請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91407完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | Paravee Vas-Umnuay | zh_TW |
| dc.contributor.advisor | Paravee Vas-Umnuay | en |
| dc.contributor.author | 幸雪晴 | zh_TW |
| dc.contributor.author | Nutzeya Plainoen | en |
| dc.date.accessioned | 2024-01-26T16:22:11Z | - |
| dc.date.available | 2024-01-27 | - |
| dc.date.copyright | 2024-01-26 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2024-01-10 | - |
| dc.identifier.citation | [1] "UN’s Sustainable Development Goals (SDGs) have impact on textile wastewater pollution research." https://www.newswise.com/articles/un-s-sustainable-development-goals-sdgs-have-impact-on-textile-wastewater-pollution-research (accessed April 1, 2023).
[2] S. M. Anisuzzaman, C. G. Joseph, C. K. Pang, N. A. Affandi, S. N. Maruja, and V. Vijayan, "Current Trends in the Utilization of Photolysis and Photocatalysis Treatment Processes for the Remediation of Dye Wastewater: A Short Review," ChemEngineering, vol. 6, no. 4, p. 58, 2022. [Online]. Available: https://www.mdpi.com/2305-7084/6/4/58. [3] Q. Liu, "Pollution and Treatment of Dye Waste-Water," IOP Conference Series: Earth and Environmental Science, vol. 514, no. 5, p. 052001, 2020/05/01 2020, doi: 10.1088/1755-1315/514/5/052001. [4] S. M. A.-A. Zumahi et al., "Extraction, optical properties, and aging studies of natural pigments of various flower plants," Heliyon, vol. 6, 10/02 2020, doi: 10.1016/j.heliyon.2020.e05104. [5] "Solar Radiation & Photosynthetically Active Radiation." https://www.fondriest.com/environmental-measurements/parameters/weather/photosynthetically-active-radiation/ (accessed April 1, 2023). [6] J. Cai et al., "Ion Migration in the All-Inorganic Perovskite CsPbBr3 and Its Impacts on Photodetection," The Journal of Physical Chemistry C, vol. 126, no. 23, pp. 10007-10013, 2022/06/16 2022, doi: 10.1021/acs.jpcc.2c03175. [7] D. Yang, M. Cao, Q. Zhong, P. Li, X. Zhang, and Q. Zhang, "All-inorganic cesium lead halide perovskite nanocrystals: synthesis, surface engineering and applications," Journal of Materials Chemistry C, 10.1039/C8TC04381G vol. 7, no. 4, pp. 757-789, 2019, doi: 10.1039/C8TC04381G. [8] A. Verma, A. P. Toor, N. T. Prakash, P. Bansal, and V. K. Sangal, "Stability and durability studies of TiO2 coated immobilized system for the degradation of imidacloprid," New Journal of Chemistry, 10.1039/C7NJ00945C vol. 41, no. 14, pp. 6296-6304, 2017, doi: 10.1039/C7NJ00945C. [9] R. Ameta, M. S. Solanki, S. Benjamin, and S. C. Ameta, "Chapter 6 - Photocatalysis," in Advanced Oxidation Processes for Waste Water Treatment, S. C. Ameta and R. Ameta Eds.: Academic Press, 2018, pp. 135-175. [10] P. Kokkinos, D. Venieri, and D. Mantzavinos, "Advanced Oxidation Processes for Water and Wastewater Viral Disinfection. A Systematic Review," Food and Environmental Virology, vol. 13, no. 3, pp. 283-302, 2021/09/01 2021, doi: 10.1007/s12560-021-09481-1. [11] A. Ajmal, I. Majeed, R. N. Malik, H. Idriss, and M. A. Nadeem, "Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview," RSC Advances, 10.1039/C4RA06658H vol. 4, no. 70, pp. 37003-37026, 2014, doi: 10.1039/C4RA06658H. [12] D. Zhu and Q. Zhou, "Action and mechanism of semiconductor photocatalysis on degradation of organic pollutants in water treatment: A review," Environmental Nanotechnology, Monitoring & Management, vol. 12, p. 100255, 2019/12/01/ 2019, doi: https://doi.org/10.1016/j.enmm.2019.100255. [13] A. R. Khataee and M. Fathinia, "Chapter 11 - Recent Advances in Photocatalytic Processes by Nanomaterials," in New and Future Developments in Catalysis, S. L. Suib Ed. Amsterdam: Elsevier, 2013, pp. 267-288. [14] J. Jiménez Reinosa, P. Leret, C. M. Álvarez-Docio, A. del Campo, and J. F. Fernández, "Enhancement of UV absorption behavior in ZnO–TiO2 composites," Boletín de la Sociedad Española de Cerámica y Vidrio, vol. 55, no. 2, pp. 55-62, 2016/03/01/ 2016, doi: https://doi.org/10.1016/j.bsecv.2016.01.004. [15] "Solar Radiation." https://www.kippzonen.com/Knowledge-Center/Theoretical-info/Solar-Radiation (accessed March 18, 2023). [16] A. Taş, N. Cakmak, and Y. Silig, "Cytotoxicity Studies of TiO 2 /ZnO Nanocomposites on Cervical Cancer Cells," vol. 4, pp. 17-24, 12/21 2018. [17] S. Mali, J. Patil, and C. Hong, "Simultaneous Improved Performance and Thermal Stability of Planar Metal Ion Incorporated CsPbI 2 Br All‐Inorganic Perovskite Solar Cells Based on MgZnO Nanocrystalline Electron Transporting Layer," Advanced Energy Materials, vol. 10, p. 1902708, 12/02 2019, doi: 10.1002/aenm.201902708. [18] K. Tang, Y. Peng, and F. Yan, "Highly Stable All-Inorganic Perovskite Solar Cells Processed at Low Temperature," Solar RRL, vol. 2, p. 1800075, 05/11 2018, doi: 10.1002/solr.201800075. [19] G. Nedelcu, L. Protesescu, S. Yakunin, M. I. Bodnarchuk, M. J. Grotevent, and M. V. Kovalenko, "Fast Anion-Exchange in Highly Luminescent Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I)," Nano Letters, vol. 15, no. 8, pp. 5635-5640, 2015/08/12 2015, doi: 10.1021/acs.nanolett.5b02404. [20] T. G. Liashenko et al., "Electronic structure of CsPbBr3−xClx perovskites: synthesis, experimental characterization, and DFT simulations," Physical Chemistry Chemical Physics, 10.1039/C9CP03656C vol. 21, no. 35, pp. 18930-18938, 2019, doi: 10.1039/C9CP03656C. [21] X. Zhang et al., "All-Ambient Processed Binary CsPbBr3–CsPb2Br5 Perovskites with Synergistic Enhancement for High-Efficiency Cs–Pb–Br-Based Solar Cells," ACS Applied Materials & Interfaces, vol. 10, no. 8, pp. 7145-7154, 2018/02/28 2018, doi: 10.1021/acsami.7b18902. [22] M. Hussain, M. Rashid, F. Saeed, and A. Bhatti, "Spin–orbit coupling effect on energy level splitting and band structure inversion in CsPbBr3," Journal of Materials Science, vol. 56, pp. 1-15, 01/01 2021, doi: 10.1007/s10853-020-05298-8. [23] X. Lu, Y. Hu, J. Guo, C.-F. Wang, and S. Chen, "Fiber‐Spinning‐Chemistry Method toward In Situ Generation of Highly Stable Halide Perovskite Nanocrystals," Advanced Science, vol. 6, 11/20 2019, doi: 10.1002/advs.201901694. [24] M. He et al., "CsPbBr3–Cs4PbBr6 composite nanocrystals for highly efficient pure green light emission," Nanoscale, 10.1039/C9NR07096F vol. 11, no. 47, pp. 22899-22906, 2019, doi: 10.1039/C9NR07096F. [25] X. Chen et al., "Centimeter-Sized Cs4PbBr6 Crystals with Embedded CsPbBr3 Nanocrystals Showing Superior Photoluminescence: Nonstoichiometry Induced Transformation and Light-Emitting Applications," Advanced Functional Materials, vol. 28, no. 16, p. 1706567, 2018, doi: https://doi.org/10.1002/adfm.201706567. [26] Q. A. Akkerman et al., "Nearly Monodisperse Insulator Cs4PbX6 (X = Cl, Br, I) Nanocrystals, Their Mixed Halide Compositions, and Their Transformation into CsPbX3 Nanocrystals," Nano Letters, vol. 17, no. 3, pp. 1924-1930, 2017/03/08 2017, doi: 10.1021/acs.nanolett.6b05262. [27] W. Zhai et al., "Solvothermal synthesis of cesium lead halide perovskite nanowires with ultra-high aspect ratios for high-performance photodetectors," Nanoscale, 10.1039/C8NR05683H vol. 10, no. 45, pp. 21451-21458, 2018, doi: 10.1039/C8NR05683H. [28] F. Palazon et al., "Postsynthesis Transformation of Insulating Cs(4)PbBr(6) Nanocrystals into Bright Perovskite CsPbBr(3) through Physical and Chemical Extraction of CsBr," (in eng), ACS Energy Lett, vol. 2, no. 10, pp. 2445-2448, Oct 13 2017, doi: 10.1021/acsenergylett.7b00842. [29] Z. Li, L. Kong, S. Huang, and L. Li, "Highly Luminescent and Ultrastable CsPbBr3 Perovskite Quantum Dots Incorporated into a Silica/Alumina Monolith," Angewandte Chemie International Edition, vol. 56, no. 28, pp. 8134-8138, 2017, doi: https://doi.org/10.1002/anie.201703264. [30] L. Bergamini, N. Sangiorgi, A. Gondolini, and A. Sanson, "CsPbBr3 for photoelectrochemical cells," Solar Energy, vol. 212, pp. 62-72, 2020/12/01/ 2020, doi: https://doi.org/10.1016/j.solener.2020.10.047. [31] J. Cui et al., "Facile, low-cost, and large-scale synthesis of CsPbBr3 nanorods at room-temperature with 86 % photoluminescence quantum yield," Materials Research Bulletin, vol. 124, p. 110731, 2020/04/01/ 2020, doi: https://doi.org/10.1016/j.materresbull.2019.110731. [32] Z. Zhang and G. Yang, "Recent advancements in using perovskite single crystals for gamma-ray detection," Journal of Materials Science Materials in Electronics, 05/01 2021, doi: 10.1007/s10854-020-03519-z. [33] S. Schünemann, M. van Gastel, and H. Tüysüz, "A CsPbBr(3) /TiO(2) Composite for Visible-Light-Driven Photocatalytic Benzyl Alcohol Oxidation," (in eng), ChemSusChem, vol. 11, no. 13, pp. 2057-2061, Jul 11 2018, doi: 10.1002/cssc.201800679. [34] S. V. Deshpande et al., "Rapid detoxification of polluted water using ultrastable TiO2 encapsulated CsPbBr3 QDs in collected sunlight," Materials Research Bulletin, vol. 142, p. 111433, 2021/10/01/ 2021, doi: https://doi.org/10.1016/j.materresbull.2021.111433. [35] M. Imran et al., "Benzoyl Halides as Alternative Precursors for the Colloidal Synthesis of Lead-Based Halide Perovskite Nanocrystals," Journal of the American Chemical Society, vol. 140, no. 7, pp. 2656-2664, 2018/02/21 2018, doi: 10.1021/jacs.7b13477. [36] G. Gao et al., "Novel inorganic perovskite quantum dots for photocatalysis," Nanoscale, 10.1039/C7NR04421F vol. 9, no. 33, pp. 12032-12038, 2017, doi: 10.1039/C7NR04421F. [37] H. Yu et al., "Green Light-Emitting Devices Based on Perovskite CsPbBr3 Quantum Dots," Frontiers in Chemistry, vol. 6, 08/28 2018, doi: 10.3389/fchem.2018.00381. [38] H.-C. Wang et al., "Mesoporous Silica Particles Integrated with All-Inorganic CsPbBr3 Perovskite Quantum-Dot Nanocomposites (MP-PQDs) with High Stability and Wide Color Gamut Used for Backlight Display," Angewandte Chemie International Edition, vol. 55, no. 28, pp. 7924-7929, 2016, doi: https://doi.org/10.1002/anie.201603698. [39] H. Kim et al., "Enhanced Optical Properties and Stability of CsPbBr3 Nanocrystals Through Nickel Doping," Advanced Functional Materials, vol. 31, no. 28, p. 2102770, 2021, doi: https://doi.org/10.1002/adfm.202102770. [40] C. Meng, D. Yang, Y. Wu, X. Zhang, H. Zeng, and X. Li, "Synthesis of single CsPbBr3@SiO2 core–shell particles via surface activation," Journal of Materials Chemistry C, 10.1039/D0TC03932B vol. 8, no. 48, pp. 17403-17409, 2020, doi: 10.1039/D0TC03932B. [41] D. Takhellambam, T. R. Meena, and D. Jana, "Room temperature synthesis of blue and green emitting CsPbBr3 perovskite nanocrystals confined in mesoporous alumina film," Chemical Communications, 10.1039/C9CC01040H vol. 55, no. 33, pp. 4785-4788, 2019, doi: 10.1039/C9CC01040H. [42] J. Wang, M. Li, W. Shen, W. Su, and R. He, "Ultrastable Carbon Quantum Dots-Doped MAPbBr3 Perovskite with Silica Encapsulation," ACS Applied Materials & Interfaces, vol. 11, no. 37, pp. 34348-34354, 2019/09/18 2019, doi: 10.1021/acsami.9b12058. [43] J. Shen, Y. Wang, Y. Zhu, Y. Gong, and C. Li, "A polymer-coated template-confinement CsPbBr3 perovskite quantum dot composite," Nanoscale, 10.1039/D1NR00201E vol. 13, no. 13, pp. 6586-6591, 2021, doi: 10.1039/D1NR00201E. [44] W. Zhu, Z. Xia, B. Shi, and C. Lü, "Water-triggered conversion of Cs4PbBr6@TiO2 into Cs4PbBr6/CsPbBr3@TiO2 three-phase heterojunction for enhanced visible-light-driven photocatalytic degradation of organic pollutants," Materials Today Chemistry, vol. 24, p. 100880, 2022/06/01/ 2022, doi: https://doi.org/10.1016/j.mtchem.2022.100880. [45] O. A. Arotiba, B. O. Orimolade, and B. A. Koiki, "Visible light–driven photoelectrocatalytic semiconductor heterojunction anodes for water treatment applications," Current Opinion in Electrochemistry, vol. 22, pp. 25-34, 2020/08/01/ 2020, doi: https://doi.org/10.1016/j.coelec.2020.03.018. [46] P. Verma, S. K. Samanta, and S. Mishra, "Photon-independent NaOH/H2O2‒based degradation of Rhodamine-B dye in aqueous medium: Kinetics, and impacts of various inorganic salts, antioxidants, and urea," Journal of Environmental Chemical Engineering, vol. 8, no. 4, p. 103851, 2020/08/01/ 2020, doi: https://doi.org/10.1016/j.jece.2020.103851. [47] B. Ohtani, "Chapter 10 - Photocatalysis by inorganic solid materials: Revisiting its definition, concepts, and experimental procedures," in Advances in Inorganic Chemistry, vol. 63, R. v. Eldik and G. Stochel Eds.: Academic Press, 2011, pp. 395-430. [48] C. Zhou, Z. Liu, L. Fang, Y. Guo, Y. Feng, and M. Yang, "Kinetic and Mechanistic Study of Rhodamine B Degradation by H2O2 and Cu/Al2O3/g-C3N4 Composite," Catalysts, vol. 10, no. 3, p. 317, 2020. [Online]. Available: https://www.mdpi.com/2073-4344/10/3/317. [49] "Principle of UV-Visible Spectroscopy - Detailed Explanation." https://byjus.com/chemistry/principle-of-uv-visible-spectroscopy/ (accessed April 1, 2023). [50] "What is Photoluminescence spectroscopy?" https://www.horiba.com/ind/scientific/technologies/photoluminescence-pl/photoluminescence-pl-electroluminescence-el/ (accessed April 1, 2023). [51] J.-G. Yu, H.-G. Yu, B. Cheng, X.-J. Zhao, J. C. Yu, and W.-K. Ho, "The Effect of Calcination Temperature on the Surface Microstructure and Photocatalytic Activity of TiO2 Thin Films Prepared by Liquid Phase Deposition," The Journal of Physical Chemistry B, vol. 107, no. 50, pp. 13871-13879, 2003/12/01 2003, doi: 10.1021/jp036158y. [52] L. Jing, F. Yuan, H. Hou, B. Xin, W. Cai, and H. Fu, "Relationships of surface oxygen vacancies with photoluminescence and photocatalytic performance of ZnO nanoparticles," Science in China Series B: Chemistry, vol. 48, no. 1, pp. 25-30, 2005/01/01 2005, doi: 10.1007/BF02990909. [53] "X-ray Powder Diffraction (XRD)." https://serc.carleton.edu/research_education/geochemsheets/techniques/XRD.html (accessed April 1, 2023). [54] M. Kannan, "Scanning Electron Microscopy: Principle, Components and Applications," 2018, pp. 81-92. [55] C. B. C. David B. Williams "Transmission Electron Microscopy," 2009, pp. 3-22. [56] C. Berthomieu and R. Hienerwadel, "Fourier transform infrared (FTIR) spectroscopy," Photosynthesis research, vol. 101, pp. 157-70, 07/01 2009, doi: 10.1007/s11120-009-9439-x. [57] S. d. Silva, C. Braga, M. Fook, C. Raposo, L. Carvalho, and E. Canedo, "Application of Infrared Spectroscopy to Analysis of Chitosan/Clay Nanocomposites," 2012, p. (22 pp). [58] S. Daniel, "Chapter 4 - Characterization of carbon dots," in Carbon Dots in Analytical Chemistry, S. K. Kailasa and C. M. Hussain Eds.: Elsevier, 2023, pp. 43-58. [59] A. Fahlman, C. Nordling, and K. Siegbahn, ESCA : atomic, molecular and solid state structure studied by means of electron spectroscopy. Uppsala : Almqvist and Wiksell (in eng), 1967. [60] "BET Theory." https://wiki.anton-paar.com/en/bet-theory/ (accessed March 18, 2023). [61] M. Wang, Q. Yu, T. Yu, S. Zhang, M. Gong, and Y. Liu, "Manipulating the formation of cesium lead bromide nanocrystals via oleic acid," RSC Advances, 10.1039/D2RA06491J vol. 13, no. 8, pp. 5158-5167, 2023, doi: 10.1039/D2RA06491J. [62] J. H. Heo, J. K. Park, and S. H. Im, "Full-Color Spectrum Coverage by High-Color-Purity Perovskite Nanocrystal Light-Emitting Diodes," Cell Reports Physical Science, vol. 1, no. 9, p. 100177, 2020/09/23/ 2020, doi: https://doi.org/10.1016/j.xcrp.2020.100177. [63] L. Yang et al., "A P25/(NH4)xWO3 hybrid photocatalyst with broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation," Scientific Reports, vol. 8, p. 45715, 04/01 2017, doi: 10.1038/srep45715. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91407 | - |
| dc.description.abstract | 溴化銫鉛鈣鈦礦(CsPbBr3)具有出色的光電性能,因此在太陽能電池、光電探測器、發光二極管和水分解等領域中被廣泛應用。此外,CsPbBr3作為光催化劑,在陽光下降解有機化合物方面展現出巨大潛力。在CsPbBr3的合成過程中,還會生成Cs4PbBr6(CsPbBr3的另一種形式),它具有理想的性能:如強而窄的光致發光(PL)和增強的熱穩定性。本研究使用簡單的沉澱方法成功地合成了CsPbBr3/Cs4PbBr6奈米粒子的混合物,並研究了真空下的反應和乾燥溫度對其影響。然而在高溫、高濕度和高氧氣含量會造成CsPbBr3/Cs4PbBr6材料不穩定,並連帶影響其光催化降解性能。為了提高穩定性和活性,我們採用了一種稱為一步水觸發轉化法的高效技術。該創新方法使用二氧化鈦(TiO2)保護層封裝CsPbBr3/Cs4PbBr6奈米粒子,從而形成鈣鈦礦與金屬氧化物的複合材料。這種複合材料能有效促進電荷轉移和分離,對於成功的光催化過程發揮至關重要的作用。
為了獲得最佳結果,我們改變了反應溫度(95、110、125和140°C)、乾燥條件(80°C 2小時、80°C過夜、室溫過夜)以及CsPbBr3/Cs4PbBr6與鈦酸四丁酯的質量比(1:1、1:2、1:3和1:4)。結果顯示,在95°C的反應溫度和80°C的乾燥條件下,使用TiO2封裝的CsPbBr3/Cs4PbBr6的穩定性顯著增強。此外,當CsPbBr3/Cs4PbBr6與鈦酸四丁酯的質量比為1:3時,材料展現出最大表面積222 m2/g,伴有最高的吸收和降解活性,同時動力學速率常數k = 0.1053 min-1,並在30分鐘內完全光催化降解羅丹明B。 | zh_TW |
| dc.description.abstract | Due to the excellent optoelectronic performance of cesium lead bromide perovskite (CsPbBr3), it has found wide-ranging applications in solar cells, photodetectors, light-emitting diodes, and water splitting. Additionally, CsPbBr3 has shown promising potential as a photocatalyst for the degradation of organic compounds under sunlight. During the synthesis of CsPbBr3, Cs4PbBr6, another formation of CsPbBr3, is also produced, which exhibits desirable properties such as strong and narrow photoluminescence (PL) and enhanced thermal stability. In this study, we successfully synthesized a mixture of CsPbBr3/Cs4PbBr6 nanoparticles using a simple precipitation method and investigated the influence of reaction and drying temperatures under vacuum. However, the stability of CsPbBr3/Cs4PbBr6 was found to be sensitive to high temperatures, moisture, and oxygen, which could affect its photocatalytic degradation performance. To enhance both stability and activity, we employed a highly effective technique called the one-step water-triggered transformation method. This innovative approach involved encapsulating CsPbBr3/Cs4PbBr6 nanoparticles with a protective layer of titanium dioxide (TiO2), creating a perovskite/metal-oxide composite. This composite plays a crucial role in facilitating efficient charge transfer and separation, which are essential for successful photocatalytic processes. To achieve optimal results, we varied the reaction temperatures (95, 110, 125, and 140°C), drying conditions (80°C for 2 h, 80°C overnight, and at room temperature overnight), and mass ratio between CsPbBr3/ Cs4PbBr6 to tetrabutyl titanate (1:1, 1:2, 1:3, and 1:4). The results demonstrated that the stability of TiO2-encapsulated CsPbBr3/ Cs4PbBr6 could be significantly enhanced by undergoing a reaction temperature of 95 °C and drying condition at 80 °C for 2 h. Moreover, when the mass ratio between CsPbBr3/Cs4PbBr6 was set at 1:3, the material exhibited a maximum surface area of 222 m2/g, resulting in the highest absorption and degradation activity. The kinetic rate constant was determined to be k = 0.1053 min-1, enabling complete photocatalytic degradation of Rhodamine B within 30 min. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-01-26T16:22:11Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-01-26T16:22:11Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgement i
Abstract ii 摘要 iv Content v List of Table vi List of Figures viii Chapter 1 Introduction 1 1.1 Background 1 1.2 Research objectives 3 1.3 Research scope 3 Chapter 2 Literature review 5 2.1 Advance Oxidation Process 5 2.2 Sun spectrum 10 2.3 CsPbBr3 11 2.4 CsPbBr3 /Cs4PbBr6 Synthesis 13 2.5 Increasing the stability of CsPbBr3 /Cs4PbBr6 16 2.6 Heterojunctions 17 2.7 Kinetic data 19 Chapter 3 Methodology 21 3.1 Preparation of CsPbBr3 nanoparticles 21 3.2 Preparation of CsPbBr3 nanoparticles encapsulate by TiO2 22 3.3 Photocatalyst test 23 3.4 Photocatalyst characterizations 23 Chapter 4 Results and Discussion 29 4.1 The effect of temperature 29 4.2 The effect of ratio between CsPbBr3/Cs4PbBr6 to TBOT 35 4.3 Degradation of Rhodamine B 44 Chapter 5 Conclusion and Future work 50 5.1 Conclusion 50 5.2 Future work 51 Reference 53 Appendix A Raw data 63 A.1 The degradation activity of Rhodamine B of pure CsPbBr3/Cs4PbBr6 63 A.2 The degradation activity of Rhodamine B of CsPbBr3/Cs4PbBr6 and TiO2 63 A.3 The degradation activity of Rhodamine B of P25 68 Appendix B Characteristics of catalysts 69 VITA 72 | - |
| dc.language.iso | en | - |
| dc.subject | CsPbBr3 | zh_TW |
| dc.subject | TiO2 | zh_TW |
| dc.subject | 穩定性 | zh_TW |
| dc.subject | 光觸媒 | zh_TW |
| dc.subject | 光催化降解 | zh_TW |
| dc.subject | Stability | en |
| dc.subject | Photocatalyst | en |
| dc.subject | CsPbBr3 | en |
| dc.subject | TiO2 | en |
| dc.subject | Photocatalytic Degradation | en |
| dc.title | 二氧化鈦包覆的CsPbBr3/Cs4PbBr6對Rhodamine B光催化降解之活性與穩定性研究 | zh_TW |
| dc.title | Activity and Stability of TiO2-Encapsulated CsPbBr3/Cs4PbBr6 for Photocatalytic Degradation of Rhodamine B | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 吳紀聖 | zh_TW |
| dc.contributor.coadvisor | Chi-Sheng Wu | en |
| dc.contributor.oralexamcommittee | Kasidit Nootong ;Akawat Sirisuk;Tanyakorn Muangnapoh | zh_TW |
| dc.contributor.oralexamcommittee | Kasidit Nootong ;Akawat Sirisuk;Tanyakorn Muangnapoh | en |
| dc.subject.keyword | 光觸媒,光催化降解,CsPbBr3,TiO2,穩定性, | zh_TW |
| dc.subject.keyword | Photocatalyst,CsPbBr3,TiO2,Photocatalytic Degradation,Stability, | en |
| dc.relation.page | 72 | - |
| dc.identifier.doi | 10.6342/NTU202400057 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-01-11 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
