Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91435
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳建彰zh_TW
dc.contributor.advisorJian-Zhang Chenen
dc.contributor.author詹智麟zh_TW
dc.contributor.authorChih-Lin Chanen
dc.date.accessioned2024-01-26T16:29:36Z-
dc.date.available2024-01-27-
dc.date.copyright2024-01-26-
dc.date.issued2024-
dc.date.submitted2024-01-15-
dc.identifier.citation1. Chan, C.-L.; Ni, I.-C.; Wu, C.-I.; Cheng, I.-C.; Chen, J.-Z. Enhanced electrochemical performance of low-pressure-plasma-treated paper-based fluidic aluminum-air battery. Physica Scripta 2023, 98, 045620.
2. Ahuja, D.; Kalpna, V.; Varshney, P.K. Metal air battery: A sustainable and low cost material for energy storage. In Proceedings of the Journal of Physics: Conference Series, 2021; p. 012065.
3. Zhang, J.; Zhou, Q.; Tang, Y.; Zhang, L.; Li, Y. Zinc–air batteries: are they ready for prime time? Chemical Science 2019, 10, 8924-8929.
4. Li, Y.; Lu, J. Metal–air batteries: will they be the future electrochemical energy storage device of choice? ACS Energy Letters 2017, 2, 1370-1377.
5. Park, J.; Henins, I.; Herrmann, H.; Selwyn, G. Gas breakdown in an atmospheric pressure radio-frequency capacitive plasma source. Journal of Applied Physics 2001, 89, 15-19.
6. Tang, S.; Lu, N.; Wang, J.K.; Ryu, S.-K.; Choi, H.-S. Novel effects of surface modification on activated carbon fibers using a low pressure plasma treatment. The Journal of Physical Chemistry C 2007, 111, 1820-1829.
7. Liu, Y.; Sun, Q.; Li, W.; Adair, K.R.; Li, J.; Sun, X. A comprehensive review on recent progress in aluminum–air batteries. Green Energy & Environment 2017, 2, 246-277.
8. Shen, L.-L.; Zhang, G.-R.; Biesalski, M.; Etzold, B.J. based microfluidic aluminum–air batteries: toward next-generation miniaturized power supply. Lab on a Chip 2019, 19, 3438-3447.
9. Wu, S.; Zhang, Q.; Ma, J.; Sun, D.; Tang, Y.; Wang, H. Interfacial design of Al electrode for efficient aluminum-air batteries: issues and advances. Materials Today Energy 2020, 18, 100499.
10. Zaromb, S. The use and behavior of aluminum anodes in alkaline primary batteries. Journal of The Electrochemical Society 1962, 109, 1125.
11. Zhao, Q.; Yu, H.; Fu, L.; Wu, P.; Li, Y.; Li, Y.; Sun, D.; Wang, H.; Tang, Y. Electrolytes for aluminum–air batteries: advances, challenges, and applications. Sustainable Energy & Fuels 2023, 7, 1353-1370.
12. Goel, P.; Dobhal, D.; Sharma, R. Aluminum–air batteries: A viability review. Journal of Energy Storage 2020, 28, 101287.
13. Wang, L.; Cheng, R.; Liu, C.; Ma, M.; Wang, W.; Yang, G.; Leung, M.; Liu, F.; Feng, S. Trielectrolyte aluminum-air cell with high stability and voltage beyond 2.2 V. Materials Today Physics 2020, 14, 100242.
14. Liu, D.; Tian, J.; Tang, Y.; Li, J.; Yi, S.; Huang, X.; Sun, D.; Wang, H. High-power double-face flow Al-air battery enabled by CeO2 decorated MnOOH nanorods catalyst. Chemical Engineering Journal 2021, 406, 126772.
15. Shi, J.; Zhang, J.; Guo, J. Avoiding pitfalls in rechargeable aluminum batteries research. ACS Energy Letters 2019, 4, 2124-2129.
16. Ma, J.; Li, Y.; Grundish, N.S.; Goodenough, J.B.; Chen, Y.; Guo, L.; Peng, Z.; Qi, X.; Yang, F.; Qie, L. The 2021 battery technology roadmap. Journal of Physics D: Applied Physics 2021, 54, 183001.
17. Wang, Y.; Kwok, H.Y.; Pan, W.; Zhang, Y.; Zhang, H.; Lu, X.; Leung, D.Y. Combining Al-air battery with paper-making industry, a novel type of flexible primary battery technology. Electrochimica Acta 2019, 319, 947-957.
18. Liu, Y.; Zhang, H.; Liu, Y.; Li, J.; Li, W. Inhibitive effect of quaternary ammonium-type surfactants on the self-corrosion of the anode in alkaline aluminium-air battery. Journal of Power Sources 2019, 434, 226723.
19. Sun, P.; Chen, J.; Huang, Y.; Tian, J.-H.; Li, S.; Wang, G.; Zhang, Q.; Tian, Z.; Zhang, L. High-Strength agarose gel electrolyte enables long-endurance wearable Al-air batteries with greatly suppressed self-corrosion. Energy Storage Materials 2021, 34, 427-435.
20. Ryu, J.; Park, M.; Cho, J. Advanced technologies for high‐energy aluminum–air batteries. Advanced Materials 2019, 31, 1804784.
21. Vanysek, P. Electrochemical series. CRC handbook of chemistry and physics 2000, 8, 8-33.
22. Zhou, C.; Bhonge, K.; Cho, K.T. Analysis of the effect of hydrogen-evolving side reaction in the aqueous aluminum-air battery. Electrochimica Acta 2020, 330, 135290.
23. Lv, C.; Li, Y.; Zhu, Y.; Zhang, Y.; Kuang, J.; Huang, D.; Tang, Y.; Wang, H. Precipitation-free aluminum-air batteries with high capacity and durable service life. Chemical Engineering Journal 2023, 462, 142182.
24. Ossola, F.; Pistoia, G.; Seeber, R.; Ugo, P. Oxidation potentials of electrolyte solutions for lithium cells. Electrochimica acta 1988, 33, 47-50.
25. Yu, S.; Yang, X.; Liu, Y.; Zhan, F.; Wen, Q.; Li, J.; Li, W. High power density Al-air batteries with commercial three-dimensional aluminum foam anode. Ionics 2020, 26, 5045-5054.
26. Wang, H.; Leung, D.Y.; Leung, M.K.; Ni, M. Modeling of parasitic hydrogen evolution effects in an aluminum− air cell. Energy & fuels 2010, 24, 3748-3753.
27. Macdonald, D.D.; Real, S.; Urquidi‐Macdonald, M. Evaluation of Alloy Anodes for Aluminum‐Air Batteries: III. Mechanisms of Activation, Passivation, and Hydrogen Evolution. Journal of The Electrochemical Society 1988, 135, 2397.
28. Park, I.-J.; Choi, S.-R.; Kim, J.-G. Aluminum anode for aluminum-air battery–Part II: Influence of In addition on the electrochemical characteristics of Al-Zn alloy in alkaline solution. Journal of Power Sources 2017, 357, 47-55.
29. Meng, X.; Wang, Y.; Zhang, L.; Jin, F.; Wang, W. Investigations on the potential fluctuation of Al-Sn alloys during galvanostatic discharge process in alkaline solution. Journal of The Electrochemical Society 2018, 165, A1492.
30. Wu, Z.; Zhang, H.; Yang, D.; Zou, J.; Qin, K.; Ban, C.; Cui, J.; Nagaumi, H. Electrochemical behaviour and discharge characteristics of an Al–Zn–In–Sn anode for Al-air batteries in an alkaline electrolyte. Journal of Alloys and Compounds 2020, 837, 155599.
31. Han, Y.; Ren, J.; Fu, C.; Jiang, M.; Lu, S.; Zhang, J.; Sun, B. Electrochemical performance of aluminum anodes with different grain sizes for Al-air batteries. Journal of The Electrochemical Society 2020, 167, 040514.
32. Zhang, P.; Liu, X.; Xue, J.; Jiang, K. The role of microstructural evolution in improving energy conversion of Al-based anodes for metal-air batteries. Journal of Power Sources 2020, 451, 227806.
33. Fan, L.; Lu, H. The effect of grain size on aluminum anodes for Al–air batteries in alkaline electrolytes. Journal of Power Sources 2015, 284, 409-415.
34. Xu, T.; Hu, Z.; Yao, C. The effects of Ca addition on corrosion and discharge performance of commercial pure aluminum alloy 1070 as anode for Aluminum-air battery. Int. J. Electrochem. Sci 2019, 14, 2606-2620.
35. Avoundjian, A.; Galvan, V.; Gomez, F.A. An inexpensive paper-based aluminum-air battery. Micromachines 2017, 8, 222.
36. Wang, Y.; Kwok, H.Y.; Pan, W.; Zhang, H.; Lu, X.; Leung, D.Y. Parametric study and optimization of a low-cost paper-based Al-air battery with corrosion inhibition ability. Applied energy 2019, 251, 113342.
37. Wang, Y.; Pan, W.; Kwok, H.Y.; Zhang, H.; Lu, X.; Leung, D.Y. Liquid-free Al-air batteries with paper-based gel electrolyte: A green energy technology for portable electronics. Journal of Power Sources 2019, 437, 226896.
38. Xu, L.; Fan, H.; Huang, L.; Xia, J.; Li, S.; Li, M.; Ding, H.; Huang, K. Chrysanthemum-derived N and S co-doped porous carbon for efficient oxygen reduction reaction and aluminum-air battery. Electrochimica Acta 2017, 239, 1-9.
39. Xu, Y.; Zhao, Y.; Ren, J.; Zhang, Y.; Peng, H. An all‐solid‐state fiber‐shaped aluminum–air battery with flexibility, stretchability, and high electrochemical performance. Angewandte Chemie 2016, 128, 8111-8114.
40. Fu, X.; Jiang, G.; Wen, G.; Gao, R.; Li, S.; Li, M.; Zhu, J.; Zheng, Y.; Li, Z.; Hu, Y. Densely accessible Fe-Nx active sites decorated mesoporous-carbon-spheres for oxygen reduction towards high performance aluminum-air flow batteries. Applied Catalysis B: Environmental 2021, 293, 120176.
41. Li, H.; Sun, G.; Li, N.; Sun, S.; Su, D.; Xin, Q. Design and preparation of highly active Pt− Pd/C catalyst for the oxygen reduction reaction. The Journal of Physical Chemistry C 2007, 111, 5605-5617.
42. Ma, L.; Chu, D.; Chen, R. Comparison of ethanol electro-oxidation on Pt/C and Pd/C catalysts in alkaline media. International Journal of Hydrogen Energy 2012, 37, 11185-11194.
43. Greeley, J.; Stephens, I.; Bondarenko, A.; Johansson, T.P.; Hansen, H.A.; Jaramillo, T.; Rossmeisl, J.; Chorkendorff, I.; Nørskov, J.K. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nature chemistry 2009, 1, 552-556.
44. Lei, Y.; Chen, F.; Jin, Y.; Liu, Z. Ag-Cu nanoalloyed film as a high-performance cathode electrocatalytic material for zinc-air battery. Nanoscale research letters 2015, 10, 1-8.
45. Mori, R. Recent developments for aluminum–air batteries. Electrochemical Energy Reviews 2020, 3, 344-369.
46. Zhang, Y.; Ge, J.; Wang, L.; Wang, D.; Ding, F.; Tao, X.; Chen, W. Manageable N-doped graphene for high performance oxygen reduction reaction. Scientific reports 2013, 3, 2771.
47. Cao, Y.; Yang, H.; Ai, X.; Xiao, L. The mechanism of oxygen reduction on MnO2-catalyzed air cathode in alkaline solution. Journal of Electroanalytical Chemistry 2003, 557, 127-134.
48. Lee, D.U.; Scott, J.; Park, H.W.; Abureden, S.; Choi, J.-Y.; Chen, Z. Morphologically controlled Co3O4 nanodisks as practical bi-functional catalyst for rechargeable zinc–air battery applications. Electrochemistry communications 2014, 43, 109-112.
49. Cao, H.; Si, S.; Xu, X.; Li, J.; Lan, C. A novel flexible aluminum//polyaniline air battery. Int. J. Electrochem. Sci 2019, 14, 9796-9804.
50. Lin, Z.; Waller, G.H.; Liu, Y.; Liu, M.; Wong, C.-p. 3D Nitrogen-doped graphene prepared by pyrolysis of graphene oxide with polypyrrole for electrocatalysis of oxygen reduction reaction. Nano energy 2013, 2, 241-248.
51. Ogude, A.; Bradley, J. Ionic conduction and electrical neutrality in operating electrochemical cells: Pre-college and college student interpretations. Journal of chemical education 1994, 71, 29.
52. Ruzmetov, D.; Oleshko, V.P.; Haney, P.M.; Lezec, H.J.; Karki, K.; Baloch, K.H.; Agrawal, A.K.; Davydov, A.V.; Krylyuk, S.; Liu, Y. Electrolyte stability determines scaling limits for solid-state 3D Li ion batteries. Nano letters 2012, 12, 505-511.
53. Mokhtar, M.; Talib, M.Z.M.; Majlan, E.H.; Tasirin, S.M.; Ramli, W.M.F.W.; Daud, W.R.W.; Sahari, J. Recent developments in materials for aluminum–air batteries: A review. Journal of Industrial and Engineering Chemistry 2015, 32, 1-20.
54. Egan, D.; De León, C.P.; Wood, R.; Jones, R.; Stokes, K.; Walsh, F. Developments in electrode materials and electrolytes for aluminium–air batteries. Journal of Power Sources 2013, 236, 293-310.
55. Fan, L.; Lu, H.; Leng, J. Performance of fine structured aluminum anodes in neutral and alkaline electrolytes for Al-air batteries. Electrochimica Acta 2015, 165, 22-28.
56. Budevski, E.; Iliev, I.; Kaisheva, A.; Despić, A.; Krsmanović, K. Investigations of a large-capacity medium-power saline aluminium-air battery. Journal of applied electrochemistry 1989, 19, 323-330.
57. Ma, J.; Wen, J.; Li, Q.; Zhang, Q. Electrochemical polarization and corrosion behavior of Al–Zn–In based alloy in acidity and alkalinity solutions. International journal of hydrogen energy 2013, 38, 14896-14902.
58. Gelman, D.; Lasman, I.; Elfimchev, S.; Starosvetsky, D.; Ein-Eli, Y. Aluminum corrosion mitigation in alkaline electrolytes containing hybrid inorganic/organic inhibitor system for power sources applications. Journal of Power Sources 2015, 285, 100-108.
59. Deyab, M. Effect of nonionic surfactant as an electrolyte additive on the performance of aluminum-air battery. Journal of Power Sources 2019, 412, 520-526.
60. Zhang, Q.; Guo, L.; Huang, Y.; Zhang, R.; Ritacca, A.G.; Leng, S.; Zheng, X.; Yang, Y.; Singh, A. Influence of an imidazole-based ionic liquid as electrolyte additive on the performance of alkaline Al-air battery. Journal of Power Sources 2023, 564, 232901.
61. Jafarian, M.; Olyaei, H.M.B.; Gobal, F.; Hosseini, S.; Mahjani, M. Study of the alloying additives and alkaline zincate solution effects on the commercial aluminum as galvanic anode for use in alkaline batteries. Materials Chemistry and Physics 2013, 143, 133-142.
62. Shayeb, H.E.; Wahab, F.A.E.; Abedin, S.Z.E. Electrochemical behaviour of Al, Al–Sn, Al–Zn and Al–Zn–Sn alloys in chloride solutions containing indium ions. Journal of applied electrochemistry 1999, 29, 473-480.
63. El Shayeb, H.; Abd El Wahab, F.; El Abedin, S.Z. Electrochemical behaviour of Al, Al–Sn, Al–Zn and Al–Zn–Sn alloys in chloride solutions containing stannous ions. Corrosion science 2001, 43, 655-669.
64. Halambek, J.; Žutinić, A.; Berković, K. Ocimum basilicum L. oil as corrosion inhibitor for aluminium in hydrochloric acid solution. International Journal of Electrochemical Science 2013, 8, 11201-11214.
65. Wang, Z.-L.; Xu, D.; Xu, J.-J.; Zhang, X.-B. Oxygen electrocatalysts in metal–air batteries: from aqueous to nonaqueous electrolytes. Chemical Society Reviews 2014, 43, 7746-7786.
66. Gelman, D.; Shvartsev, B.; Ein-Eli, Y. Aluminum–air battery based on an ionic liquid electrolyte. Journal of materials chemistry A 2014, 2, 20237-20242.
67. Zhang, Z.; Zuo, C.; Liu, Z.; Yu, Y.; Zuo, Y.; Song, Y. All-solid-state Al–air batteries with polymer alkaline gel electrolyte. Journal of Power Sources 2014, 251, 470-475.
68. Shih, C.-Y.; Ni, I.-C.; Chan, C.-L.; Hsu, C.-C.; Wu, C.-I.; Cheng, I.-C.; Chen, J.-Z. Helium dielectric barrier discharge plasma jet (DBD Jet)-processed graphite foil as current collector for paper-based fluidic aluminum-air batteries. Energies 2022, 15, 5914.
69. Gaele, M.F.; Di Palma, T.M. Rechargeable Aluminum‐Air Batteries Based on Aqueous Solid‐State Electrolytes. Energy Technology 2022, 10, 2101046.
70. Kar, M.; Simons, T.J.; Forsyth, M.; MacFarlane, D.R. Ionic liquid electrolytes as a platform for rechargeable metal–air batteries: a perspective. Physical chemistry chemical physics 2014, 16, 18658-18674.
71. Gaele, M.F.; Di Palma, T.M. Polymer Electrolytes for Al-Air Batteries: Current State and Future Perspectives. Energy & Fuels 2022, 36, 12875-12895.
72. Chen, W.; Yu, H.; Chang, S.; Li, W.; Liu, R.; Wang, Y.; Zhang, H.; Zhang, Z. Wheat straw as carbon source to prepare FeCoP2/N, P dual-doped carbon matrix as bifunctional catalyst for application in rechargeable zinc-air and aluminum-air batteries. Applied Surface Science 2022, 573, 151486.
73. Lee, D.U.; Xu, P.; Cano, Z.P.; Kashkooli, A.G.; Park, M.G.; Chen, Z. Recent progress and perspectives on bi-functional oxygen electrocatalysts for advanced rechargeable metal–air batteries. Journal of Materials Chemistry A 2016, 4, 7107-7134.
74. Dresp, S.; Strasser, P. Non‐Noble Metal oxides and their application as bifunctional catalyst in reversible fuel cells and rechargeable air batteries. ChemCatChem 2018, 10, 4162-4171.
75. Perucca, M. Introduction to plasma and plasma technology. Plasma Technology for Hyperfunctional Surfaces: Food, Biomedical, and Textile Applications 2010, 1-32.
76. Hori, M. Radical-controlled plasma processes. Reviews of Modern Plasma Physics 2022, 6, 36.
77. Carter, T.; Baalrud, S.; Betti, R.; Ellis, T.; Foster, J.; Geddes, C.; Gleason, A.; Holland, C.; Humrickhouse, P.; Kessel, C. Powering the future: Fusion & plasmas; US Department of Energy (USDOE), Washington, DC (United States). Office of …: 2020.
78. Chatterjee, R. Fundamental Concepts and Discussion of Plasma Physics. TECHNO REVIEW Journal of Technology and Management 2022, 2, 01-14.
79. Langmuir, I. The Nature of Adsorbed Films of Caesium on Tungsten. Part I. The Space Charge Sheath and the Image Force. Physical Review 1933, 43, 224.
80. Hellborg, R.; Whitlow, H.J. Charged particle optics and beam transport.
81. Werner, G.R.; Uzdensky, D.A.; Begelman, M.C.; Cerutti, B.; Nalewajko, K. Non-thermal particle acceleration in collisionless relativistic electron–proton reconnection. Monthly Notices of the Royal Astronomical Society 2018, 473, 4840-4861.
82. Le, H.P.; Cambier, J.-L. Modeling of inelastic collisions in a multifluid plasma: Excitation and deexcitation. Physics of Plasmas 2015, 22.
83. Sawada, K.; Fujimoto, T. Effective ionization and dissociation rate coefficients of molecular hydrogen in plasma. Journal of applied physics 1995, 78, 2913-2924.
84. Xong, X. Introduction to Semiconductor Manufacturing Technology; 2000.
85. Chu, P.K.; Qin, S.; Chan, C.; Cheung, N.W.; Larson, L.A. Plasma immersion ion implantation—A fledgling technique for semiconductor processing. Materials Science and Engineering: R: Reports 1996, 17, 207-280.
86. Cheung, N. Plasma immersion ion implantation for semiconductor processing. Materials chemistry and physics 1996, 46, 132-139.
87. Bilek, M.M.; McKenzie, D.R. Plasma modified surfaces for covalent immobilization of functional biomolecules in the absence of chemical linkers: towards better biosensors and a new generation of medical implants. Biophysical reviews 2010, 2, 55-65.
88. Liu, Y.; Chen, Q.; Tong, Y.; Ma, Y. 9, 9-Dimethyl dihydroacridine-based organic photocatalyst for atom transfer radical polymerization from modifying “unstable” electron donor. Macromolecules 2020, 53, 7053-7062.
89. Aruoma, O.I. Free radicals, oxidative stress, and antioxidants in human health and disease. Journal of the American oil chemists' society 1998, 75, 199-212.
90. Tanaka, H.; Chuanjie, Z.; Hayakawa, Y.; Hirayama, M.; Teramoto, A.; Sugawa, S.; Ohmi, T. High-quality silicon oxide film formed by diffusion region plasma enhanced chemical vapor deposition and oxygen radical treatment using microwave-excited high-density plasma. Japanese Journal of Applied Physics 2003, 42, 1911.
91. Amo, A.; Martín, M.; Viña, L.; Toropov, A.; Zhuravlev, K. Interplay of exciton and electron-hole plasma recombination on the photoluminescence dynamics in bulk GaAs. Physical Review B 2006, 73, 035205.
92. Bretagne, J.; Godart, J.; Puech, V. Low-energy electron distribution in an electron-beam-generated argon plasma. Journal of Physics D: Applied Physics 1982, 15, 2205.
93. Lasorne, B.; Worth, G.A.; Robb, M.A. Excited‐state dynamics. Wiley Interdisciplinary Reviews: Computational Molecular Science 2011, 1, 460-475.
94. Garakyaraghi, S.; Danilov, E.O.; McCusker, C.E.; Castellano, F.N. Transient absorption dynamics of sterically congested Cu (I) MLCT excited states. The Journal of Physical Chemistry A 2015, 119, 3181-3193.
95. Garcia-Martinez, P.L. Dynamics of magnetic relaxation in Spheromaks. In Topics in Magnetohydrodynamics; InTech Rijeka: 2012; p. 85.
96. Conrads, H.; Schmidt, M. Plasma generation and plasma sources. Plasma Sources Science and Technology 2000, 9, 441.
97. Yang, S.; Chang, L.; Zhang, Y.; Jiang, W. Magnetical asymmetry effect in capacitively coupled plasmas: Effects of the magnetic field gradient, pressure, and gap length. Plasma Sources Science and Technology 2018, 27, 035008.
98. Lapke, M.; Mussenbrock, T.; Brinkmann, R. The multipole resonance probe: A concept for simultaneous determination of plasma density, electron temperature, and collision rate in low-pressure plasmas. Applied Physics Letters 2008, 93.
99. Franklin, R.; Snell, J. The plasma-sheath transition with a constant mean free path model and the applicability of the Bohm criterion. Physics of Plasmas 2001, 8, 643-647.
100. Benyoucef, D.; Yousfi, M.; Belmadani, B.; Settaouti, A. PIC MC using free path for the simulation of low-pressure RF discharge in argon. IEEE Transactions on plasma science 2010, 38, 902-908.
101. Herbert, T. Atmospheric-pressure cold plasma processing technology. Plasma technologies for textiles 2007, 79.
102. Govender, B.B. The application of non-thermal plasma-catalysis in Fischer-Tropsch synthesis at high pressure. 2016.
103. Scaife, T.M.; Heckler, A.F. Student understanding of the direction of the magnetic force on a charged particle. American Journal of Physics 2010, 78, 869-876.
104. Giovannini, A.Z.; Barendregt, I.; Haslinde, T.; Hubbs, C.; Abhari, R.S. Self-confined plasma in a magneto-plasma compressor and the influence of an externally imposed magnetic field. Plasma Sources Science and Technology 2015, 24, 025007.
105. Bernstein, I.B. Waves in a plasma in a magnetic field. Physical Review 1958, 109, 10.
106. Yu, Q.; Günter, S.; Finken, K. Effect of resonant helical magnetic fields on plasma rotation. Physics of Plasmas 2009, 16.
107. SAMUEL J. LING, J.S., WILLIAM MOEBS. University Physics Volume 2; 2021.
108. Ham, C.; Kirk, A.; Pamela, S.; Wilson, H. Filamentary plasma eruptions and their control on the route to fusion energy. Nature Reviews Physics 2020, 2, 159-167.
109. Takahashi, K.; Hanaoka, K.; Ando, A. Fast and automatic control of a frequency-tuned radiofrequency plasma source. Frontiers in Physics 2020, 7, 227.
110. Sun, J.; Wang, W.; Yue, Q.; Ma, C.; Zhang, J.; Zhao, X.; Song, Z. Review on microwave–metal discharges and their applications in energy and industrial processes. Applied Energy 2016, 175, 141-157.
111. Zeuner, M.; Neumann, H.; Meichsner, J. Ion energy distributions in a dc biased rf discharge. Journal of applied physics 1997, 81, 2985-2994.
112. Hopwood, J. Ion bombardment energy distributions in a radio frequency induction plasma. Applied physics letters 1993, 62, 940-942.
113. Alvarez, P.; Satrústegui, M.; Elósegui, I.; Martinez-Iturralde, M. Review of high power and high voltage electric motors for single-aisle regional aircraft. IEEE Access 2022, 10, 112989-113004.
114. Chang, J.-S.; Lawless, P.A.; Yamamoto, T. Corona discharge processes. IEEE Transactions on plasma science 1991, 19, 1152-1166.
115. Richard, F.; Cormier, J.; Pellerin, S.; Chapelle, J. Physical study of a gliding arc discharge. Journal of applied physics 1996, 79, 2245-2250.
116. Ferreira, C.M.; Moisan, M. Microwave discharges: fundamentals and applications; Springer Science & Business Media: 2013; Volume 302.
117. Corke, T.C.; Enloe, C.L.; Wilkinson, S.P. Dielectric barrier discharge plasma actuators for flow control. Annual review of fluid mechanics 2010, 42, 505-529.
118. Matsusaka, S. Control of particle charge by atmospheric pressure plasma jet (APPJ): A review. Advanced Powder Technology 2019, 30, 2851-2858.
119. Tendero, C.; Tixier, C.; Tristant, P.; Desmaison, J.; Leprince, P. Atmospheric pressure plasmas: A review. Spectrochimica Acta Part B: Atomic Spectroscopy 2006, 61, 2-30.
120. Mazouffre, S.; Foissac, C.; Supiot, P.; Vankan, P.; Engeln, R.; Schram, D.; Sadeghi, N. Density and temperature of N atoms in the afterglow of a microwave discharge measured by a two-photon laser-induced fluorescence technique. Plasma Sources Science and Technology 2001, 10, 168.
121. Kogelschatz, U. Plasma Phys. Control. Fusion 46. B63 2004.
122. Moravej, M.; Yang, X.; Barankin, M.; Penelon, J.; Babayan, S.; Hicks, R. Properties of an atmospheric pressure radio-frequency argon and nitrogen plasma. Plasma Sources Science and Technology 2006, 15, 204.
123. Bellakhal, N.; Draou, K.; Brisset, J. Electrochemical investigation of copper oxide films formed by oxygen plasma treatment. Journal of applied electrochemistry 1997, 27, 414-421.
124. Yang, C.H.; Wang, Y.T.; Tsai, W.F.; Ai, C.F.; Lin, M.C.; Huang, H.H. Effect of oxygen plasma immersion ion implantation treatment on corrosion resistance and cell adhesion of titanium surface. Clinical oral implants research 2011, 22, 1426-1432.
125. Wan, G.; Maitz, M.; Sun, H.; Li, P.; Huang, N. Corrosion properties of oxygen plasma immersion ion implantation treated magnesium. Surface and Coatings Technology 2007, 201, 8267-8272.
126. Belkind, A.; Gershman, S. Plasma cleaning of surfaces. Vacuum Coating and Technology November 2008, 46-57.
127. Sabat, K.C.; Rajput, P.; Paramguru, R.; Bhoi, B.; Mishra, B. Reduction of oxide minerals by hydrogen plasma: an overview. Plasma Chemistry and Plasma Processing 2014, 34, 1-23.
128. Oehrlein, G.S. Dry etching damage of silicon: A review. Materials Science and Engineering: B 1989, 4, 441-450.
129. Linke, J.; Du, J.; Loewenhoff, T.; Pintsuk, G.; Spilker, B.; Steudel, I.; Wirtz, M. Challenges for plasma-facing components in nuclear fusion. Matter and Radiation at Extremes 2019, 4.
130. Ahn, K.S.; Kim, J.S.; Kim, C.O.; Hong, J.P. Non-reactive rf treatment of multiwall carbon nanotube with inert argon plasma for enhanced field emission. Carbon 2003, 41, 2481-2485.
131. Chambers, D.K.; Raut, B.; Qi, D.; O'Neal, C.B.; Selmic, S.Z. The effect of helium plasma etching on polymer-based optoelectronic devices. Thin Solid Films 2009, 517, 5743-5746.
132. Xie, L.; Tang, Z.; Jiang, L.; Breedveld, V.; Hess, D.W. Creation of superhydrophobic wood surfaces by plasma etching and thin-film deposition. Surface and coatings technology 2015, 281, 125-132.
133. Kuo, Y. Plasma Etching and Deposition for a‐Si: H Thin Film Transistors. Journal of the Electrochemical Society 1995, 142, 2486.
134. Schicht, H. Clean room technology: The concept of total environmental control for advanced industries. Vacuum 1985, 35, 485-491.
135. Jasinski, J.; Meyerson, B.; Scott, B. Mechanistic studies of chemical vapor deposition. Annual Review of Physical Chemistry 1987, 38, 109-140.
136. Basceri, C.; Streiffer, S.; Kingon, A.I.; Waser, R. The dielectric response as a function of temperature and film thickness of fiber-textured (Ba, Sr) TiO 3 thin films grown by chemical vapor deposition. Journal of Applied Physics 1997, 82, 2497-2504.
137. Sahu, B.; Shin, K.S.; Han, J.G. Integrated approach for low-temperature synthesis of high-quality silicon nitride films in PECVD using RF–UHF hybrid plasmas. Plasma Sources Science and Technology 2016, 25, 015017.
138. Sahu, B.B.; Yin, Y.; Han, J.G. Controlled growth, microstructure, and properties of functional Si quantum dot films via plasma chemistry and activated radicals. The Journal of Physical Chemistry C 2017, 121, 10194-10209.
139. Ceschini, L.; Lanzoni, E.; Martini, C.; Prandstraller, D.; Sambogna, G. Comparison of dry sliding friction and wear of Ti6Al4V alloy treated by plasma electrolytic oxidation and PVD coating. Wear 2008, 264, 86-95.
140. López, L.; Salas, O.; Melo-Máximo, L.; Oseguera, J.; Lepienski, C.; Soares, P.; Torres, R.; Souza, R.M.d. Structural and mechanical analysis for the optimization of PVD oxide coatings for protection against metal dusting. Applied surface science 2012, 258, 7306-7313.
141. Knotek, O.; Elsing, R.; Krämer, G.; Jungblut, F. On the origin of compressive stress in PVD coatings—an explicative model. Surface and Coatings Technology 1991, 46, 265-274.
142. Zafar, M.S.; Farooq, I.; Awais, M.; Najeeb, S.; Khurshid, Z.; Zohaib, S. Bioactive surface coatings for enhancing osseointegration of dental implants. In Biomedical, therapeutic and clinical applications of bioactive glasses; Elsevier: 2019; pp. 313-329.
143. Andriukaitis, D.; Anilionis, R. Investigation of etching process in nano structures. Elektronika ir elektrotechnika 2008, 86, 77-80.
144. Fortuño, G. Silicon dioxide reactive ion etching dependence on sheath voltage. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 1986, 4, 744-747.
145. Paras; Yadav, K.; Kumar, P.; Teja, D.R.; Chakraborty, S.; Chakraborty, M.; Mohapatra, S.S.; Sahoo, A.; Chou, M.M.; Liang, C.-T. A Review on Low-Dimensional Nanomaterials: Nanofabrication, Characterization and Applications. Nanomaterials 2022, 13, 160.
146. Li, X.; Chan, K.Y.; Ramer, R. Fabrication of through via holes in ultra-thin fused silica wafers for microwave and millimeter-wave applications. Micromachines 2018, 9, 138.
147. Major, S.; Kumar, S.; Bhatnagar, M.; Chopra, K. Effect of hydrogen plasma treatment on transparent conducting oxides. Applied Physics Letters 1986, 49, 394-396.
148. Taylor, S.; Zhang, J.; Eccleston, W. A review of the plasma oxidation of silicon and its applications. Semiconductor science and technology 1993, 8, 1426.
149. Lee, S.-F.; Chang, Y.-P.; Lee, L.-Y. Plasma treatment effects on surface morphology and field emission characteristics of carbon nanotubes. Journal of Materials Science: Materials in Electronics 2009, 20, 851-857.
150. Wang, J.; Nie, L.; Zhang, C.; Wang, B. Low-pressure air plasma-assisted acrylic grafted polyetherimide ultrafiltration membranes with excellent oil-water separation and high anti-fouling performances. Materials Today Communications 2023, 106325.
151. mBRAUN. UNIlab-b glove box. Available online: https://www.mbraun.com/en/products/glovebox-workstations.html
152. PLASMA, H. PDC-32G BASIC PLASMA CLEANER. Available online:
https://harrickplasma.com/plasma-cleaners/basic-plasma-cleaner/
153. Santoro, F.; Zhao, W.; Joubert, L.-M.; Duan, L.; Schnitker, J.; van de Burgt, Y.; Lou, H.-Y.; Liu, B.; Salleo, A.; Cui, L. Revealing the cell–material interface with nanometer resolution by focused ion beam/scanning electron microscopy. ACS nano 2017, 11, 8320-8328.
154. Tare, M.; Puli, O.R.; Oros, S.M.; Singh, A. Drosophila adult eye model to teach Scanning Electron Microscopy in an undergraduate cell biology laboratory. Drosophila Information Service 2009, 92.
155. Zhong, J.-Q.; Wang, M.; Hoffmann, W.H.; van Spronsen, M.A.; Lu, D.; Boscoboinik, J.A. Synchrotron-based ambient pressure X-ray photoelectron spectroscopy of hydrogen and helium. Applied Physics Letters 2018, 112.
156. Shallenberger, J.R.; Cole, D.A.; Downey, D.F.; Falk, S.; Zhao, Z. Recent advances in XPS characterization of ultra-thin oxides. In Proceedings of the 1998 International Conference on Ion Implantation Technology. Proceedings (Cat. No. 98EX144), 1998; pp. 566-569.
157. Powell, C. Elemental binding energies for X-ray photoelectron spectroscopy. Applied Surface Science 1995, 89, 141-149.
158. Ténégal, F.; de la Rocque, A.G.; Dufour, G.; Sénémaud, C.; Doucey, B.; Bahloul-Hourlier, D.; Goursat, P.; Mayne, M.; Cauchetier, M. Structural determination of sintered Si3N4/SiC nanocomposite using the XPS differential charge effect. Journal of Electron Spectroscopy and Related Phenomena 2000, 109, 241-248.
159. Stevie, F.A.; Donley, C.L. Introduction to x-ray photoelectron spectroscopy. Journal of Vacuum Science & Technology A 2020, 38.
160. Zhang, Z.; Wang, W.; Korpacz, A.N.; Dufour, C.R.; Weiland, Z.J.; Lambert, C.R.; Timko, M.T. Binary liquid mixture contact-angle measurements for precise estimation of surface free energy. Langmuir 2019, 35, 12317-12325.
161. Butt, H.-J.; Liu, J.; Koynov, K.; Straub, B.; Hinduja, C.; Roismann, I.; Berger, R.; Li, X.; Vollmer, D.; Steffen, W. Contact angle hysteresis. Current Opinion in Colloid & Interface Science 2022, 59, 101574.
162. Sindatek. 100SB contact angle instrument. Available online:
https://www.sindatek.com/pro_en.htm
163. Metrohm. Autolab PGSTAT204. Available online:
https://www.metrohm.com/zh_tw/products/a/ut20/aut204_s.html?referrer=https://www.google.com/
164. Hawash, Z.; Ono, L.K.; Raga, S.R.; Lee, M.V.; Qi, Y. Air-exposure induced dopant redistribution and energy level shifts in spin-coated spiro-MeOTAD films. Chemistry of Materials 2015, 27, 562-569.
165. Park, Y.; Tasaka, S.; Inagaki, N. Surface modification of tetrafluoroethylene–hexafluoropropylene (FEP) copolymer by remote H2, N2, O2, and Ar plasmas. Journal of applied polymer science 2002, 83, 1258-1267.
166. Merel, P.; Tabbal, M.; Chaker, M.; Moisa, S.; Margot, J. Direct evaluation of the sp3 content in diamond-like-carbon films by XPS. Applied Surface Science 1998, 136, 105-110.
167. Ederer, J.; Janoš, P.; Ecorchard, P.; Tolasz, J.; Štengl, V.; Beneš, H.; Perchacz, M.; Pop-Georgievski, O. Determination of amino groups on functionalized graphene oxide for polyurethane nanomaterials: XPS quantitation vs. functional speciation. RSC advances 2017, 7, 12464-12473.
168. Alves, P.; Pinto, S.; de Sousa, H.C.; Gil, M.H. Surface modification of a thermoplastic polyurethane by low‐pressure plasma treatment to improve hydrophilicity. Journal of Applied Polymer Science 2011, 122, 2302-2308.
169. Tan, W.C.; Saw, L.H.; Yew, M.C.; Sun, D.; Cai, Z.; Chong, W.T.; Kuo, P.-Y. Analysis of the polypropylene-based aluminium-air battery. Frontiers in Energy Research 2021, 9, 599846.
170. Zhai, N.; Li, M.; Wang, W.; Zhang, D.; Xu, D. The application of the EIS in Li-ion batteries measurement. In Proceedings of the Journal of Physics: Conference Series, 2006; p. 1157.
171. Chang, B.-Y.; Park, S.-M. Electrochemical impedance spectroscopy. Annual Review of Analytical Chemistry 2010, 3, 207-229.
172. Liu, Y.; Li, J.; Li, W.; Li, Y.; Zhan, F.; Tang, H.; Chen, Q. Exploring the nitrogen species of nitrogen doped graphene as electrocatalysts for oxygen reduction reaction in Al–air batteries. international journal of hydrogen energy 2016, 41, 10354-10365.
173. Sun, Z.; Lu, H. Performance of Al-0.5 In as anode for Al–air battery in inhibited alkaline solutions. Journal of the Electrochemical Society 2015, 162, A1617.
174. Ramasamy, R.P.; Ren, Z.; Mench, M.M.; Regan, J.M. Impact of initial biofilm growth on the anode impedance of microbial fuel cells. Biotechnology and bioengineering 2008, 101, 101-108.
175. Wei, Y.; Shi, Y.; Chen, Y.; Xiao, C.; Ding, S. Development of solid electrolytes in Zn–air and Al–air batteries: from material selection to performance improvement strategies. Journal of Materials Chemistry A 2021, 9, 4415-4453.
176. Jung, C.-Y.; Kim, T.-H.; Kim, W.-J.; Yi, S.-C. Computational analysis of the zinc utilization in the primary zinc-air batteries. Energy 2016, 102, 694-704.
177. Chen, P.; Zhang, K.; Tang, D.; Liu, W.; Meng, F.; Huang, Q.; Liu, J. Recent progress in electrolytes for Zn–air batteries. Frontiers in Chemistry 2020, 8, 372.
178. Hosseini, S.; Han, S.J.; Arponwichanop, A.; Yonezawa, T.; Kheawhom, S. Ethanol as an electrolyte additive for alkaline zinc-air flow batteries. Scientific reports 2018, 8, 11273.
179. Fu, J.; Cano, Z.P.; Park, M.G.; Yu, A.; Fowler, M.; Chen, Z. Electrically rechargeable zinc–air batteries: progress, challenges, and perspectives. Advanced materials 2017, 29, 1604685.
180. Wang, Z.; Wu, Z.; Bramnik, N.; Mitra, S. Fabrication of high‐performance flexible alkaline batteries by implementing multiwalled carbon nanotubes and copolymer separator. Advanced Materials 2014, 26, 970-976.
181. Jiang, M.; Zhu, J.; Chen, C.; Lu, Y.; Ge, Y.; Zhang, X. Poly (vinyl alcohol) borate gel polymer electrolytes prepared by electrodeposition and their application in electrochemical supercapacitors. ACS applied materials & interfaces 2016, 8, 3473-3481.
182. Yang, C.C.; Lin, S. Preparation of alkaline PVA-based polymer electrolytes for Ni–MH and Zn–air batteries. Journal of applied electrochemistry 2003, 33, 777-784.
183. Xu, Y.; Zhang, Y.; Guo, Z.; Ren, J.; Wang, Y.; Peng, H. Flexible, stretchable, and rechargeable fiber‐shaped zinc–air battery based on cross‐stacked carbon nanotube sheets. Angewandte Chemie International Edition 2015, 54, 15390-15394.
184. Ma, L.; Chen, S.; Pei, Z.; Huang, Y.; Liang, G.; Mo, F.; Yang, Q.; Su, J.; Gao, Y.; Zapien, J.A. Single-site active iron-based bifunctional oxygen catalyst for a compressible and rechargeable zinc–air battery. ACS nano 2018, 12, 1949-1958.
185. Lan, Z.; Wu, J.; Lin, J.; Huang, M. Quasi-solid-state dye-sensitized solar cells with a novel efficient absorbent for liquid electrolyte based on PAA–PEG hybrid. Journal of power sources 2007, 164, 921-925.
186. Santos, F.; Tafur, J.P.; Abad, J.; Romero, A.J.F. Structural modifications and ionic transport of PVA-KOH hydrogels applied in Zn/Air batteries. Journal of Electroanalytical Chemistry 2019, 850, 113380.
187. SHENG-CING INSTRUMENTS CO., L. MTI MSK-T10. Available online:https://www.shengcing.com/portfolio-item/mti-msk-t10
188. SHENG-CING INSTRUMENTS CO., L. MTI MSK-110D. Available online:https://www.shengcing.com/portfolio-item/mti-msk-110d
189. Kufian, M.; Aziz, M.; Shukur, M.; Rahim, A.; Ariffin, N.; Shuhaimi, N.; Majid, S.; Yahya, R.; Arof, A.K. PMMA–LiBOB gel electrolyte for application in lithium ion batteries. Solid State Ionics 2012, 208, 36-42.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91435-
dc.description.abstract本研究透過低壓電漿對石墨紙表面進行塗覆催化劑層之前處理,並將塗覆催化劑之石墨紙應用於紙基流道式鋁空氣電池之陰極。在低壓電漿處理下,石墨紙表面產生物理及化學性變化,並對電化學性能有所影響。透過SEM、XPS及水接觸角,可觀察電漿處理前後石墨紙表面之形貌變化、表面元素及特定官能基含量之差異,以及表面親水性的不同;藉由LSV、CCD及EIS,可得知不同電漿參數下,組成鋁空氣電池後電化學性能之改變。整體而言,在10秒的低壓電漿處理下,鋁空氣電池將有最佳之電化學性能改善。zh_TW
dc.description.abstractThis study involves the pretreatment of the surface of graphite foil with low pressure plasma before coating a catalyst layer, and the application of the catalyst-coated graphite foil as the cathode in a paper-based fluidic aluminum air battery. Under low pressure plasma treatment, the surface of the graphite foil undergoes physical and chemical changes, affecting its electrochemical performance. The morphological changes, surface elemental differences, and variations in specific functional group content before and after plasma treatment can be observed through SEM, XPS, and water contact angle measurements. LSV, CCD, and EIS analyses reveal changes in the electrochemical performance of aluminum air batteries assembled under different plasma parameters. Overall, a 10 s low pressure plasma treatment yields the optimal improvement in electrochemical performance for the aluminum air battery.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-01-26T16:29:36Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-01-26T16:29:36Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
ABSTRACT iii
目次 iv
表次 viii
圖次 ix
1 第一章 緒論 1
1.1 前言 1
1.2 研究動機 1
1.3 論文大綱 1
2 第二章 文獻探討 3
2.1 鋁空氣電池簡介 3
2.1.1 鋁空氣電池之介紹 3
2.1.2 鋁空氣電池之放電機制 4
2.1.3 鋁空氣電池之電極材料 6
2.1.4 鋁空氣電池之電解液 8
2.1.5 紙基流道式鋁空氣電池 10
2.1.6 可充電式鋁空氣電池 10
2.2 電漿技術簡介 10
2.2.1 電漿介紹 10
2.2.2 影響電漿的因素 14
2.3 低壓電漿之應用 21
2.3.1 低壓電漿應用於半導體製程 21
2.3.2 低壓電漿應用於材料之表面改質 24
3 第三章 實驗步驟與各項儀器 25
3.1 實驗材料 25
3.2 製程儀器 26
3.2.1 氮氣手套箱 26
3.2.2 低壓電漿系統 27
3.3 分析儀器 29
3.3.1 掃描式電子顯微鏡 (SEM) 29
3.3.2 X射線光電子能譜 (XPS) 30
3.3.3 接觸角儀 31
3.3.4 電化學工作站 32
3.4 實驗流程 34
3.4.1 石墨紙表面清潔 34
3.4.2 低壓電漿處理石墨紙 35
3.4.3 催化材料及附著劑之塗覆 35
3.4.4 KOH電解液之調配及流道之設計 35
3.4.5 PMMA基板清洗 36
3.4.6 紙基流道式鋁空氣電池之組裝 36
4 第四章 研究結果 37
4.1 石墨紙之掃描式電子顯微鏡分析 37
4.2 石墨紙之X光電子能譜分析 38
4.3 石墨紙之表面親水性分析 41
4.4 流道式鋁空氣電池之電化學表現 42
4.4.1 線性伏安法Linear sweep voltammetry (LSV) 42
4.4.2 定電流放電法Constant current discharge (CCD) 44
4.5 電化學阻抗頻譜分析 (EIS) 46
4.6 與先前以常壓介電層放電電漿改質石墨紙用於鋁空氣電池之研究之比較 48
4.7 流道式鋁空氣電池用於點亮LED燈之展示 49
5 第五章 結論與未來展望 51
6 第六章 附錄A-紙基流道式鋅空氣電池 52
6.1 研究動機與實驗流程 52
6.2 研究結果 53
6.2.1 低壓電漿處理前後之鋅空氣電池 53
6.2.2 使用不同濃度KOH及乙醇添加劑之鋅空氣電池 54
6.3 結論與未來展望 56
7 第七章 附錄B-PVA/KOH凝膠應用於鈕扣型鋁空氣電池 57
7.1 研究動機 57
7.2 文獻探討 57
7.2.1 固態電解質應用於金屬空氣電池 57
7.2.2 PVA/KOH電解質應用於鋁空氣電池 58
7.3 實驗步驟與各項材料 59
7.3.1 實驗材料 59
7.3.2 製程儀器 60
7.3.3 量測儀器 63
7.3.4 實驗流程 63
7.4 研究結果 66
7.4.1 PVA/KOH凝膠結合流道式鋁空氣電池 66
7.4.2 PVA/KOH與PVA/KOH@KOH凝膠電解質之離子電導率 67
7.4.3 PVA/KOH與PVA/KOH@KOH凝膠電解質組成之鈕扣型鋁空氣電池 68
7.5 結論與未來展望 70
參考文獻 71
8 個人期刊發表 90
-
dc.language.isozh_TW-
dc.title低壓電漿改質石墨紙用於紙基流道式鋁空氣電池以改善其電化學性能之研究zh_TW
dc.titleLow pressure plasma modified graphite foil as the cathode of paper-based fluidic Al-air battery for improved electrochemical performanceen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳奕君;陳志鴻;徐振哲zh_TW
dc.contributor.oralexamcommitteeI-Chun Cheng;Chih-Hung Chen;Cheng-Che Hsuen
dc.subject.keyword鋁空氣電池,低壓電漿,電化學性能,zh_TW
dc.subject.keywordaluminum air battery,low pressure plasma,electrochemical performance,en
dc.relation.page91-
dc.identifier.doi10.6342/NTU202400016-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-01-16-
dc.contributor.author-college工學院-
dc.contributor.author-dept應用力學研究所-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf32.48 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved