請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91412完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張慶瑞 | zh_TW |
| dc.contributor.advisor | Ching-Ray Chang | en |
| dc.contributor.author | 黃則鈞 | zh_TW |
| dc.contributor.author | Che-Chun Huang | en |
| dc.date.accessioned | 2024-01-26T16:23:32Z | - |
| dc.date.available | 2024-01-27 | - |
| dc.date.copyright | 2024-01-26 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2024-01-04 | - |
| dc.identifier.citation | 1. S. G. Tan, S.-H. Chen, C. S. Ho, C.-C. Huang, M. B. A. Jalil, C. R. Chang and S. Murakami, Physics Reports 882, 1-36 (2020).
2. C.-C. Huang, S. G. Tan and C.-R. Chang, (2023) New J. Phys. 25 063026. 3. C. H. L. Seng Ghee Tan, and Mansoor B. A. Jalil, Quantum Physics and Modern Applications: Problems and Solutions. (World Scientific, 2023). 4. S. G. Tan and M. B. Jalil, Introduction to the Physics of Nanoelectronics. (Elsevier, 2012). 5. W. X. G, Quantum Field Theory of Many-Body System (Oxford University Press, Oxford, 2004). 6. A. N. W. a. M. N. D, Solid State Physics. (Saunders College, Philadelphia, 1976). 7. R. Kubo, Journal of the Physical Society of Japan 12 (6), 570-586 (1957). 8. S. Datta, Quantum Transport: Atom to Transistor (Cambridge University Press, Cambridge, 2005). 9. R. A. Jishi, Feynman Diagram Techniques in Condensed Matter Physics. (Cambridge University Press, Cambridge, 2013). 10. B. K. Nikolić, L. P. Zârbo and S. Souma, Physical Review B 73 (7), 075303 (2006). 11. J.-S. Wang, J. Wang and N. Zeng, Physical Review B 74 (3), 033408 (2006). 12. Y. A. Bychkov and É. I. Rashba, JETP lett 39 (2), 78 (1984). 13. E. I. Rashba, Sov Phys Solid State 2, 1109 (1960). 14. J. M. Kikkawa and D. D. Awschalom, Physical Review Letters 80 (19), 4313-4316 (1998). 15. H. Munekata, H. Ohno, S. von Molnar, A. Segmüller, L. L. Chang and L. Esaki, Physical Review Letters 63 (17), 1849-1852 (1989). 16. H. Ohno, Science 281 (5379), 951-956 (1998). 17. Z. B. Siu, M. B. A. Jalil and S. G. Tan, Physical Review A 97 (2), 022101 (2018). 18. S. G. Tan, M. B. Jalil, C. S. Ho, Z. Siu and S. Murakami, Sci Rep 5, 18409 (2015). 19. B. W. A. Leurs, Z. Nazario, D. I. Santiago and J. Zaanen, Annals of Physics 323 (4), 907-945 (2008). 20. B. Berche and E. Medina, European Journal of Physics 34 (1), 161 (2013). 21. J. Hu, B. A. Bernevig and C. Wu, International Journal of Modern Physics B 17 (31n32), 5991-6000 (2003). 22. Y. Kato, R. C. Myers, A. C. Gossard and D. D. Awschalom, Nature 427 (6969), 50-53 (2004). 23. J.-i. Inoue, G. E. W. Bauer and L. W. Molenkamp, Physical Review B 70 (4), 041303 (2004). 24. J. Schliemann and D. Loss, Physical Review B 69 (16), 165315 (2004). 25. N. A. Sinitsyn, E. M. Hankiewicz, W. Teizer and J. Sinova, Physical Review B 70 (8), 081312 (2004). 26. D. Culcer, J. Sinova, N. A. Sinitsyn, T. Jungwirth, A. H. MacDonald and Q. Niu, Physical Review Letters 93 (4), 046602 (2004). 27. J. E. Hirsch, Physical Review Letters 83 (9), 1834-1837 (1999). 28. Y. K. Kato, R. C. Myers, A. C. Gossard and D. D. Awschalom, Physical Review Letters 93 (17), 176601 (2004). 29. S.-Q. Shen, M. Ma, X. C. Xie and F. C. Zhang, Physical Review Letters 92 (25), 256603 (2004). 30. J. Wunderlich, B. Kaestner, J. Sinova and T. Jungwirth, Physical Review Letters 94 (4), 047204 (2005). 31. Y. K. Kato, R. C. Myers, A. C. Gossard and D. D. Awschalom, Science 306 (5703), 1910-1913 (2004). 32. M. S. Shikakhwa, The European Physical Journal Plus 132 (1) (2017). 33. Q. Liu, T. Ma and S.-C. Zhang, Physical Review B 76 (23), 233409 (2007). 34. K. Kondo, New Journal of Physics 18 (1), 013002 (2015). 35. P.-Q. Jin and Y.-Q. Li, Physical Review B 74 (8), 085315 (2006). 36. K. Y. Bliokh, Europhysics Letters (EPL) 72 (1), 7-13 (2005). 37. J. Armaitis, J. Ruseckas and G. Juzeliūnas, Physical Review A 95 (3), 033635 (2017). 38. Y. Aharonov and D. Bohm, Physical Review 115 (3), 485-491 (1959). 39. S. Pancharatnam, Proceedings of the Indian Academy of Sciences - Section A 44 (5), 247-262 (1956). 40. M. V. Berry, Proceedings of the Royal Society of London Series A 392, 45-57 (1984). 41. Y. Aharonov and A. Casher, Physical Review Letters 53 (4), 319-321 (1984). 42. J. Chen, M. B. A. Jalil and S. G. Tan, Journal of Applied Physics 109 (7), 07C722 (2011). 43. N. Hatano, R. Shirasaki and H. Nakamura, Physical Review A 75 (3), 032107 (2007). 44. S.-H. Chen and C.-R. Chang, Physical Review B 77 (4), 045324 (2008). 45. E. Sjöqvist, International Journal of Quantum Chemistry 115 (19), 1311-1326 (2015). 46. E. Sjöqvist, Physical Review A 62 (2), 022109 (2000). 47. L. Hofstetter, S. Csonka, J. Nygård and C. Schönenberger, Nature 461 (7266), 960-963 (2009). 48. F. Brange, K. Prech and C. Flindt, Physical Review Letters 127 (23), 237701 (2021). 49. D. S. Saraga and D. Loss, Physical Review Letters 90 (16), 166803 (2003). 50. R. C. T. da Costa, Physical Review A 23 (4), 1982-1987 (1981). 51. S. Datta and B. Das, Applied Physics Letters 56 (7), 665-667 (1990). 52. J. Nitta, T. Akazaki, H. Takayanagi and T. Enoki, Physical Review Letters 78 (7), 1335-1338 (1997). 53. M. I. D''Yakonov and V. I. Perel'', Soviet Journal of Experimental and Theoretical Physics Letters 13, 467 (1971). 54. F. T. Vas’ko, ZhETF Pisma Redaktsiiu 30, 574 (1979). 55. H. Kurebayashi, J. Sinova, D. Fang, A. C. Irvine, T. D. Skinner, J. Wunderlich, V. Novák, R. P. Campion, B. L. Gallagher, E. K. Vehstedt, L. P. Zârbo, K. Výborný, A. J. Ferguson and T. Jungwirth, Nature Nanotechnology 9 (3), 211-217 (2014). 56. S. G. Tan, C.-C. Huang, M. Jalil, C.-R. Chang and S.-C. Cheng, arXiv preprint arXiv:1908.11028 (2019). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91412 | - |
| dc.description.abstract | 量子相位和糾纏是量子力學中兩個重要的主題,其相應領域有廣泛的研究。然而,對於這兩個主題的結合研究相對較少。在這篇論文中,我們以納米尺度系統作為模型,探索各種理論問題。首先,我們介紹了傳統的傳輸理論庫博公式和非平衡格林函數,以建立器件中的電導和力的概念。然後,我們深入討論了規範理論,這提供了一種研究力的替代方法。與經典物理不同,規範理論在量子力學中可以發展成非阿貝爾規範理論。規範理論提供了一種研究量子相位的有效方法,我們將介紹著名的概念,如貝瑞相位和阿哈羅諾夫-布姆效應(AB效應),以及阿哈羅諾夫-卡舍爾效應(AC效應)。通過用電子自旋替換AC效應中的磁圈,我們獲得了非阿貝爾AC相位。我們將糾纏自旋對輸入到量子方形環中,觀察到纏結強度對AC相位的生成和湮滅的影響。在最大糾纏的情況下,系統的動態相位完全消失,幾何相位變成離散的。相反,在部分糾纏和非糾纏的情況下,幾何相位和動態相位取決於環的波長和尺寸,從而產生離散或局部連續的值。我們已經證明了這種系統中的量子糾纏極大地簡化了對幾何相位研究的未來實驗努力。最後一個主題是關於2D器件中曲面效應。當粒子被限制在曲面或曲線上運動時,哈密頓量中的動能項將有一個額外位能修正項。此外,自旋-軌道耦合項將具有與曲面相關的規範,這將影響自旋-軌道轉矩並產生許多未來的研究機會。 | zh_TW |
| dc.description.abstract | Quantum phase and entanglement are both important topics in quantum mechanics, with extensive research in their respective fields. However, there is relatively little discussion on their combined study. In this thesis, we use nanoscale systems as our model to explore various theoretical topics. We first introduce the classical transportation theory Kubo formula and non-equilibrium Green's function to establish the concept of conductivity and force in the device. We then delve into the discussion of gauge theory, which provides an alternative approach to studying force. Unlike classical physics, gauge theory can be advanced into non-Abelian gauge theory in quantum mechanics. Gauge theory offers an effective method for studying quantum phase, and we will introduce well-known concepts such as Berry''s phase and the Aharonov-Bohm (AB) effect, as well as the Aharonov-Casher (AC) effect. By replacing the magnetic coil in the AC effect with electron spin, we obtain the non-Abelian AC phase. We design the input of entangled spin pairs into a quantum square ring and observe that the strength of entanglement affects the generation and annihilation of the AC phase. In the case of maximal entanglement, the system's dynamic phase is completely eliminated, and the geometric phase becomes discrete. In contrast, in the cases of partial entanglement and non-entanglement, the geometric and dynamic phases depend on the wavelength and size of the ring, resulting in either discrete or locally continuous values. We have demonstrated that quantum entanglement in this system significantly facilitates future experimental endeavors in investigating geometric phases. The last topic is about the effects of curved surfaces in 2D devices. When particles are confined to move on curved surfaces or paths, the kinetic energy term in the Hamiltonian will have an additional potential correction term. Additionally, the spin-orbit coupling term will have a curved-related gauge, which will affect the spin-orbit torque and give rise to many future research opportunities. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-01-26T16:23:31Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-01-26T16:23:32Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 中文摘要 iii Abstract iv List of Publication viii List of Figures ix List of Tables xi Chapter 1 Introduction 1 1.1 Mesoscopic Systems 1 1.2 Linear Response -- Kubo Formula 3 1.3 Non-Equilibrium Green’s Function (NEGF) 5 1.4 Spintronics 10 Chapter 2 Non-Abelian Physics in Nanoscale Devices 15 2.1 Introduction 15 2.2 Non-Abelian Physics 16 2.3 spin-orbit gauge potential 21 Chapter 3 Quantum Phase and Force 25 3.1 Introduction 25 3.2 Berry-Pancharatnam 26 3.3 The Aharonov-Bohm effect 31 3.4 The Aharonov Casher Effect 33 Chapter 4 Quantum Phase of the Product States 38 4.1 Introduction 38 4.2 Quantum phase under evolution 39 4.3 Bipartite product states 42 Chapter 5 Quantum Phase of the Bell States 45 5.1 Bipartite entangled states 45 5.2 Dynamic phase patterns 46 5.3 Geometric phase analysis 53 5.4 Mixed states 60 Chapter 6 Curved Space Gauge 63 6.1 Kinetic energy correction term 64 6.2 Curved spin-orbit gauge 69 Chapter 7 Conclusion 75 Appendix A 79 Reference 85 | - |
| dc.language.iso | en | - |
| dc.subject | 規範理論 | zh_TW |
| dc.subject | 自旋電子學 | zh_TW |
| dc.subject | 曲空間 | zh_TW |
| dc.subject | 量子糾纏 | zh_TW |
| dc.subject | 自旋軌道耦合 | zh_TW |
| dc.subject | 量子相位 | zh_TW |
| dc.subject | curved space | en |
| dc.subject | spintronics | en |
| dc.subject | quantum entanglement | en |
| dc.subject | spin-orbit coupling | en |
| dc.subject | gauge theory | en |
| dc.subject | quantum phase | en |
| dc.title | 非阿貝爾介觀系統中的量子相位與糾纏 | zh_TW |
| dc.title | Quantum Phase and Entanglement in Non-Abelian Mesoscopic Systems | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 陳繩義;賀培銘;胡崇德;程思誠;王律堯 | zh_TW |
| dc.contributor.oralexamcommittee | Seng Ghee Tan;Pei-Ming Ho;Chong Der Hu;Szu-Cheng Cheng;Lu-Yao Wang | en |
| dc.subject.keyword | 量子相位,規範理論,自旋軌道耦合,量子糾纏,曲空間,自旋電子學, | zh_TW |
| dc.subject.keyword | quantum phase,gauge theory,spin-orbit coupling,quantum entanglement,curved space,spintronics, | en |
| dc.relation.page | 87 | - |
| dc.identifier.doi | 10.6342/NTU202304586 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-01-05 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 1.96 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
