Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91414
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張國鎮zh_TW
dc.contributor.advisorKuo-Chun Changen
dc.contributor.author鄧煒霖zh_TW
dc.contributor.authorWei-Lin Tengen
dc.date.accessioned2024-01-26T16:24:03Z-
dc.date.available2024-01-27-
dc.date.copyright2024-01-26-
dc.date.issued2024-
dc.date.submitted2024-01-08-
dc.identifier.citation[1] 中央氣象署,地震測報中心,https://scweb.cwb.gov.tw/
[2] Megget, L.M. (1978). “Analysis and design of a base-isolated reinforced concrete frame building”, Bulletin NZNSEE, 11 (4), December, 245-254.
[3] Wang SJ, Chang KC, Hwang JS, Lee BH. Simplified analysis of mid-story seismically isolated buildings. Earthquake Eng Struct Dynam 2011;40(2):119-33.
[4] Wang SJ, Hwang JS, Chang KC, Lin MH, Lee BH (2013), “Analytical and experimental studies on midstory isolated buildings with modal coupling effect,” Earthquake Engineering & Structural Dynamics, 42(2):201-219.
[5] Sachi Furukawa, Eiji Sato, Yundong Shi, Tracy Becker, and Masayoshi Nakashima, "Full-scale shaking table test of a base-isolated medical facility subjected to vertical motions," Earthquake Engineering & Structural Dynamics, vol. 42, pp. 1931-194, 2013
[6] K.C. Chang, T.T. Soong, M.L. Lai, and E.J. Nielsen, “Viscoelastic Dampers as Energy Dissipation Devices for Seismic Applications,” Earthquake Spectra, vol. 9, no. 3, p.371-387, 1993.
[7] J.S. Hwang, “Seismic Design of Structures with Viscous Dampers,” International Training Programs for Seismic Design of Building Structures Hosted by National Center for Research on Earthquake Engineering, 2002.
[8] V.G. Veselago, “The electrodynamics of substances with simultaneously negative values of and μ,” Soviet Physics Uspekhi, vol. 10, no. 4, p. 509-514 ,1968.
[9] J.B. Pendry, A. Holden, W. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Physical Review Letters, vol. 76, no. 25, p. 4773-4776, 1996.
[10] J.B. Pendry, A.J. Holden, D.J. Robbins, and W. Stewart, “Magnetism from conductors and enhanced non-linear phenomena,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 11, p. 2075-2084, 1999.
[11] Pendry, J.B. Negative refraction makes a perfect lens. Physical Review Letters 2000; 85(18): 3966-3969.
[12] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Physical Review Letters 1987; 58(20): 2059-2062.
[13] John S. Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters 1987; 58(23): 2486-2489.
[14] William Henry Bragg and William Lawrence Bragg, "The reflection of X-rays by crystals," Proc. R. Soc. Lond. A, vol. 88, pp. 428-438, 1913.
[15] M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani. Acoustic band structure of periodic elastic composites. Physical Review Letters, 71(13):2022, 1993.
[16] Z. Y. Liu, X. X. Zhang, Y. W. Mao, Y. Y. Zhu, Z. Y. Yang, C. T. Chan, and P. Sheng. Locally resonant sonic materials. Science, 289(5485):1734–1736, 2000.
[17] Charles Kittel, Introduction to Solid State Physics. Hoboken: John Wiley & Sons, 2005.
[18] D. Mu, H. Shu, L. Zhao, S. An, A review of research on seismic metamaterials, Adv. Energy Mater. (2020) 1901148.
[19] Ungureanu B, Achaoui Y, Enoch S, Brûlé S, Guenneau S: Auxetic-like metamaterials as novel earthquake protections. EPJ Appl. Metamat. 2015, 2, 17.
[20] 張雯桂,拉脹幾何地震超材料可行性研究,國立陽明交通大學 土木工程學系碩士論文,2022。
[21] 謝享浩,樁型拉脹地震超材料之減振研究,國立臺灣大學 土木工程學系碩士論文,2023。
[22] W. Witarto, “Periodic materials for seismic base isolation: theory and applications to small modular reactors,” PhD diss, University of Houston, 2018.
[23] 簡廷宇,具帶隙效應之層狀基礎於隔減震之應用,國立成功大學 土木工程學系碩士論文,2018。
[24] Yan, Y., Cheng, Z., Menq, F., Mo, Y. L., Tang Y., Shi, Z. Three dimensional periodic foundations for base seismic isolation. Smart Mater. Struct. 24 (2015) 075006
[25] Brûlé S, Javelaud E H, Enoch S and Guenneau S 2014 Experiments on seismic metamaterials: molding surface waves Phys. Rev. Lett. 112 133901
[26] Colombi, A., Colquitt, D., Roux, P., Guenneau, S. & Craster, R. V. A seismic metamaterial: The resonant metawedge. Sci. Rep. 6, 27717 (2016).
[27] Stéphane Brulé, Bogdan Ungureanu, Younes Achaoui, Andre Diatta, Ronald Aznavourian, et al. Metamaterial-like transformed urbanism. Innovative Infrastructure Solutions, 2017, 2 (1), ff10.1007/s41062-017-0063-xff. ffhal-01635890f
[28] Lei Gao, Chenzhi Cai, Cheuk Ming Mak, Xuhui He, Yunfeng Zou, Dizi Wu, Surface wave attenuation by periodic hollow steel trenches with Bragg band gap and local resonance band gap,Construction and Building Materials,Volume 356, 2022, 129289
[29] Achaoui, Y., Ungureanu, B., Enoch, S., Brûlé, S., Guenneau, S. Seismic waves damping with arrays of inertial resonators. Extreme Mechanics Letters 8 (2016) 30–37
[30] Krödel, S., Thomé, N., Daraio, C. Wide band-gap seismic metastructures. Extreme Mech. Lett. 4 (2015)111–117.
[31] Achaoui, Y., Antonakakis, T., Brûlé, S., Craster, R. V., Enoch, S., Guenneau, S. Clamped seismic metamaterials: ultra-low frequency stop bands. New J. Phys. (19) 063022 (2017)
[32] 吳逸軒,寬頻帶地震超材料設計與模擬,國立成功大學 土木工程學系碩士論文,2018。
[33] J. Huang, Z. Shi, “Attenuation zones of periodic pile barriers and its application in vibration reduction for plane wave,” Journal of Sound and Vibration, vol. 332, p.4423-4439, 2013.
[34] 吳庭雅,樁型亞波長共振地震超材料結構之縮尺試驗可行性研究,國立台灣大學 土木工程學系碩士論文,2023。
[35] 羅川琇,樁型地震超材料與共振筒單元之可行性研究,國立臺灣大學 土木工程學系碩士論文,2021。
[36] Z. Cheng, Z. Shi, Y.L. Mo, H. Xiang, Locally resonant periodic structures with low-frequency band gaps, Journal of Applied Physics 114 (3) (2013) 033532, http://dx.doi.org/10.1063/1.4816052.
[37] Ana S. Tártaro, Teresa M. Mata, António A. Martins, Joaquim C.G. Esteves da Silva, Carbon Footprint of the Insulation Cork Board, Journal of Cleaner Production (2016), doi: 10.1016/j.jclepro.2016.12.028
[38] Amorim Cork, https://www.amorim.com/en/
[39] Santos, P.T., Pinto, S., Marques, P.A.A.P., Pereira, A.B., Alves de Sousa, R.J., Agglomerated cork: a way to tailor its mechanical properties, Composite Structures (2017), doi: http://dx.doi.org/ 10.1016/j.compstruct.2017.07.035
[40] Kai Liu, Le Han, Wenxia Hu, Longtao Ji, Shengxin Zhu, Zhishuai Wan, Xudong Yang, Yuling Wei, Zongjie Dai, Zeang Zhao, Zhen Li, Pengfei Wang, Ran Tao, 4D printed zero Poisson''s ratio metamaterial with switching function of mechanical and vibration isolation performance, Materials & Design, Volume 196, 2020, 109153, ISSN 0264-1275, https://doi.org/10.1016/j.matdes.2020.109153.
[41] Lagorce-Tachon, A., Karbowiak, T., Champion, D., Gougeon, R.D., Bellat, J-P., Mechanical properties of cork: Effect of hydration, Materials and Design (2015), doi: http://dx.doi.org/10.1016/ j.matdes.2015.05.034.
[42] Papka, S. D. & Kyriakides, S. In-plane compressive response and crushing of honeycomb. J. Mech. Phys. Solids 42, 1499–1532 (1994).
[43] R. T. Jardin, F. A. O. Fernandes, A. B. Pereira, and R. J. Alves de Sousa, “Static and dynamic mechanical response of different cork agglomerates,” Mater. Des., vol. 68, pp. 121–126, Mar. 2015, doi:10.1016/j.matdes.2014.12.016.
[44] Dias, R. B. e, Coto, N. P., Batalha, G. F., & Driemeier, L. (2018). Systematic Study of Ethylene-Vinyl Acetate (EVA) in the Manufacturing of Protector Devices for the Orofacial System. InTech. doi: 10.5772/intechopen.69969
[45] Overview of materials for Ethylene Vinyl Acetate Copolymer (EVA), Adhesive/Sealant Grade https://www.matweb.com/search/datasheet.aspx?matguid=0eeb0c7bf44349e39580d1d1ff302764
[46] Karpiesiuk, J. Young’s modulus and Poisson’s ratio of Polyurethane Adhesive in Lightweight Floor System. Mod. Approaches Mater. Sci. 2020,2, 251–255
[47] Wondu, Eyob, Zelalem Lule, and Jooheon Kim. 2019. "Thermal Conductivity and Mechanical Properties of Thermoplastic Polyurethane-/Silane-Modified Al2O3 Composite Fabricated via Melt Compounding" Polymers 11, no. 7: 1103. https://doi.org/10.3390/polym11071103
[48] Bhaiyat, Taahir. (2017). Effect of Fiber Loading on the Moisture Absorption and Mechanical Properties of Kenaf Fiber Reinforced Composites - MECN4006 Undergraduate Research Project.
[49] Li, Huawei & Fan, Yiqiang & Conchouso Gonzalez, David & Foulds, Ian. (2012). CO 2laser-induced bump formation and growth on polystyrene for multi-depth soft lithography molds. Journal of Micromechanics and Microengineering. 22. 115037. 10.1088/0960-1317/22/11/115037.
[50] Feng L., Li S. and Feng S. (2017). Preparation and characterization of silicone rubber with high modulus via tension spring-type crosslinking. RSC Advances, 7, 13130–13137.
[51] Moncarz PD, Krawinkler H. Theory and application of experimental model analysis in earthquake engineering. Technical Report No. 50. Stanford University; 1981.
[52] M.P. Nicoreac, B.R. Pârv, M. Petrina, “Similitude theory and applications,” Acta Technica Napocensis: Civil Engineering & Architecture, vol 53, no.1, 2010
[53] 許巧臻,樁型地震超材料的隔減振效益:單元晶格分析、設計與實驗,國立臺灣大學 土木工程學系碩士論文,2022。
[54] Braja M. Das, Khaled Sobhan. (2018). Principles of Geotechnical Engineering (9th ed.). Cengage Learning.
[55] 羅元佑,共振筒型地震超材料隔減振效益:單元晶格設計與分析,國立臺灣大學 土木工程學系碩士論文,2023。
[56] 國家地震工程研究中心,https://www.ncree.narl.org.tw/
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91414-
dc.description.abstract台灣位於板塊交會地震頻繁處,避免地震造成災害之防震工程技術顯得尤為重要,現今廣泛應用之耐震與隔減震技術以保護單一建築物為目標,遂崛起以地震超材料(Seismic metamaterial)阻擋地震波傳,保護整區建築物安全之構想,比起建築物各自進行防震設計顯得更經濟、有效率。
本研究首先進行參數分析得到低帶隙下界頻率、寬帶隙頻率範圍樁型地震超材料設計目標之材料參數,軟木材料之材料性質能符合需求,遂探討軟木應用於樁型地震超材料之可行性。比較實心與空心單元晶格對於樁型地震超材料帶隙頻率範圍之影響,得知樁型地震超材料單元晶格內設計空心,能將其帶隙下界頻率降至更低。
數值模擬驗證實心樁型地震超材料、空心樁型地震超材料在有限元素分析軟體皆能於帶隙頻率範圍內產生衰減波傳效用。以鋼箱縮尺試驗證實軟木樁型地震超材料實務應用之可行性,比較實心樁型地震超材料及空心樁型地震超材料試驗結果,得知設計空心能較實心樁型地震超材料於較低頻率產生波傳折減效果。
本研究數值分析與縮尺試驗結果,皆得證軟木應用於樁型地震超材料確實可行。
zh_TW
dc.description.abstractTaiwan is situated at the convergence of three major tectonic plates, leading to frequent occurrences of earthquakes. Hence, seismic engineering technologies that can prevent the disasters caused by earthquakes are important. Nowadays, seismic resistance, vibration control, and seismic isolation technologies are designed for individual structures. Therefore, the concept of seismic metamaterials, which are used to block seismic wave transmission and protect the entire region of structures, is more economical and efficient than individual seismic design for structures.
This study includes a parametric analysis to determine the material parameters for design objectives of pile-type seismic metamaterials, including a lower band gap frequency and a wider width of band gap. The material properties of cork fulfill the requirements for designing pile-type seismic metamaterials. Therefore, this study aims to investigate the feasibility of using cork in pile-type seismic metamaterials. The band gap frequency can be further lowered by the hollow unit cell when compared to the standard unit cell of pile-type seismic metamaterials.
This study uses finite element software to verify that both the standard unit cell and the hollow unit cell of pile-type seismic metamaterials can exhibit wave attenuation within the band gaps. This study conducted a lab-scale test in a steel box to verify if cork pile-type seismic metamaterials can reduce the acceleration response in practical applications. The test results show that the hollow unit cell of pile-type seismic metamaterials attenuates the wave response at lower frequencies compared to the standard unit cell.
The numerical analysis and test results in this study can validate the feasibility of cork application to pile-type seismic metamaterials.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-01-26T16:24:03Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-01-26T16:24:03Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 ii
誌謝 iv
中文摘要 vi
ABSTRACT viii
目次 x
圖次 xiii
表次 xviii
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 2
1.3 論文架構與研究流程 3
第二章 文獻回顧 6
2.1 超材料理論簡介 6
2.2 地震超材料簡介 7
2.3 基礎型地震超材料 8
2.4 屏障型地震超材料 12
2.5 文獻回顧的啟發 15
第三章 地震超材料之材料參數分析與幾何分析 17
3.1 基礎型地震超材料之材料參數分析 17
3.2 樁型地震超材料之材料參數分析 20
3.3 樁型地震超材料之幾何分析 33
第四章 軟木材料 38
4.1 軟木材料簡介 38
4.2 軟木材料性質 39
4.2.1 泊松比 39
4.2.2 密度 40
4.2.3 楊氏係數 40
4.2.4 聚合軟木 41
4.3 軟木材料小結 43
第五章 軟木單元晶格設計 44
5.1 實心單元晶格設計 44
5.2 空心單元晶格設計 49
5.3 符合樁型地震超材料設計目標之單元晶格 57
5.4 結合彩虹效應之樁型地震超材料單元晶格發想 68
第六章 數值模擬 73
6.1 實尺數值模型 73
6.1.1 實尺實心樁型地震超材料排數分析 73
6.1.2 實尺實心樁型地震超材料三維數值模擬 79
6.1.3 實尺空心樁型地震超材料三維數值模擬 82
6.1.4 以彩虹效應設計之實尺樁型地震超材料組合 86
6.1.5 實尺樁型地震超材料對於真實地震歷時之影響 92
6.2 縮尺試驗前數值模型 99
6.2.1 倍頻波源樁型地震超材料數值模擬 99
6.2.2 縮尺試驗數值模型之低反射邊界條件 101
6.2.3 縮尺實心樁型地震超材料三維數值模擬 104
6.2.4 縮尺空心樁型地震超材料三維數值模擬 109
第七章 縮尺試驗 114
7.1 縮尺試驗目的 114
7.2 縮尺試驗規劃與配置 114
7.3 縮尺試驗土壤環境與試體製作 120
7.3.1 砂土相對密度試驗 120
7.3.2 縮尺樁型地震超材料試體 121
7.4 試驗結果 124
7.4.1 純砂土試驗結果 124
7.4.2 縮尺實心樁型地震超材料試驗結果 127
7.4.3 縮尺空心樁型地震超材料試驗結果 129
7.5 縮尺試驗後數值模型 132
7.6 縮尺試驗與縮尺試驗後數值模擬結論 134
第八章 結論與未來建議 137
8.1 結論 137
8.2 未來建議 138
參考文獻 140
-
dc.language.isozh_TW-
dc.subject地震超材料zh_TW
dc.subject縮尺試驗zh_TW
dc.subject軟木zh_TW
dc.subject有限元素法zh_TW
dc.subject空心單元晶格zh_TW
dc.subjectlab-scale testen
dc.subjectseismic metamaterialen
dc.subjectcorken
dc.subjectfinite element analysisen
dc.subjecthollow unit cellen
dc.title軟木於樁型地震超材料應用之可行性研究zh_TW
dc.titleFeasibility studies of applying cork to pile-type seismic metamaterialsen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳東諭;陳東陽;汪向榮;林子剛zh_TW
dc.contributor.oralexamcommitteeTung-Yu Wu;Tung-Yang Chen;Shiang-Jung Wang;Tzu-Kang Linen
dc.subject.keyword地震超材料,軟木,有限元素法,空心單元晶格,縮尺試驗,zh_TW
dc.subject.keywordseismic metamaterial,cork,finite element analysis,hollow unit cell,lab-scale test,en
dc.relation.page144-
dc.identifier.doi10.6342/NTU202400029-
dc.rights.note未授權-
dc.date.accepted2024-01-09-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  未授權公開取用
9.84 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved