請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91422完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂明璋 | zh_TW |
| dc.contributor.advisor | Ming-Chang Lu | en |
| dc.contributor.author | 林禹劭 | zh_TW |
| dc.contributor.author | Yeu-Shaw Lin | en |
| dc.date.accessioned | 2024-01-26T16:26:10Z | - |
| dc.date.available | 2024-01-27 | - |
| dc.date.copyright | 2024-01-26 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2024-01-04 | - |
| dc.identifier.citation | 1. Amaral, C., et al., Phase change materials and carbon nanostructures for thermal energy storage: A literature review. Renewable and Sustainable Energy Reviews, 2017. 79: p. 1212-1228.
2. Egolf, P.W. and M. Kauffeld, From physical properties of ice slurries to industrial ice slurry applications. International Journal of Refrigeration, 2005. 28(1): p. 4-12. 3. Kauffeld, M., et al., Ice Slurry Applications. Int J Refrig, 2010. 33(8): p. 1491-1505. 4. 陳宣毅, 冰晶 - 從簡單到複雜. 科學發展, 2013(487): p. 54-57. 5. Akhtar, S., et al., Numerical Investigation of the Pressure Drop Characteristics of Isothermal Ice Slurry Flow under Variable Ice Particle Diameter. Journal of Chemistry, 2020. 2020: p. 1-13. 6. Liu, X., et al., Performance Study and Efficiency Improvement of Ice Slurry Production by Scraped-Surface Method. Applied Sciences, 2018. 9(1). 7. Bordet, A., et al., Flow visualizations and pressure drop measurements of isothermal ice slurry pipe flows. Experimental Thermal and Fluid Science, 2018. 99: p. 595-604. 8. Hayashi, K.O., Hidemasa; Aizawa, Kazuo, Development and testing of ice packing factor measurement method for ice slurry storage tanks, in 5th ASME/JSME Thermal Engineering Joint Conference. 1999, NKK Corp., Kawasaki, Kanagawa (JP): San Diego, CA (US). 9. Peck, J.H., C. Kang, and H. Hong, Measurement of Ice Packing Factor of Aqueous Solution with Ice Slurry Using Refractive Index. International Journal of Air-Conditioning and Refrigeration, 2012. 18(02): p. 149-155. 10. Wang, J., et al., Flow and heat transfer characteristics of ice slurry in typical components of cooling systems: A review. International Journal of Heat and Mass Transfer, 2019. 141: p. 922-939. 11. Kitanovski, A., et al., The fluid dynamics of ice slurry. International Journal of Refrigeration, 2005. 28(1): p. 37-50. 12. Tian, Q., et al., Simulation on transportation safety of ice slurry in ice cooling system of buildings. Energy and Buildings, 2014. 72: p. 262-270. 13. Ayel, V., O. Lottin, and H. Peerhossaini, Rheology, flow behaviour and heat transfer of ice slurries: a review of the state of the art. International Journal of Refrigeration, 2003. 26(1): p. 95-107. 14. Niezgoda-Żelasko, B. and W. Zalewski, Momentum transfer of ice slurry flows in tubes, experimental investigations. International Journal of Refrigeration, 2006. 29(3): p. 418-428. 15. Niezgoda-Żelasko, B. and J. Żelasko, Generalized non-Newtonian flow of ice-slurry. Chemical Engineering and Processing - Process Intensification, 2007. 46(10): p. 895-904. 16. Niezgoda-Żelasko, B., Heat transfer of ice slurry flows in tubes. International Journal of Refrigeration, 2006. 29(3): p. 437-450. 17. Niezgoda-Żelasko, B. and J. Żelasko, Melting of ice slurry under forced convection conditions in tubes. Experimental Thermal and Fluid Science, 2008. 32(8): p. 1597-1608. 18. Kumano, H., et al., Experimental study on heat transfer characteristics of ice slurry. International Journal of Refrigeration, 2010. 33(8): p. 1540-1549. 19. Grozdek, M., et al., Experimental investigation of ice slurry heat transfer in horizontal tube. International Journal of Refrigeration, 2009. 32(6): p. 1310-1322. 20. Stamatiou, E. and M. Kawaji, Thermal and flow behavior of ice slurries in a vertical rectangular channel—Part II. Forced convective melting heat transfer. International Journal of Heat and Mass Transfer, 2005. 48(17): p. 3544-3559. 21. Engineering, M.C., Thermophysical Properties of Brines. 2011. 22. Kauffeld, M., M. Kawaji, and P.W. Egolf, Handbook on Ice Slurries: Fundamentals and Engineering. 2005. 23. Thomas, D.G., Transport characteristics of suspension: VIII. A note on the viscosity of Newtonian suspensions of uniform spherical particles. Journal of Colloid Science, 1965. 20(3): p. 267-277. 24. Doron, P., D. Granica, and D. Barnea, Slurry flow in horizontal pipes—experimental and modeling. International Journal of Multiphase Flow, 1987. 13(4): p. 535-547. 25. Richardson, J.F. and W.N. Zaki, Sedimentation and fluidisation: Part I. Chemical Engineering Research and Design, 1997. 75: p. S82-S100. 26. Kakac, S., Y. Yener, and A. Pramuanjaroenkij, Convective heat transfer. 2013: CRC press. 27. tec-science. Prandtl number. 2020 [cited 2020 05/10]; Available from: https://www.tec-science.com/mechanics/gases-and-liquids/prandtl-number/. 28. Jiang, X., et al., High performance heat sink with counter flow diverging microchannels. International Journal of Heat and Mass Transfer, 2020. 162. 29. Appendix C: Properties of Water, in The Shock Absorber Handbook. 2007. p. 379-380. 30. Levy, F.L., A modified Maxwell-Eucken equation for calculating the thermal conductivity of two-component solutions or mixtures. International Journal of Refrigeration, 1981. 4(4): p. 223-225. 31. Sakazume, S. and N. Seki, Thermal properties of ice and snow at low temperature region. Bulletin of the Japanese Society of Mechanical Engineering, 1978. 44: p. 2059-2069. 32. Coleman, H. and W. Steele, Experimentation, Validation, and Uncertainty Analysis for Engineers, Third Edition. 2009. 33. Liu, M.-S., et al., Enhancement of thermal conductivity with carbon nanotube for nanofluids. International Communications in Heat and Mass Transfer, 2005. 32(9): p. 1202-1210. 34. Liu, M.-S., et al., Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method. International Journal of Heat and Mass Transfer, 2006. 49(17-18): p. 3028-3033. 35. Choi, S.U.S. and J. Eastman, Enhancing thermal conductivity of fluids with nanoparticles. Vol. 66. 1995. 36. Xuan, Y. and Q. Li, Heat transfer enhancement of nanofluids. International Journal of Heat and Fluid Flow, 2000. 21(1): p. 58-64. 37. Patel, H., et al., Thermal Conductivities of Naked and Monolayer Protected Metal Nanoparticle Based Nanofluids: Manifestation of Anomalous Enhancement and Chemical Effects. Applied Physics Letters, 2003. 83: p. 2931-2933. 38. Jang, S.P. and S.U.S. Choi, Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Applied Physics Letters, 2004. 84(21): p. 4316-4318. 39. Prasher, R., P. Bhattacharya, and P.E. Phelan, Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys Rev Lett, 2005. 94(2): p. 025901. 40. Prasher, R., P.E. Phelan, and P. Bhattacharya, Effect of Aggregation Kinetics on the Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluid). Nano Letters, 2006. 6(7): p. 1529-1534. 41. Zhu, H., et al., Effects of nanoparticle clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids. Applied Physics Letters, 2006. 89: p. 023123-023123. 42. Zheng, R., et al., Experimental Investigation of Heat Conduction Mechanisms in Nanofluids. Clue on Clustering. Nano letters, 2009. 9: p. 4128-32. 43. Xie, H., M. Fujii, and X. Zhang, Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture. International Journal of Heat and Mass Transfer, 2005. 48(14): p. 2926-2932. 44. Yu, W. and S.U.S. Choi, The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model. Journal of Nanoparticle Research, 2003. 5(1): p. 167-171. 45. Lin, Y.-S., P.-Y. Hsiao, and C.-C. Chieng, Roles of nanolayer and particle size on thermophysical characteristics of ethylene glycol-based copper nanofluids. Applied Physics Letters, 2011. 98(15). 46. Ghosh, S., et al., Dimensional crossover of thermal transport in few-layer graphene. Nat Mater, 2010. 9(7): p. 555-8. 47. Das, S., et al., Role of graphene nanofluids on heat transfer enhancement in thermosyphon. Journal of Science: Advanced Materials and Devices, 2019. 4(1): p. 163-169. 48. Kulkarni, D.P., et al., Application of aluminum oxide nanofluids in diesel electric generator as jacket water coolant. Applied Thermal Engineering, 2008. 28(14-15): p. 1774-1781. 49. Namburu, P.K., et al., Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids. Micro & Nano Letters, 2007. 2(3). 50. Zhou, S.-Q. and R. Ni, Measurement of the specific heat capacity of water-based Al2O3 nanofluid. Applied Physics Letters, 2008. 92(9). 51. Vajjha, R.S. and D.K. Das, Specific Heat Measurement of Three Nanofluids and Development of New Correlations. Journal of Heat Transfer, 2009. 131(7). 52. Lu, M.-C. and C.-H. Huang, Specific heat capacity of molten salt-based alumina nanofluid. Nanoscale research letters, 2013. 8: p. 292. 53. Shin, D. and D. Banerjee, Enhanced Specific Heat of Silica Nanofluid. Journal of Heat Transfer, 2011. 133. 54. Shin, D. and D. Banerjee, Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications. International Journal of Heat and Mass Transfer, 2011. 54(5-6): p. 1064-1070. 55. Zhou, L.-P., et al., On the Specific Heat Capacity of CuO Nanofluid. Advances in Mechanical Engineering, 2015. 2. 56. Ho, M.X. and C. Pan, Optimal concentration of alumina nanoparticles in molten Hitec salt to maximize its specific heat capacity. International Journal of Heat and Mass Transfer, 2014. 70: p. 174-184. 57. Elsaid, K., et al., Thermophysical properties of graphene-based nanofluids. International Journal of Thermofluids, 2021. 10. 58. Yu, F., et al., Dispersion stability of thermal nanofluids. Progress in Natural Science: Materials International, 2017. 27(5): p. 531-542. 59. X-MatTM R-PG. Taiwan Carbon Materials Corp. (TCMC). 60. Ijam, A., et al., Stability, thermo-physical properties, and electrical conductivity of graphene oxide-deionized water/ethylene glycol based nanofluid. International Journal of Heat and Mass Transfer, 2015. 87: p. 92-103. 61. Johnson, H. Heat Capacity by the Sapphire Method. 2023; Available from: https://mcl.mse.utah.edu/heat-capacity-sapphire-method/. 62. Instruments, T., Thermal Applications Note-Sapphire Specific Heat Capacity Literature Values. TA Instruments. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91422 | - |
| dc.description.abstract | 強勁的經濟增長和電力需求的激增使夏季高峰電力需求成為全球一項重大挑戰。空調佔據建築物總能源消耗的40%以上,冰儲冷空調已成為減少高峰電力需求和建築物能源消耗的重要方法之一,它利用非高峰時段的電力來製冰和儲存冰,然後在高峰時段作為冷卻源使用。冰泥是一種由小冰粒子和載體液體組成的固液兩相混合物,是冰儲冷空調的工作流體,它在多方面優於傳統冷媒,例如非氟氯碳化合物、卓越的能量儲存能力和優越的熱傳特性,然而冰泥在冷卻系統中的應用仍受流動和熱傳特性理解不足的限制,目前文獻中對於冰泥是牛頓流體還是非牛頓流體沒有定論,因此本研究旨在建立一個冰泥系統,並在不同運行條件下研究其壓降和熱傳特性。
本研究建立了一套水平管路的冰泥量測系統,使用密度流量計來量測冰泥的蓄冰率(IPF, Ice packing factor),並建立了可視化系統,在可視化系統中不僅量測冰泥壓降及熱傳,也可觀察冰泥在管路內的流動情況;本研究使用5%乙二醇作為載體容液,並包含不同的蓄冰率,平均冰顆粒大小約為200 μm,實驗系統之管路為14mm之正方管,並且雷諾數操作在1900以下時,我們的研究結果顯示,當蓄冰率低於15%時,冰泥的流動行為呈牛頓流體特性,冰泥的壓降值相較於單相水有4至12倍的上升,壓降值隨著蓄冰率的升高而增加,此外,在熱通量恆定400 W、三面加熱的情況下,我們發現冰泥的熱對流係數以及努塞數約為單相水的1.2倍至1.7倍,熱對流係數隨著蓄冰率的升高而增加,努塞數在雷諾數大於1200時才隨著蓄冰率的升高而增加,然而造成此熱傳現象之機制尚不確定。 | zh_TW |
| dc.description.abstract | The robust economic growth and the surge in electricity demand have caused summer peak power demand to be a significant global challenge. Air conditioning accounts for over 40% of a building''s total energy consumption. Ice storage air conditioning has emerged as an important approach to reduce peak power demand and energy consumption in buildings. It utilizes non-peak electricity to produce and store ice, which can be used as a cooling source during peak hours. Ice slurry, a two-phase mixture of small ice particles and carrier liquid, is the working fluid for ice storage air conditioning. It has several advantages over conventional refrigerants, such as being free of CFCs, excellent energy storage capabilities, and superior heat transfer characteristics. However, the application of ice slurry in cooling systems is still limited by the lack of understanding of its flow and thermal behavior. The debate on whether ice slurry behaves as a Newtonian or non-Newtonian fluid remains unresolved in the current literature. Therefore, this study aims to establish an ice slurry system and investigate its pressure drop and heat transfer properties under different operating conditions.
The study implemented a horizontal pipeline ice slurry measurement system, employing a Coriolis flowmeter to measure the ice packing factor (IPF) and establishing a visualization system. This system not only measured pressure drop and heat transfer but also allowed observation of the ice slurry flow within the pipeline. The ice slurries in this work use 5% ethylene glycol as the carrier liquid and consist of various ice packing factors(IPFs). The average ice particle size is approximately 200 μm. The experimental system employed a 14mm square pipe, and Reynolds numbers were kept below 1900. The results indicate that when the IPF is below 15%, the flow behavior of ice slurry resembles that of Newtonian fluid characteristics. The pressure drop of ice slurry was 4 to 12 times higher compared to single-phase water, increasing with higher IPF. Additionally, under a constant heat flux of 400 W and three-sided heating, the heat transfer coefficient and Nusselt number of ice slurry were approximately 1.2 to 1.7 times that of single-phase water. The heat transfer coefficient increases with higher ice packing factor, and the Nusselt number increases only when the Reynolds number exceeds 1200. However, the mechanism causing this heat transfer phenomenon remains uncertain. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-01-26T16:26:10Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-01-26T16:26:10Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii 目次 v 圖次 vii 表次 xiv 符號表 xv 第一章 緒論 1 1.1研究動機 1 1.2文獻回顧 1 1.3研究目的與論文編排 4 第二章 冰泥基本性質與理論介紹 13 2.1 冰泥的基本性質 13 2.2 冰泥臨界速度 14 2.3壓降理論計算 15 2.4 單相層流熱傳理論 16 2.4.1單相層流熱傳理論計算 16 2.4.2熱傳模擬 17 第三章 實驗系統與實驗方法 23 3.1冰泥實驗系統 23 3.2冰泥製作方法 25 3.3密度流量計資料擷取方法 26 3.4冰泥顆粒大小分析 27 3.5冰泥臨界速度計算 27 3.6實驗步驟 28 3.6.1實驗前置步驟 28 3.6.2壓降實驗: 29 3.6.3熱傳實驗: 29 3.6.4實驗結束之步驟 30 3.7壓降實驗與攪拌器轉速 30 3.8 熱傳實驗 31 3.8.1熱對流係數計算 31 3.8.2努塞數計算 33 3.8.3誤差傳遞分析 34 3.9冰泥速度分布分析 36 第四章 結果與討論 48 4.1 壓降實驗 49 4.2熱傳實驗 50 4.3冰泥速度分布 51 第五章 結論與未來工作 55 5.1結論 55 5.2未來工作 55 5.2.1添加奈米粒子之文獻探討 56 5.2.2石墨烯奈米流體配置以及穩定性分析 57 5.2.3石墨烯奈米流體比熱容以及熱傳導率量測 58 參考資料 65 附錄A 乙二醇性質 69 附錄B 零件工程圖 72 附錄C 冰泥顆粒照片 75 附錄D 壓降實驗之原始數據 78 附錄E 熱傳實驗之原始數據 95 附錄F 誤差傳遞分析 116 附錄G 藍寶石比熱容理論值 118 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 固液二相流 | zh_TW |
| dc.subject | 努塞數 | zh_TW |
| dc.subject | 熱對流係數 | zh_TW |
| dc.subject | 壓降 | zh_TW |
| dc.subject | 蓄冰率 | zh_TW |
| dc.subject | 冰泥 | zh_TW |
| dc.subject | Heat transfer coefficient | en |
| dc.subject | Ice packing factor (IPF) | en |
| dc.subject | Solid-liquid two phase flow | en |
| dc.subject | Ice slurry | en |
| dc.subject | Pressure drop | en |
| dc.subject | Nusselt number | en |
| dc.title | 冰泥冷媒之熱傳與壓降 | zh_TW |
| dc.title | Heat Transfer and Pressure Drop of Ice Slurry Refrigerant | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 楊馥菱;羅景文 | zh_TW |
| dc.contributor.oralexamcommittee | Fu-Ling Yang;Ching-Wen Lo | en |
| dc.subject.keyword | 冰泥,固液二相流,蓄冰率,壓降,熱對流係數,努塞數, | zh_TW |
| dc.subject.keyword | Ice slurry,Solid-liquid two phase flow,Ice packing factor (IPF),Pressure drop,Heat transfer coefficient,Nusselt number, | en |
| dc.relation.page | 119 | - |
| dc.identifier.doi | 10.6342/NTU202400012 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-01-04 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 未授權公開取用 | 29.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
