEEE Trans. Geosci. Remote Sens., 39(1), 8 –20. Fuhrmann, T., and Garthwaite, M. C. (2019). Resolving three-dimensional surface motion with InSAR: Constraints from multi-geometry data fusion. Remote Sensing, 11(3), 241. Funning, G. J., Bürgmann, R., Ferretti, A., Novali, F., and Fumagalli, A. (2007). Creep on the Rodgers Creek fault, northern San Francisco Bay area from a 10 years PS‐InSAR dataset. Geophysical Research Letters, 34(19). Global Modeling and Assimilation Office (GMAO) (2015). MERRA-2 inst6_3d_ana_Np: 3d,6-Hourly, Instantaneous, Pressure-Level, Analysis, Analyzed MeteorologicalFields V5.12.4, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), Accessed: [2022.7.20], 10.5067/A7S6XP56VZWS Ge, L., Ng, A. H. M., Du, Z., Chen, H. Y., and Li, X. (2017). Integrated space geodesy for mapping land deformation over Choushui River Fluvial Plain, Taiwan. International Journal of Remote Sensing, 38(22), 6319-6345. Hanssen, R.F. (2001). Radar Interferometry: Data Interpretation and Error Analysis; Springer Science & Business Media: New York, NY, USA, 2001; Volume 2. Helz, R. L. (2005). Monitoring ground deformation from space. US Department of the Interior, US Geological Survey. Hooper, A., P. Segall, K. Johnson, and J. Rubinstein (2002). Reconciling seismic and geodetic models of the 1989 Kilauea south flank earthquake, Geophysical Research Letters, 29(22)Artn 2062, Doi 10.1029/2002gl016156. Hooper, A., H. Zebker, P. Segall, and B. Kampes (2004), A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers, Geophysical Research Letters, 31(23) Artn L23611, Doi 10.1029/2004gl021737. Hooper, A., and H. A. Zebker (2007). Phase unwrapping in three dimensions with application to InSAR time series, J Opt Soc Am A Opt Image Sci Vis, 24(9), 2737-2747 Hooper, A. (2008). A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches, Geophysical Research Letters, 35(16)10.1029/2008gl034654. Hsieh, C. S., Shih, T. Y., Hu, J. C., Tung, H., Huang, M. H., & Angelier, J. (2011). Using differential SAR interferometry to map land subsidence: a case study in the Pingtung Plain of SW Taiwan. Natural hazards, 58, 1311-1332. Huang, S. T., Yang, K. M., Hung, J. H., Wu, J. C., Ting, H. H., Mei, W. W., and Lee, M. (2004). Deformation front development at the northeast margin of the Tainan basin, Tainan–Kaohsiung area, Taiwan. Marine Geophysical Researches, 25(1), 139-156. Huang, M. H. (2006). The case studies of the crustal deformation in Taiwan based on SAR interferometry. National Taiwan University PhD Thesis. Huang, M. H., Bürgmann, R., and Hu, J. C. (2016). Fifteen years of surface deformation in Western Taiwan: Insight from SAR interferometry. Tectonophysics, 692, 252-264. Huang, M. H., Tung, H., Fielding, E. J., Huang, H. H., Liang, C., Huang, C., & Hu, J. C. (2016). Multiple fault slip triggered above the 2016 Mw 6.4 MeiNong earthquake in Taiwan. Geophysical Research Letters, 43(14), 7459-7467. Hwang, C., Hung, W. C., and Liu, C. H. (2008). Results of geodetic and geotechnical monitoring of subsidence for Taiwan High Speed Rail operation. Natural Hazards, 47(1), 1-16. Jian, L., Tseng, K. H., Tai, Y. H., and Lin, Y. C. (2019). Linking Land Subsidence and Land Use in Western Taiwan by Sentinel-1 PSInSAR Timeseries and A Network of GPS Continuous Stations. In AGU Fall Meeting Abstracts (Vol. 2019, pp.G13B-0535). Lanari, R., Casu, F., Manzo, M., and Lundgren, P. (2007). Application of the SBAS DInSAR technique to fault creep: A case study of the Hayward fault, California. Remote Sensing of Environment, 109(1), 20-28. Lee, J. C., Angelier, J., Chu, H. T., Hu, J. C., Jeng, F. S., and Rau, R. J. (2003). Active fault creep variations at Chihshang, Taiwan, revealed by creep meter monitoring, 1998–2001. Journal of Geophysical Research: Solid Earth, 108(B11). Lin, K.-C., Hu, J.-C., Ching, K.-E., Angelier, J., Rau, R.-J., Yu, S.-B., Tsai, C.-H., Shin, T.-C., and Huang, M.-H. (2010). GNSS crustal deformation, strain rate, and seismic activity after the 1999 Chi–Chi earthquake in Taiwan. J. Geophys. Res. 115, B07404. Lillesand, T.M. and Kiefer, R.W. (1994). Remote Sensing and Image Interpretation. 3rd Edition, John Wiley and Sons, Inc., Hoboken, 750. Lillesand, T., Kiefer, R. W., and Chipman, J. (2015). Remote sensing and image interpretation. John Wiley & Sons. Lo, Y. T., Ching, K. E., Yen, H. Y., and Chen, S. C. (2023). Bouguer gravity anomalies and the three-dimensional density structure of a thick mudstone area: A case study of southwestern Taiwan. Tectonophysics, 848, 229730. Miller, M. M., and Shirzaei, M. (2015). Spatiotemporal characterization of land subsidence and uplift in Phoenix using InSAR time series and wavelet transforms. Journal of Geophysical Research: Solid Earth, 120(8), 5822-5842. Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Feigl, K., & Rabaute, T. (1993). The displacement field of the Landers earthquake mapped by radar interferometry. nature, 364(6433), 138-142. Massonnet, D., and Feigl, K. L. (1998). Radar interferometry and its application to changes in the Earth's surface. Reviews of geophysics, 36(4), 441-500. Moreira, A., Prats-Iraola, P., Younis, M., Krieger, G., Hajnsek, I., and Papathanassiou, K. P. (2013). A tutorial on synthetic aperture radar. IEEE Geoscience and remote sensing magazine, 1(1), 6-43. Nam, B. X., Van Anh, T., Bui, L. K., Long, N. Q., Ha, T. L. T., and Goyal, R. (2021). Mining-Induced Land Subsidence Detection by Persistent Scatterer InSAR and Sentinel-1: Application to Phugiao Quarries, Vietnam. In Proceedings of the International Conference on Innovations for Sustainable and Responsible Mining (pp. 18-38). Springer, Cham. Osmanoğlu, B., Sunar, F., Wdowinski, S., and Cabral-Cano, E. (2016). Time series analysis of InSAR data: Methods and trends. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 90-102. Pepe, A., & Calò, F. (2017). A review of interferometric synthetic aperture RADAR (InSAR) multi-track approaches for the retrieval of Earth’s surface displacements. Applied Sciences, 7(12), 1264. Prati, C. L. A. U. D. I. O., Ferretti, A., & Perissin, D. (2010). Recent advances on surface ground deformation measurement by means of repeated space-borne SAR observations. Journal of Geodynamics, 49(3-4), 161-170. Scott, C. (2021). The Central San Andreas creeps along without a major earthquake, Temblor, http://doi.org/10.32858/temblor.152 Segall, P., and Davis, J. L. (1997). GNSS applications for geodynamics and earthquake studies. Annual Review of Earth and Planetary Sciences, 25(1), 301-336. Shyu, J.B.H., Sieh, K., Chen, Y.-G., and Liu, C.-S. (2005). Neotectonic architecture of Taiwan and its implications for future large earthquakes. J. Geophys. Res. 110, B08402. Shyu, J. B. H., Y. R. Chuang, Y. L. Chen, Y. R. Lee, and C. T. Cheng (2016): A new on land seismogenic structure source database from the Taiwan Earthquake Model (TEM) project for seismic hazard analysis of Taiwan. Terr. Atmos. Ocean. Sci., 27, 311-323, doi: 10.3319/TAO.2015.11.27.02(TEM) Shyu, J. B. H., Y.-H. Yin, C.-H. Chen, Y.-R. Chuang, and S.-C. Liu (2020). Updates to the on-land seismogenic structure source database by the Taiwan Earthquake Model (TEM) project for seismic hazard analysis of Taiwan. Terr. Atmos. Ocean. Sci., 31, 469-478, doi: 10.3319/TAO.2020.06.08.01 Suppe, J. (1984). Kinematics of arc–continent collision, flipping of subduction and back arc spreading near Taiwan. Mem. Geol. Soc. China 6, 21–33. Stramondo, S., Trasatti, E., Albano, M., Moro, M., Chini, M., Bignami, C., ... & Saroli, M. (2016). Uncovering deformation processes from surface displacements. Journal of Geodynamics, 102, 58-82. Tanaka, K., Asano, K., Ishihara, T., Watanabe, M., Komatsubara, D., Kasirajima, N., ... & Suzuki, K. (2020). Mud volcanoes and human geoscience. Human Geoscience, 167-188. Tsukahara, K. and Takada, Y. (2018). Aseismic fold growth in southwestern Taiwan detected by InSAR and GNSS. Earth Planets Space 70, 52. https://doi.org/10.1186/s40623-018-0816-6 Tymofyeyeva, E., Fialko, Y., Jiang, J., Xu, X., Sandwell, D., Bilham, R., and Moafipoor, S. (2019). Slow slip event on the Southern San Andreas fault triggered by the 2017 M w 8.2 Chiapas (Mexico) earthquake. Journal of Geophysical Research: Solid Earth, 124(9), 9956-9975. Wang, C. T., Chen, K. S., Hu, J. C., Chang, W. Y., and Boerner, W. M. (2011). Mapping land uplift and subsidence in the industrial parks in northern Taiwan by radar interferometry. International journal of remote sensing, 32(21), 6527-6538. Wu J.C., Tsai C.T., Mei W.W., Wang M.H., Yang K.M., Huang S.T., Lee M., and Chi W.R. (2002). Re-approach of Gutingkeng Sequence in the West Side of Lungchuan Fault. 2002 Annual meeting of China Geology Society, 7–99 (in Chinese). Yu, S. B., Chen, H. Y., & Kuo, L. C. (1997). Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274(1-3), 41-59. Yu, S. B., & Kuo, L. C. (2001). Present-day crustal motion along the Longitudinal Valley Fault, eastern Taiwan. Tectonophysics, 333(1-2), 199-217. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91442 | - |
dc.description.abstract | 台灣造山帶位於弧陸碰撞帶,由菲律賓海板塊的呂宋島弧向西以及歐亞板塊向東斜向碰撞在此造成褶皺逆衝帶,形成一系列南北走向的活動斷層。台灣西南部位於褶皺逆衝帶的前緣位置,並且在 2016 年受到美濃地震的影響,使得此區域的斷層活動變得更加不穩定。台灣西南部境內包含台南與高雄都會區,有台灣高鐵公司(以下稱「高鐵」)鐵路、台灣鐵路管理局(以下稱「台鐵」)鐵道以及國道高速公路通過。近年來也陸續設立了多個產業園區以及數條預計建設的交通設施。而先前的研究透過 GNSS 等測地資料發現,在台灣西南部跨斷層兩側有明顯速度落差,支持現今的地表斷層潛移的現象,跨越活動斷層的交通設施與產業園區就可能受到跨斷層速度差受到影響甚至是破壞。因此為了要獲取台灣西南部的速度場,本研究使用歐洲太空總署(European Space Agency, ESA)的 Sentinel-1A 的SAR 影像,在升軌方向使用 146 幅影像,觀測時間從 2016 年 3 月到 2021 年 11月;在降軌方向使用 130 張影像,觀測時間從 2016 年 5 月到 2022 年 2 月。我們使用永久散射體雷達干涉(Persistent Scatterer InSAR, PSInSAR)的 StaMPS/MTI(Stanford Method for Persistent Scatterers/ Multi-Temporal InSAR)演算法,針對目標區域的活動斷層造成的地表變形以及關鍵基礎設施的變形製作時間序列觀測資料。本研究結果顯示在中央地質調查所的後甲里斷層兩側的速度落差在垂直方向上約為 3~6 毫米/年,呈現由北向南遞增的情形;在車瓜林斷層兩側的速度落差在東西方向上約為 4~8 毫米/年;而在台灣地震模型(Taiwan Earthquake Model, TEM)右昌斷層兩側的速度落差在東西方向上約為 5 毫米/年。並在斷層兩側的位移在時間序列上也可以明顯見到相反的變形趨勢,足見這些斷層可能存在斷層潛移的情形。針對關鍵基礎設施高鐵沿線以及台鐵沿線,在部分跨越活動斷層路段兩側也同樣取得時間序列變形趨勢。在高鐵沿線變形最大處即跨越地調所車瓜林斷層處,達到橫向水平位移的容許規範約為 7 年;而台鐵沿線變形最大處即跨越右昌斷層處,達到縱向水平位移的容許規範約為 10 年;國道 7 號等規劃路線,其沿線跨越斷層處的變形量也將在 10 年內達到 H 等級。產業園區類的基礎設施,雖然不像交通系統容易受到地表變形立即的危害,但部分園區接近有潛移活動的活動斷層敏感區,亦需要更多的觀測來留意。本研究比對前人針對斷層特性的研究,在斷層處的變形趨勢皆符合,並且也與前人利用測地技術測得之可能存在斷層潛移之結果符合。因此,本研究建議未來在台灣西南部地區活動斷層附近設置之關鍵基礎設施能更加留意活動斷層活動性帶來的影響。 | zh_TW |
dc.description.abstract | The Taiwan mountain belt features many active faults resulting from the oblique collision between the two tectonics (Suppe, 1984). Geodetic observations in previous studies show that sharp velocity gradients across active faults in SW Taiwan, suggesting the presence of surface fault creep. Synthetic Aperture Radar (SAR), which is an active system that transmits microwaves to surface targets and receives backscatters from them, has a lot of benefits such as cloudy-free, day-and-night monitoring, and all-weather detection. In this study, SAR images derived from the ESA’s Sentinel-1A satellite were used. 166 SAR images from March 9, 2016, to November 14, 2021, in the ascending direction (ASC) and 133 SAR images from May 10, 2016, to February 8, 2022, in the descending direction (DES), which cover the whole study area are used to detect surface deformation. I use the PSInSAR algorithm of StaMPS/MTI to create time series data of surface deformation and target deformation of the critical infrastructure. At the maximum deformation place along the Taiwan High Speed Rail Corporation (THSR) railroad, which crosses the Chekualin fault, will reach the allowable level for lateral horizontal displacement within 7 years. Along the Taiwan Railway Administration MOTC. (TR) railroad, at the maximum deformation place, which crosses the Youchang fault, will reach the allowable level for longitudinal horizontal displacement within 10 years. For planned routes like National Highway No. 7, the deformation at locations where active fault crosses is expected to reach Class H within 10 years. Although infrastructure in industrial parks is not affected by surface deformations immediately, some parks are close to sensitive areas with potential active fault creep, requiring more monitoring. This study's findings are consistent with previous research on fault characteristics and are in line with the results obtained through geodetic techniques indicating potential fault creep. Therefore, it is recommended that future critical infrastructure near active fault zones in southwestern Taiwan should pay more attention to the impact of fault creep. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-01-26T16:31:37Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-01-26T16:31:37Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 摘要 iii Abstracts v List of tables x List of Figures xi Chapter 1 Introduction 1 1.1 Motivations 1 1.2 Purposes 4 1.3 Study area 5 Chapter 2 Literature review 11 2.1 Geology setting 11 2.1.1 Stratigraphy of SW Taiwan 13 2.1.2 Active faults 16 2.2 Region surface deformation in SW Taiwan 21 2.3 Critical infrastructure monitoring in Taiwan 23 Chapter 3 Method 28 3.1 Radar (RAdio Detection And Ranging) 28 3.2 Side-Looking Airborne Radar (SLAR) and Synthetic Aperture Radar (SAR) 29 3.2.1 SLAR 29 3.2.2 SAR 30 3.3 InSAR and DInSAR 31 3.4 Persistent Scatterers Interferometry (PSInSAR) 32 3.4.1 Produce interferogram 33 3.4.2 Phase stability analysis 33 3.5 Data collection 39 Chapter 4 Result 43 4.1 PS velocity fields in LOS direction 43 4.2 Correct PSInSAR by GNSS velocity 47 4.3 Decomposition 53 4.4 Comparison PS and leveling 56 Chapter 5 Discussion 60 5.1 Active fault motion 60 5.2 Infrastructure deformation 68 5.2.1 Transportation systems 68 5.2.2 Industrial parks 88 Chapter 6 Conclusions 95 Reference 96 Supplementary 1: Interferograms 104 | - |
dc.language.iso | en | - |
dc.title | 利用 PSInSAR 監測臺灣西南部關鍵基礎設施相關之地表變形 | zh_TW |
dc.title | Using PSInSAR to monitor the surface deformation of critical infrastructure in SW Taiwan | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 景國恩;張午龍;陳松春;曾國欣 | zh_TW |
dc.contributor.oralexamcommittee | Kuo-En Ching;Wu-Lung Chang;Song-Chuen Chen;Kuo-Hsin Tseng | en |
dc.subject.keyword | 永久散射體差分干涉技術,關鍵基礎設施,台灣西南部,活動斷層, | zh_TW |
dc.subject.keyword | PSInSAR,Critical infrastructures,SW Taiwan,Active faults, | en |
dc.relation.page | 119 | - |
dc.identifier.doi | 10.6342/NTU202400130 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-01-23 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 地理環境資源學系 | - |
顯示於系所單位: | 地理環境資源學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-1.pdf | 16.89 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。