請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91404完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 毛明華 | zh_TW |
| dc.contributor.advisor | Ming-Hua Mao | en |
| dc.contributor.author | 黃胤嘉 | zh_TW |
| dc.contributor.author | Yin-Jia Huang | en |
| dc.date.accessioned | 2024-01-26T16:21:24Z | - |
| dc.date.available | 2024-01-27 | - |
| dc.date.copyright | 2024-01-26 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2024-01-10 | - |
| dc.identifier.citation | [1] Y. Yu, W. Zeng, M. Xu, and X. Peng, "Hydrothermal synthesis of WO3· H2O with different nanostructures from 0D to 3D and their gas sensing properties," Physica E: Low-dimensional Systems and Nanostructures, vol. 79, pp. 127-132, 2016.
[2] A. Mirzaei, S. Leonardi, and G. Neri, "Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review," Ceramics international, vol. 42, no. 14, pp. 15119-15141, 2016. [3] S.-J. Chang et al., "Nitride-based LEDs with an SPS tunneling contact layer and an ITO transparent contact," IEEE Photonics Technology Letters, vol. 16, no. 4, pp. 1002-1004, 2004. [4] E. Monroy, F. Omnès, and F. Calle, "Wide-bandgap semiconductor ultraviolet photodetectors," Semiconductor science and technology, vol. 18, no. 4, p. R33, 2003. [5] D. P. Bour et al., "Characteristics of InGaN-AlGaN multiple-quantum-well laser diodes," IEEE Journal of selected topics in quantum electronics, vol. 4, no. 3, pp. 498-504, 1998. [6] Ü. Özgür et al., "A comprehensive review of ZnO materials and devices," Journal of applied physics, vol. 98, no. 4, 2005. [7] R. Triboulet and J. Perriere, "Epitaxial growth of ZnO films," Progress in Crystal Growth and Characterization of Materials, vol. 47, no. 2-3, pp. 65-138, 2003. [8] R. Janisch, P. Gopal, and N. A. Spaldin, "Transition metal-doped TiO2 and ZnO—present status of the field," Journal of Physics: Condensed Matter, vol. 17, no. 27, p. R657, 2005. [9] J. Y. Lao, J. G. Wen, and Z. F. Ren, "Hierarchical ZnO nanostructures," Nano letters, vol. 2, no. 11, pp. 1287-1291, 2002. [10] Z. L. Wang et al., "Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces," Advanced Functional Materials, vol. 14, no. 10, pp. 943-956, 2004. [11] X. Y. Kong and Z. L. Wang, "Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts," Nano letters, vol. 3, no. 12, pp. 1625-1631, 2003. [12] B. Yao, Y. Chan, and N. Wang, "Formation of ZnO nanostructures by a simple way of thermal evaporation," Applied physics letters, vol. 81, no. 4, pp. 757-759, 2002. [13] H.-q. Yan, R.-r. He, J. Pham, and P. Yang, "Morphogenesis of One‐Dimensional ZnO Nano‐and Microcrystals," Advanced Materials, vol. 15, no. 5, pp. 402-405, 2003. [14] M. H. Huang et al., "Room-temperature ultraviolet nanowire nanolasers," science, vol. 292, no. 5523, pp. 1897-1899, 2001. [15] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, "Catalytic growth of zinc oxide nanowires by vapor transport," Advanced materials, vol. 13, no. 2, pp. 113-116, 2001. [16] Y. Xing et al., "Nanotubular structures of zinc oxide," Solid state communications, vol. 129, no. 10, pp. 671-675, 2004. [17] M. Vaseem, A. Umar, and Y.-B. Hahn, "ZnO nanoparticles: growth, properties, and applications," Metal oxide nanostructures and their applications, vol. 5, no. 1, pp. 10-20, 2010. [18] J. Mouly. Gas and Particle Sensors - Technology and Market Trends 2021 [Online] Available: https://s3.i-micronews.com/uploads/2021/07/YINTR21178-Gas-and-Particle-Sensors-Technology-and-Market-Trends-2021-Flyer-Yole.pdf [19] K. Ihokura and J. Watson, The stannic oxide gas sensorprinciples and applications. CRC press, 2017. [20] F.E.Inc. [Online] Available: https://www.figaro.co.jp/en/technicalinfo/principle/catalytic-type.html [21] P. T. Moseley, "Solid state gas sensors," Measurement Science and technology, vol. 8, no. 3, p. 223, 1997. [22] Y. Sadaoka, "The NO_2 detecting ability of the phthalocyanine gas sensor," Denki Kagaku, vol. 48, pp. 486-490, 1980. [23] L. Yu et al., "Both oxygen vacancies defects and porosity facilitated NO2 gas sensing response in 2D ZnO nanowalls at room temperature," Journal of Alloys and Compounds, vol. 682, pp. 352-356, 2016. [24] J. R. Stetter, "A surface chemical view of gas detection," Journal of Colloid and Interface Science, vol. 65, no. 3, pp. 432-443, 1978. [25] M. SCHULZ, E. BOHN, and G. HEILAND, "Messung von Fremdgasen in der Luft mit Halbleitersensoren/Measurement of extraneous gases in air by means of semiconducting sensors," tm-Technisches Messen, vol. 514, no. JG, pp. 405-414, 1979. [26] T. Seiyama, A. Kato, K. Fujiishi, and M. Nagatani, "A new detector for gaseous components using semiconductive thin films," Analytical Chemistry, vol. 34, no. 11, pp. 1502-1503, 1962. [27] C. Liu et al., "Acetone gas sensor based on NiO/ZnO hollow spheres: Fast response and recovery, and low (ppb) detection limit," Journal of colloid and interface science, vol. 495, pp. 207-215, 2017. [28] Z. Jing and J. Zhan, "Fabrication and gas‐sensing properties of porous ZnO nanoplates," Advanced Materials, vol. 20, no. 23, pp. 4547-4551, 2008. [29] R. K. Sonker, S. Sabhajeet, S. Singh, and B. Yadav, "Synthesis of ZnO nanopetals and its application as NO2 gas sensor," Materials Letters, vol. 152, pp. 189-191, 2015. [30] O. Gonzalez, S. Roso, R. Calavia, X. Vilanova, and E. Llobet, "NO2 sensing properties of thermally or UV activated In2O3 nano-octahedra," Procedia engineering, vol. 120, pp. 773-776, 2015. [31] Y. J. Choi, Z. Seeley, A. Bandyopadhyay, S. Bose, and S. A. Akbar, "Aluminum-doped TiO2 nano-powders for gas sensors," Sensors and Actuators B: Chemical, vol. 124, no. 1, pp. 111-117, 2007. [32] A. Teleki, S. E. Pratsinis, K. Kalyanasundaram, and P. Gouma, "Sensing of organic vapors by flame-made TiO2 nanoparticles," Sensors and actuators B: chemical, vol. 119, no. 2, pp. 683-690, 2006. [33] Q. Wan et al., "Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors," Applied physics letters, vol. 84, no. 18, pp. 3654-3656, 2004. [34] K. S. Kim, C. H. Ahn, S. H. Jung, S. W. Cho, and H. K. Cho, "Toward adequate operation of amorphous oxide thin-film transistors for low-concentration gas detection," ACS applied materials & interfaces, vol. 10, no. 12, pp. 10185-10193, 2018. [35] P. Shankar and J. B. B. Rayappan, "Room temperature ethanol sensing properties of ZnO nanorods prepared using an electrospinning technique," Journal of Materials Chemistry C, vol. 5, no. 41, pp. 10869-10880, 2017. [36] C. Li et al., "Rapid and ultrahigh ethanol sensing based on Au-coated ZnO nanorods," Nanotechnology, vol. 19, no. 3, p. 035501, 2007. [37] E. Wongrat, N. Hongsith, D. Wongratanaphisan, A. Gardchareon, and S. Choopun, "Control of depletion layer width via amount of AuNPs for sensor response enhancement in ZnO nanostructure sensor," Sensors and Actuators B: Chemical, vol. 171, pp. 230-237, 2012. [38] X.-Y. Xue, Z.-H. Chen, L.-L. Xing, C.-H. Ma, Y.-J. Chen, and T.-H. Wang, "Enhanced optical and sensing properties of one-step synthesized Pt− ZnO nanoflowers," The Journal of Physical Chemistry C, vol. 114, no. 43, pp. 18607-18611, 2010. [39] T.-J. Hsueh, S.-J. Chang, C.-L. Hsu, Y.-R. Lin, and I. Chen, "Highly sensitive ZnO nanowire ethanol sensor with Pd adsorption," Applied Physics Letters, vol. 91, no. 5, 2007. [40] S. Park, G.-J. Sun, C. Jin, H. W. Kim, S. Lee, and C. Lee, "Synergistic effects of a combination of Cr2O3-functionalization and UV-irradiation techniques on the ethanol gas sensing performance of ZnO nanorod gas sensors," ACS applied materials & interfaces, vol. 8, no. 4, pp. 2805-2811, 2016. [41] L. Zhu and W. Zeng, "Room-temperature gas sensing of ZnO-based gas sensor: A review," Sensors and Actuators A: Physical, vol. 267, pp. 242-261, 2017. [42] A. Maijenburg et al., "Dielectrophoretic alignment of metal and metal oxide nanowires and nanotubes: A universal set of parameters for bridging prepatterned microelectrodes," Journal of colloid and interface science, vol. 355, no. 2, pp. 486-493, 2011. [43] M. V. P. dos Santos, F. Béron, K. R. Pirota, J. A. Diniz, and S. Moshkalev, "Electrical manipulation of a single nanowire by dielectrophoresis," in Nanowires-new insights: InTech Rijeka, 2017, pp. 41-58. [44] E. M. Freer, O. Grachev, X. Duan, S. Martin, and D. P. Stumbo, "High-yield self-limiting single-nanowire assembly with dielectrophoresis," Nature nanotechnology, vol. 5, no. 7, pp. 525-530, 2010. [45] F. Kayaci, S. Vempati, I. Donmez, N. Biyikli, and T. Uyar, "Role of zinc interstitials and oxygen vacancies of ZnO in photocatalysis: a bottom-up approach to control defect density," Nanoscale, vol. 6, no. 17, pp. 10224-10234, 2014. [46] P. G. Choi, T. Fuchigami, K.-i. Kakimoto, and Y. Masuda, "Effect of crystal defect on gas sensing properties of Co3O4 nanoparticles," ACS sensors, vol. 5, no. 6, pp. 1665-1673, 2020. [47] A. Zou et al., "High performance of 1-D ZnO microwire with curve-side hexagon as ethanol gas sensor," Journal of Materials Science: Materials in Electronics, vol. 26, pp. 4908-4912, 2015. [48] A. Zou et al., "Ethanol sensing with Au-modified ZnO microwires," Sensors and Actuators B: Chemical, vol. 227, pp. 65-72, 2016. [49] X. Wu, J. Lee, V. Varshney, J. L. Wohlwend, A. K. Roy, and T. Luo, "Thermal conductivity of wurtzite zinc-oxide from first-principles lattice dynamics–a comparative study with gallium nitride," Scientific reports, vol. 6, no. 1, p. 22504, 2016. [50] Y. Kim, J. G. Smith, and P. K. Jain, "Harvesting multiple electron–hole pairs generated through plasmonic excitation of Au nanoparticles," Nature chemistry, vol. 10, no. 7, pp. 763-769, 2018. [51] F. H. Alsultany, Z. Hassan, and N. M. Ahmed, "A high-sensitivity, fast-response, rapid-recovery UV photodetector fabricated based on catalyst-free growth of ZnO nanowire networks on glass substrate," Optical Materials, vol. 60, pp. 30-37, 2016. [52] S. Mishra, C. Ghanshyam, N. Ram, R. Bajpai, and R. Bedi, "Detection mechanism of metal oxide gas sensor under UV radiation," Sensors and Actuators B: Chemical, vol. 97, no. 2-3, pp. 387-390, 2004. [53] R. Khokhra, B. Bharti, H.-N. Lee, and R. Kumar, "Visible and UV photo-detection in ZnO nanostructured thin films via simple tuning of solution method," Scientific reports, vol. 7, no. 1, p. 15032, 2017. [54] X. Zhou et al., "Crystal-defect-dependent gas-sensing mechanism of the single ZnO nanowire sensors," ACS sensors, vol. 3, no. 11, pp. 2385-2393, 2018. [55] J. Chang, H. Kuo, I. Leu, and M. Hon, "The effects of thickness and operation temperature on ZnO: Al thin film CO gas sensor," Sensors and actuators B: Chemical, vol. 84, no. 2-3, pp. 258-264, 2002. [56] N. M. Kiasari, S. Soltanian, B. Gholamkhass, and P. Servati, "Room temperature ultra-sensitive resistive humidity sensor based on single zinc oxide nanowire," Sensors and Actuators A: Physical, vol. 182, pp. 101-105, 2012. [57] C.-L. Hsu, I.-L. Su, and T.-J. Hsueh, "Tunable Schottky contact humidity sensor based on S-doped ZnO nanowires on flexible PET substrate with piezotronic effect," Journal of Alloys and Compounds, vol. 705, pp. 722-733, 2017. [58] P. K. Kannan, R. Saraswathi, and J. B. B. Rayappan, "A highly sensitive humidity sensor based on DC reactive magnetron sputtered zinc oxide thin film," Sensors and Actuators A: Physical, vol. 164, no. 1-2, pp. 8-14, 2010. [59] V. Platonov, M. Rumyantseva, N. Khmelevsky, and A. Gaskov, "Electrospun ZnO/Pd nanofibers: CO sensing and humidity effect," Sensors, vol. 20, no. 24, p. 7333, 2020. [60] R. B. H. Tahar, T. Ban, Y. Ohya, and Y. Takahashi, "Humidity‐sensing characteristics of divalent‐metal‐doped indium oxide thin films," Journal of the American Ceramic Society, vol. 81, no. 2, pp. 321-327, 1998. [61] J. Fripiat, A. Jelli, G. Poncelet, and J. Andre, "Thermodynamic properties of adsorbed water molecules and electrical conduction in montmorillonites and silicas," The Journal of Physical Chemistry, vol. 69, no. 7, pp. 2185-2197, 1965. [62] B. Yadav, R. Srivastava, C. Dwivedi, and P. Pramanik, "Moisture sensor based on ZnO nanomaterial synthesized through oxalate route," Sensors and Actuators B: Chemical, vol. 131, no. 1, pp. 216-222, 2008. [63] N. Sun et al., "High sensitivity capacitive humidity sensors based on Zn 1− x Ni x O nanostructures and plausible sensing mechanism," Journal of Materials Science: Materials in Electronics, vol. 30, pp. 1724-1738, 2019. [64] M. Collet et al., "Large‐scale assembly of single nanowires through capillary‐assisted dielectrophoresis," Advanced Materials, vol. 27, no. 7, pp. 1268-1273, 2015. [65] R. Khan, J.-H. Yun, K.-B. Bae, and I.-H. Lee, "Enhanced photoluminescence of ZnO nanorods via coupling with localized surface plasmon of Au nanoparticles," Journal of Alloys and Compounds, vol. 682, pp. 643-646, 2016. [66] 李志廣, "以介電泳動定位氧化鋅奈米線及其濕度感測器之應用," 國立臺灣大學碩士論文, 2021. [67] W. C. Conner Jr and J. L. Falconer, "Spillover in heterogeneous catalysis," Chemical reviews, vol. 95, no. 3, pp. 759-788, 1995. [68] D. Acharyya and P. Bhattacharyya, "Alcohol sensing performance of ZnO hexagonal nanotubes at low temperatures: A qualitative understanding," Sensors and Actuators B: Chemical, vol. 228, pp. 373-386, 2016. [69] W.-S. Kim, B.-S. Lee, D.-H. Kim, H.-C. Kim, W.-R. Yu, and S.-H. Hong, "SnO2 nanotubes fabricated using electrospinning and atomic layer deposition and their gas sensing performance," Nanotechnology, vol. 21, no. 24, p. 245605, 2010. [70] 林聖遠, "空橋式砷化鎵銦薄膜濕度感測器之製作與電性研究," 國立臺灣大學碩士論文, 2021. [71] S. Yu, H. Zhang, C. Chen, and C. Lin, "Investigation of humidity sensor based on Au modified ZnO nanosheets via hydrothermal method and first principle," Sensors and actuators B: chemical, vol. 287, pp. 526-534, 2019. [72] 王暐翔, "使用濕式氧化法製備矽單一奈米線傳感器," 國立臺灣大學碩士論文, 2021. [73] J. Du, D. Liang, H. Tang, and X. P. Gao, "InAs nanowire transistors as gas sensor and the response mechanism," Nano letters, vol. 9, no. 12, pp. 4348-4351, 2009. [74] S. Park, D. Lee, B. Kwak, H.-S. Lee, S. Lee, and B. Yoo, "Synthesis of self-bridged ZnO nanowires and their humidity sensing properties," Sensors and Actuators B: Chemical, vol. 268, pp. 293-298, 2018. [75] Q. Kuang, C. Lao, Z. L. Wang, Z. Xie, and L. Zheng, "High-sensitivity humidity sensor based on a single SnO2 nanowire," Journal of the American Chemical Society, vol. 129, no. 19, pp. 6070-6071, 2007. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91404 | - |
| dc.description.abstract | 在本論文中,我們運用介電泳動技術製備了空橋式氧化鋅(ZnO)奈米線的感測器元件,然後利用金奈米粒子的修飾,研究含金奈米粒子修飾與不含金奈米粒子的元件,對於乙醇濃度與濕度變化的電性響應。首先,我們在矽基板上沉積了絕緣層二氧化矽,然後利用標準的黃光微影技術在基板上定義出金屬電極的位置。隨後,我們使用電子束蒸鍍機鍍上鈦做為金屬電極,接著利用介電泳的方法,將奈米線精確定位在指定的電極上,形成了空橋結構,再使用電子束蒸鍍機鍍上金奈米粒子,最終成功製備出利用金奈米粒子修飾的氧化鋅奈米線感測器。
經由上述製程,我們對單純的氧化鋅和經過金奈米粒子修飾的氧化鋅奈米線元件在紫外光照射的環境下進行改變乙醇濃度環境時的電流響應和反應時間的量測,量測後發現有金奈米粒子的樣品擁有更大的響應及較短的回復時間。另外,也針對這兩種不同的樣品,改變環境相對濕度,同樣進行電流響應和反應時間的量測。量測結果也展現了經過金奈米粒子修飾的樣品在響應上優勢,最後,與文獻進行比較和討論。 | zh_TW |
| dc.description.abstract | In this research work, we employed dielectrophoretic deposition techniques to fabricate sensors using bridged zinc oxide (ZnO) nanowires. Subsequently, through modification with Au nanoparticles, we investigated the electrical responses to variations in ethanol concentration and humidity for devices with and without Au nanoparticle modifications. Initially, we deposited a SiO2 insulating layer on a silicon substrate and defined the positions of the metal electrodes using standard photolithography techniques. Then, we used an electron-gun evaporator to deposit titanium as the metal electrodes. Subsequently, utilizing dielectrophoretic methods, we precisely positioned nanowires on specified electrodes, forming a bridged structure. Au nanoparticles were then deposited also using an electron-gun evaporator. Finally, we successfully fabricated sensors based on Au nanoparticle-modified ZnO nanowires.
After the aforementioned processes, we conducted measurements on the electrical responses and recovery times of pure ZnO and Au nanoparticle-modified ZnO nanowire devices under varying ethanol concentrations in an environment exposed to ultraviolet light. The results revealed that samples with Au nanoparticles exhibited larger responses and shorter recovery times. Additionally, we performed measurements on these two different samples under varying relative humidity conditions, analyzing electrical responses and recovery times. The measured results demonstrated the advantages of Au nanoparticle-modified devices. Finally, we compared and discussed our findings with the literature. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-01-26T16:21:24Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-01-26T16:21:24Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 iii Abstract iv 目次 vi 圖次 viii 表次 xii 第一章 序論 1 1.1 元件尺度微縮對環境感測器的優勢 1 1.2 寬能隙半導體 2 1.3 氣體感測器概述 4 1.4 氧化物半導體式氣體感測器之發展 8 1.5 研究動機 13 1.6 論文架構 14 第二章 理論介紹 15 2.1 介電泳動(Dielectrophoresis, DEP)原理介紹 15 2.2 金屬氧化物半導體感測器的原理與應用 20 2.2.1 氧缺陷和氣體吸附在金屬氧化物表面之作用 21 2.2.2 氧缺陷和氣體吸附在金屬奈米粒子修飾之金屬氧化物表面之作用 22 2.2.3 金屬氧化物半導體中的紫外光激發 23 2.3 氧化鋅奈米線濕度感測原理 26 第三章 實驗製程及介紹 30 3.1 氧化鋅奈米線 30 3.2 元件製程步驟 30 3.2.1 絕緣層沉積(Deposition) 30 3.2.2 黃光微影定義電極位置(Lithography) 31 3.2.3 製作電極與掀離(E-gun evaporation & Lift off) 31 3.2.4 介電泳(DEP) 32 3.2.5 金奈米粒子修飾(E-gun evaporation) 37 3.2.6 熱退火(Annealing) 38 第四章 實驗結果與討論 39 4.1 金奈米粒子修飾氧化鋅奈米線之比較 39 4.2 乙醇量測與架構 41 4.3 乙醇感測器參數介紹 42 4.4 乙醇濃度變化電性量測分析 43 4.5 濕度量測與架構 51 4.6 濕度變化電性量測分析 52 第五章 結論 60 5.1 總結 60 5.2未來方向 61 參考文獻 62 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 氧化鋅 | zh_TW |
| dc.subject | 介電泳 | zh_TW |
| dc.subject | 奈米粒子 | zh_TW |
| dc.subject | 奈米線 | zh_TW |
| dc.subject | 空橋 | zh_TW |
| dc.subject | 乙醇感測器 | zh_TW |
| dc.subject | 濕度感測器 | zh_TW |
| dc.subject | nanoparticle | en |
| dc.subject | dielectrophoresis | en |
| dc.subject | ethanol sensor | en |
| dc.subject | Air-bridged | en |
| dc.subject | nanowire | en |
| dc.subject | ZnO | en |
| dc.subject | humidity sensor | en |
| dc.title | 以介電泳動定位由金奈米粒子修飾之氧化鋅奈米線之感測器應用 | zh_TW |
| dc.title | Dielectrophoresis Alignment of Au Nanoparticle-Modified ZnO Nanowires and Their Application to Sensors | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林浩雄;陳奕君 | zh_TW |
| dc.contributor.oralexamcommittee | Hao-Hsiung Lin;I-Chun Cheng | en |
| dc.subject.keyword | 空橋,乙醇感測器,濕度感測器,氧化鋅,奈米線,奈米粒子,介電泳, | zh_TW |
| dc.subject.keyword | Air-bridged,ethanol sensor,humidity sensor,ZnO,nanowire,nanoparticle,dielectrophoresis, | en |
| dc.relation.page | 71 | - |
| dc.identifier.doi | 10.6342/NTU202400038 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-01-11 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電子工程學研究所 | - |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
