請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91381
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳麒文 | zh_TW |
dc.contributor.advisor | Chi-Wen Chen | en |
dc.contributor.author | 許祐誠 | zh_TW |
dc.contributor.author | You-Cheng Hsu | en |
dc.date.accessioned | 2024-01-26T16:15:08Z | - |
dc.date.available | 2024-01-27 | - |
dc.date.copyright | 2024-01-26 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-01-16 | - |
dc.identifier.citation | Arnone, E., Francipane, A., Scarbaci, A., Puglisi, C., & Noto, L. V. (2016). Effect of raster resolution and polygon-conversion algorithm on landslide susceptibility mapping. Environmental Modelling & Software, 84, 467–481. https://doi.org/10.1016/j.envsoft.2016.07.016
Aslam, B., Zafar, A., & Khalil, U. (2023). Comparative analysis of multiple conventional neural networks for landslide susceptibility mapping. Natural Hazards, 115(1), 673–707. https://doi.org/10.1007/s11069-022-05570-x Böhner, J., & Selige, T. (2002). Spatial prediction of soil attributes using terrain analysis and climate regionalization. Gottinger Geograpihsche Abhandlungen, 115. Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. Proceedings of the fifth annual workshop on Computational learning theory, 144–152. https://doi.org/10.1145/130385.130401 Brunetti, M. T., Peruccacci, S., Rossi, M., Luciani, S., Valigi, D., & Guzzetti, F. (2010). Rainfall thresholds for the possible occurrence of landslides in Italy. Natural Hazards and Earth System Sciences, 10(3), 447–458. https://doi.org/10.5194/nhess-10-447-2010 Bui, D. T., Tsangaratos, P., Nguyen, V.-T., Liem, N. V., & Trinh, P. T. (2020). Comparing the prediction performance of a Deep Learning Neural Network model with conventional machine learning models in landslide susceptibility assessment. CATENA, 188, 104426. https://doi.org/10.1016/j.catena.2019.104426 Chang, K.-T., Merghadi, A., Yunus, A. P., Pham, B. T., & Dou, J. (2019). Evaluating scale effects of topographic variables in landslide susceptibility models using GIS-based machine learning techniques. Scientific Reports, 9(1), 12296. https://doi.org/10.1038/s41598-019-48773-2 Chang, Z., Catani, F., Huang, F., Liu, G., Meena, S. R., Huang, J., & Zhou, C. (2023). Landslide susceptibility prediction using slope unit-based machine learning models considering the heterogeneity of conditioning factors. Journal of Rock Mechanics and Geotechnical Engineering, 15(5), 1127–1143. https://doi.org/10.1016/j.jrmge.2022.07.009 Chen, C.-W., Tung, Y.-S., Liou, J.-J., Li, H.-C., Cheng, C.-T., Chen, Y.-M., & Oguchi, T. (2019). Assessing landslide characteristics in a changing climate in northern Taiwan. CATENA, 175, 263–277. https://doi.org/10.1016/j.catena.2018.12.023 Chen, W. (2016). Taiwan di zhi gai lun (Chu ban). Zhonghua Minguo di zhi xue hui. Cohen, J. (1960). A Coefficient of Agreement for Nominal Scales. Educational and Psychological Measurement, 20(1), 37–46. https://doi.org/10.1177/001316446002000104 Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., and Böhner, J. (2015): System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model Dev., 8, 1991-2007, doi:10.5194/gmd-8-1991-2015. Chollet, F., & others. (2015). Keras. GitHub. Retrieved from https://github.com/fchollet/keras Crippen, R. E. (1990). Calculating the vegetation index faster. Remote Sensing of Environment, 34(1), 71–73. https://doi.org/10.1016/0034-4257(90)90085-Z Dao, D. V., Jaafari, A., Bayat, M., Mafi-Gholami, D., Qi, C., Moayedi, H., Phong, T. V., Ly, H.-B., Le, T.-T., Trinh, P. T., Luu, C., Quoc, N. K., Thanh, B. N., & Pham, B. T. (2020). A spatially explicit deep learning neural network model for the prediction of landslide susceptibility. CATENA, 188, 104451. https://doi.org/10.1016/j.catena.2019.104451 Dong, J.-J., Lai, P.-J., Chang, C.-P., Yang, S.-H., Yeh, K.-C., Liao, J.-J., & Pan, Y.-W. (2014). Deriving landslide dam geometry from remote sensing images for the rapid assessment of critical parameters related to dam-breach hazards. Landslides, 11(1), 93–105. https://doi.org/10.1007/s10346-012-0375-z Dou, J., Yunus, A. P., Bui, D. T., Merghadi, A., Sahana, M., Zhu, Z., Chen, C.-W., Han, Z., & Pham, B. T. (2020). Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan. Landslides, 17(3), 641–658. https://doi.org/10.1007/s10346-019-01286-5 Dou, J., Yunus, A. P., Tien Bui, D., Merghadi, A., Sahana, M., Zhu, Z., Chen, C.-W., Khosravi, K., Yang, Y., & Pham, B. T. (2019). Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan. Science of The Total Environment, 662, 332–346. https://doi.org/10.1016/j.scitotenv.2019.01.221 Fang, Z., Wang, Y., Duan, H., Niu, R., & Peng, L. (2022). Comparison of general kernel, multiple kernel, infinite ensemble and semi-supervised support vector machines for landslide susceptibility prediction. Stochastic Environmental Research and Risk Assessment, 36(10), 3535–3556. https://doi.org/10.1007/s00477-022-02208-z Friedman, J. (1977). A Recursive Partitioning Decision Rule for Nonparametric Classification. IEEE Trans. Computers, 26, 404–408. https://doi.org/10.1109/TC.1977.1674849 Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative Adversarial Networks (arXiv:1406.2661). arXiv. http://arxiv.org/abs/1406.2661 Guzzetti, F., Peruccacci, S., Rossi, M., & Stark, C. P. (2008). The rainfall intensity–duration control of shallow landslides and debris flows: An update. Landslides, 5(1), 3–17. https://doi.org/10.1007/s10346-007-0112-1 Guzzetti, F., Reichenbach, P., Ardizzone, F., Cardinali, M., & Galli, M. (2006). Estimating the quality of landslide susceptibility models. Geomorphology, 81(1), 166–184. https://doi.org/10.1016/j.geomorph.2006.04.007 Glosser.ca, CC BY-SA 3.0 <https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons He, C. (2009). Pu tong di zhi xue (3 ban). Wu nan tu shu chu ban you xian gong si. He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep Residual Learning for Image Recognition (arXiv:1512.03385). arXiv. https://doi.org/10.48550/arXiv.1512.03385 He, Y., Wang, W., Zhang, L., Chen, Y., Chen, Y., Chen, B., He, X., & Zhao, Z. (2023). An identification method of potential landslide zones using InSAR data and landslide susceptibility. Geomatics, Natural Hazards and Risk, 14(1), 2185120. https://doi.org/10.1080/19475705.2023.2185120 Hochreiter, S. (1991). Untersuchungen zu dynamischen neuronalen Netzen. Hong, H., Miao, Y., Liu, J., & Zhu, A.-X. (2019). Exploring the effects of the design and quantity of absence data on the performance of random forest-based landslide susceptibility mapping. CATENA, 176, 45–64. https://doi.org/10.1016/j.catena.2018.12.035 Huang, F., Cao, Z., Jiang, S.-H., Zhou, C., Huang, J., & Guo, Z. (2020). Landslide susceptibility prediction based on a semi-supervised multiple-layer perceptron model. Landslides, 17(12), 2919–2930. https://doi.org/10.1007/s10346-020-01473-9 Huang, F., Yan, J., Fan, X., Yao, C., Huang, J., Chen, W., & Hong, H. (2022). Uncertainty pattern in landslide susceptibility prediction modelling: Effects of different landslide boundaries and spatial shape expressions. Geoscience Frontiers, 13(2), 101317. https://doi.org/10.1016/j.gsf.2021.101317 Huang, F., Ye, Z., Jiang, S.-H., Huang, J., Chang, Z., & Chen, J. (2021). Uncertainty study of landslide susceptibility prediction considering the different attribute interval numbers of environmental factors and different data-based models. CATENA, 202, 105250. https://doi.org/10.1016/j.catena.2021.105250 Huang, F., Zhang, J., Zhou, C., Wang, Y., Huang, J., & Zhu, L. (2020). A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction. Landslides, 17(1), 217–229. https://doi.org/10.1007/s10346-019-01274-9 Huang, Y., & Zhao, L. (2018). Review on landslide susceptibility mapping using support vector machines. CATENA, 165, 520–529. https://doi.org/10.1016/j.catena.2018.03.003 JENKS, G. F., & CASPALL, F. C. (1971). Error on Choroplethic Maps: Definition, Measurement, Reduction. Annals of the Association of American Geographers, 61(2), 217–244. https://doi.org/10.1111/j.1467-8306.1971.tb00779.x Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977 Mar;33(1):159-74. PMID: 843571 LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1989). Backpropagation Applied to Handwritten Zip Code Recognition. Neural Computation, 1(4), 541–551. https://doi.org/10.1162/neco.1989.1.4.541 LeCun, Y (2016). Slides on Deep Learning Online Archived 2016-04-23 at the Wayback Machine Li, Y., Chen, W., Rezaie, F., Rahmati, O., Davoudi Moghaddam, D., Tiefenbacher, J., Panahi, M., Lee, M.-J., Kulakowski, D., Tien Bui, D., & Lee, S. (2021). Debris flows modeling using geo-environmental factors: Developing hybridized deep-learning algorithms. Geocarto International, 37(17), 5150–5173. https://doi.org/10.1080/10106049.2021.1912194 Lin, C.-W., Tseng, C.-M., Tseng, Y.-H., Fei, L.-Y., Hsieh, Y.-C., & Tarolli, P. (2013). Recognition of large scale deep-seated landslides in forest areas of Taiwan using high resolution topography. Journal of Asian Earth Sciences, 62, 389–400. https://doi.org/10.1016/j.jseaes.2012.10.022 McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5(4), 115–133. https://doi.org/10.1007/BF02478259 Merghadi, A., Yunus, A. P., Dou, J., Whiteley, J., ThaiPham, B., Bui, D. T., Avtar, R., & Abderrahmane, B. (2020). Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance. Earth-Science Reviews, 207, 103225. https://doi.org/10.1016/j.earscirev.2020.103225 Minsky, M., & Papert, S. A. (1972). Perceptrons: An introduction to computational geometry (2. print. with corr). The MIT Press. Mitchell, T. M. (1997). Machine Learning. McGraw-Hill. Novellino, A., Cesarano, M., Cappelletti, P., Di Martire, D., Di Napoli, M., Ramondini, M., Sowter, A., & Calcaterra, D. (2021). Slow-moving landslide risk assessment combining Machine Learning and InSAR techniques. CATENA, 203, 105317. https://doi.org/10.1016/j.catena.2021.105317 Nettleton, I. M., Martin, S., Hencher, S., & Moore, R. (2005). Debris flow types and mechanisms. Scottish road network landslides study, 45-67. Nielsen, Michael A(2015), Neural Networks and Deep Learning, Determination Press O’brien, R. M. (2007). A Caution Regarding Rules of Thumb for Variance Inflation Factors. Quality & Quantity, 41(5), 673–690. https://doi.org/10.1007/s11135-006-9018-6 Pacheco Quevedo, R., Velastegui-Montoya, A., Montalván-Burbano, N., Morante-Carballo, F., Korup, O., & Daleles Rennó, C. (2023). Land use and land cover as a conditioning factor in landslide susceptibility: A literature review. Landslides, 20(5), 967–982. https://doi.org/10.1007/s10346-022-02020-4 Pham, B. T., Phong, T. V., Nguyen-Thoi, T., Parial, K., K. Singh, S., Ly, H.-B., Nguyen, K. T., Ho, L. S., Le, H. V., & Prakash, I. (2022). Ensemble modeling of landslide susceptibility using random subspace learner and different decision tree classifiers. Geocarto International, 37(3), 735–757. https://doi.org/10.1080/10106049.2020.1737972 Qin, S., Qiao, S., Yao, J., Zhang, L., Liu, X., Guo, X., Chen, Y., & Sun, J. (2022). Establishing a GIS-based evaluation method considering spatial heterogeneity for debris flow susceptibility mapping at the regional scale. Natural Hazards, 114(3), 2709–2738. https://doi.org/10.1007/s11069-022-05487-5 QGIS.org (2022). QGIS Geographic Information System. QGIS Association. http://www.qgis.org Rogerson, P. (2001). Statistical Methods for Geography. SAGE Publications, Ltd. https://doi.org/10.4135/9781849209953 Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386–408. https://doi.org/10.1037/h0042519 Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533–536. https://doi.org/10.1038/323533a0 Saito, H., Nakayama, D., & Matsuyama, H. (2010). Relationship between the initiation of a shallow landslide and rainfall intensity—Duration thresholds in Japan. Geomorphology, 118(1), 167–175. https://doi.org/10.1016/j.geomorph.2009.12.016 Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM Journal of Research and Development, 44(1.2), 206–226. https://doi.org/10.1147/rd.441.0206 Sarkar, S., & Kanungo, D. P. (2004). An Integrated Approach for Landslide Susceptibility Mapping Using Remote Sensing and GIS. Photogrammetric Engineering & Remote Sensing, 70(5), 617–625. https://doi.org/10.14358/PERS.70.5.617 Serra-Ruiz, J., Qureshi, A., & Megías, D. (2019). Entropy-Based Semi-Fragile Watermarking of Remote Sensing Images in the Wavelet Domain. Entropy, 21(9), 847. https://doi.org/10.3390/e21090847 Shu, H., Hürlimann, M., Molowny-Horas, R., González, M., Pinyol, J., Abancó, C., & Ma, J. (2019). Relation between land cover and landslide susceptibility in Val d’Aran, Pyrenees (Spain): Historical aspects, present situation and forward prediction. Science of The Total Environment, 693, 133557. https://doi.org/10.1016/j.scitotenv.2019.07.363 Sun, D., Shi, S., Wen, H., Xu, J., Zhou, X., & Wu, J. (2021). A hybrid optimization method of factor screening predicated on GeoDetector and Random Forest for Landslide Susceptibility Mapping. Geomorphology, 379, 107623. https://doi.org/10.1016/j.geomorph.2021.107623 Sutton, R. S., & Barto, A. (2020). Reinforcement learning: An introduction (Second edition). The MIT Press. Tang, X., Tu, Z., Wang, Y., Liu, M., Li, D., & Fan, X. (2022). Automatic Detection of Coseismic Landslides Using a New Transformer Method. Remote Sensing, 14(12), 2884. https://doi.org/10.3390/rs14122884 Tien Bui, D., Pradhan, B., Lofman, O., & Revhaug, I. (2012). Landslide Susceptibility Assessment in Vietnam Using Support Vector Machines, Decision Tree, and Naïve Bayes Models. Mathematical Problems in Engineering, 2012, 1–26. https://doi.org/10.1155/2012/974638 Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention Is All You Need (arXiv:1706.03762). http://arxiv.org/abs/1706.03762 Verhulst, Pierre-François (1845). Recherches mathématiques sur la loi d''accroissement de la population. Mathematical Researches into the Law of Population Growth Increase. Nouveaux Mémoires de l''Académie Royale des Sciences et Belles-Lettres de Bruxelles. 18. Retrieved 2013-02-18 Wang, W.-N., Chigira, M., & Furuya, T. (2003). Geological and geomorphological precursors of the Chiu-fen-erh-shan landslide triggered by the Chi-chi earthquake in central Taiwan. Engineering Geology, 69(1–2), 1–13. https://doi.org/10.1016/S0013-7952(02)00244-2 Wang, Y., Wu, X., Chen, Z., Ren, F., Feng, L., & Du, Q. (2019). Optimizing the Predictive Ability of Machine Learning Methods for Landslide Susceptibility Mapping Using SMOTE for Lishui City in Zhejiang Province, China. International Journal of Environmental Research and Public Health, 16(3), 368. https://doi.org/10.3390/ijerph16030368 Wang, Z., & Liu, J.-C. (2019). Translating Math Formula Images to LaTeX Sequences Using Deep Neural Networks with Sequence-level Training (arXiv:1908.11415). arXiv. http://arxiv.org/abs/1908.11415 Werbos, P. J. (1982). Applications of advances in nonlinear sensitivity analysis. R. F. Drenick & F. Kozin, System Modeling and Optimization (卷 38, 頁 762–770). Springer-Verlag. https://doi.org/10.1007/BFb0006203 Wijaya, I. P. K., Joshi, A., Alam, M. N., Jayasinghe, S., & Laila, N. (2022). Climate Change Induced Landslide Susceptibility Assessment - for Aiding Climate Resilient Planning for Road Infrastructure: A Case Study in Rangamati District, Chittagong Hill Tracts, Bangladesh. IOP Conference Series: Earth and Environmental Science, 1091(1), 012010. https://doi.org/10.1088/1755-1315/1091/1/012010 Xiao, L., Zhang, Y., & Peng, G. (2018). Landslide Susceptibility Assessment Using Integrated Deep Learning Algorithm along the China-Nepal Highway. Sensors, 18(12), 4436. https://doi.org/10.3390/s18124436 Yi, Y., Zhang, Z., Zhang, W., Jia, H., & Zhang, J. (2020). Landslide susceptibility mapping using multiscale sampling strategy and convolutional neural network: A case study in Jiuzhaigou region. CATENA, 195, 104851. https://doi.org/10.1016/j.catena.2020.104851 Yoon, E. J., Thorne, J. H., Park, C., Lee, D. K., Kim, K. S., Yoon, H., Seo, C., Lim, C.-H., Kim, H., & Song, Y.-I. (2019). Modeling spatial climate change landuse adaptation with multi-objective genetic algorithms to improve resilience for rice yield and species richness and to mitigate disaster risk. Environmental Research Letters, 14(2), 024001. https://doi.org/10.1088/1748-9326/aaf0cf Zha, Y., Gao, J., & Ni, S. (2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, 24(3), 583–594. https://doi.org/10.1080/01431160304987 Zhou, X., Wen, H., Zhang, Y., Xu, J., & Zhang, W. (2021). Landslide susceptibility mapping using hybrid random forest with GeoDetector and RFE for factor optimization. Geoscience Frontiers, 12(5), 101211. https://doi.org/10.1016/j.gsf.2021.101211 王勁峰、徐成東(2017)。地理探测器:原理与展望。地理学报,72(1),116-134。 交通部運輸研究所(2010)。新世紀台灣地區交通路網數值地圖。台北市:交通部。 李錫堤(2011)。草嶺大崩山之地質與地形演變。中華水土保持學報,42(4),325-335。 李錫堤、董家鈞、林銘郎(2009)。小林村災變之地質背景探討。地工技術,122,87-94。 吳琪、周創兵、黄發明、姚池(2022)。基于双重注意力机制的滑坡识别方法优化. 地质科技通报,41(2),246–253。https://doi.org/10.19509/j.cnki.dzkq.2022.0053 林冠瑋(2010)。陳有蘭溪流域的山崩作用在颱風及地震事件中與河流輸砂量之相對關係。國立臺灣大學地質科學研究所。博士論文。 林慶偉(1996)。南投縣和社地區崩塌地發育之地質影響因子。地工技術,57,5-16。 林穎東、張國楨、楊啟見(2018)。利用物件式導向進行崩塌地種類判釋、復育追蹤-以高雄市寶來地區為例。中華水土保持學報,49(2)。https://doi.org/10.29417/JCSWC.201803_49(2).0004 秋庭伸也、杉山阿聖、寺田學(2021)。零基礎入門的機器學習圖鑑。台北市:采實文化。 TCCIP(科技部臺灣氣候變遷推估資訊與調適知識平台)(2022)。臺灣歷史氣候重建日資料(TReAD)。V1.1。臺灣氣候變遷推估資訊與調適知識平台,https://tccip.ncdr.nat.gov.tw/。 唐昭榮、胡植慶、羅佳明、林銘郎(2009)。遽變式山崩之PFC3D模擬初探--以草嶺與小林村為例。地工技術,122,143-152。 陳樹群、吳俊鋐(2009)。高雄縣小林村獻肚山巨型深層崩塌引致之地形變遷特性。中華水土保持學報,40(4),359-376。 陳柔妃(2020)。109年廣域大規模崩塌潛勢區時序地表變形及活動性評估。台北市:行政院農業委員會水土保持局。 曹博涵(2019)。以遙測影像與數值模擬分析油車寮地滑之特性。臺灣博碩士論文知識加值系統。國立臺灣大學地質科學研究所。碩士論文。 曹祉晏(2017)。應用像元分析技術判釋莫拉克風災在油車寮地區引起之山崩滑動特性探討。國立臺灣大學地質科學研究所。碩士論文。 張家瑜(2022)。二維卷積神經網路建置高解析度崩塌潛勢圖之研究。國立成功大學資源工程學系。博士論文。 黃淳銘(2019)。結合地質模型進行三維離散元之崩塌運移數值模擬-以太麻里溪、四川新磨村、檨仔寮為例。國立成功大學地球科學研究所。碩士論文。 葉宗鑫(2022)。前期崩塌與因子重要性於崩塌潛勢評估模型表現之研究。逢甲大學土木工程學系。碩士論文。 溫振宇(2005)。結合地震與颱風因子之山崩模式分析。國立成功大學地球科學研究所。碩士論文。 楊樹榮、林忠志、鄭錦桐、潘國樑、蔡如君、李正利(2011)。臺灣常用山崩分類系統。第十四屆中華民國大地工程研討會,桃園市,臺灣。 經濟部中央地質調查所(2014)。山崩與地滑地質敏感區劃定計畫書(L0006 高雄市)。台北市:經濟部。 經濟部中央地質調查所(2022)。山崩與地滑地質敏感區變更計畫書(L0006 高雄市)。台北市:經濟部。 經濟部中央地質調查所(2013)。易淹水地區上游集水區地質調查及資料庫建置(軟精裝附光碟)。臺北市:經濟部中央地質調查所。 農業部(2020)。山坡地土地可利用限度分類標準。山坡地保育利用條例第十六條第三項。行政院。 鄭詠心(2021)。整合空間資料與隨機森林演算法比對像元式與物件式分析於崩塌潛勢評估。臺灣博碩士論文知識加值系統。 鄭德尉(2021)。以有限元素法分析降雨引致邊坡破壞的漸進式過程。臺灣博碩士論文知識加值系統。國立成功大學地球科學研究所。碩士論文。 謝有忠、唐昭榮、邱禎龍、陳宏仁、費立沅、陳勉銘、…、胡植慶(2017)。莫拉克颱風受災區域潛在大規模崩塌之光達數值地形判釋應用及地表位移觀測。工程環境會刊,37。https://doi.org/10.6562/JEE.201712_(37).0002 羅佳明、鄭添耀、林彥享、蕭震洋、魏倫瑋、黃春銘、…、林銘郎(2011)。國道3號七堵順向坡滑動過程之動態模擬。中華水土保持學報,42(3),175-183。 蘇泰維、謝有忠、劉榮斌(2010)。國道3號災前災後的地形演變。地質,29(2),16-19。 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91381 | - |
dc.description.abstract | 台灣地處板塊交界帶,受造山運動及季風氣候影響,形成高強度侵蝕環境,崩塌發生頻繁,因此事前預警及防減災對坡地安全十分重要。隨地理資訊系統(GIS)和大數據發展,使探討地文、水文及人文等因子對坡地穩定的影響成為可能,其中透過機器學習建置崩塌潛勢評估模型是目前受矚目的方式。
傳統機器學習研究多以易取得的地形、地質、水文等資料為模型訓練特徵,但在崩塌頻發的台灣,已發生崩塌地區的穩定性及植被覆蓋相對較差,易再次崩塌。因此,本研究以歷史崩塌事件作為模型訓練特徵之一,並探討其重要性。另外,由於崩塌事件範圍不定、規模不一,網格切分易使相鄰網格相關性消失,影響模型評估準確性。因此,本研究引入自然語言轉譯領域的自注意力機制,自動化全局考量序列中各單元相關性,以解決網格間獨立性的問題。期許能夠建立廣範圍、高精度的崩塌潛勢評估模型。 結果顯示,加入歷史崩塌事件特徵能大幅提升模型評估能力,不論是否考慮空間相關性,都有明顯提升(F1_score分別於mlp模型及att模型提升0.38及0.51)。而自注意力方法使模型在precision及recall中取得較好平衡並降低資料偏誤造成之缺陷,更適用於實際防減災操作。在地質差異大的區域,本研究建立的評估模型保持良好的泛用性(F1_score維持在0.7左右)。評估不同年份事件,模型在大多數情況下保持高水準表現(F1_score維持在0.6以上),具有時間泛用性。與過往的研究相比,本研究取得更穩定及良好之崩塌評估表現。 | zh_TW |
dc.description.abstract | Taiwan is located at the convergence zone of tectonic plates and influenced by orogeny and monsoon climate, which has evolved into an environment with intense erosion and frequent landslides. Therefore, proactive warning systems and disaster mitigation measures are of paramount importance for the slope safety. With the advancement of geographic information systems (GIS) and big data, the exploration of the impact of physical, hydrological, and anthropogenic factors on slope stability has become feasible. Among them, the construction of landslide susceptibility prediction models through machine learning stands out as a currently prominent approach.
Conventional machine learning studies often utilize easily accessible topographical, geological, and hydrological data as features for the model training. However, in Taiwan, areas with historical landslide exhibit lower stability and vegetation cover, making them susceptible to recurring landslides. Hence, this study incorporated historical landslides as one of the model training features and assessed its importance. Furthermore, due to the variable extent and scale of landslides, grid partitioning can lead to the disappearance of correlation between neighboring grids, thereby affecting the accuracy of model predictions. Therefore, this research introduced a self-attention mechanism from the natural language processing domain to automatically and globally consider the correlation of each unit in a sequence to address the issue of grid independence. The goal is to establish a wide-ranging and high-precision landslide susceptibility prediction model. The results show that a substantial improvement in the model prediction after incorporating the historical landslides, having significant enhancements in both precision and recall, irrespective of spatial correlation considerations (F1_scores increased by 0.38 and 0.51 in the mlp and att models, respectively). The self-attention method enables the model to achieve a better balance between precision and recall, reducing defects induced by data biases, and is more suitable for practical disaster mitigation operations. In areas with significant geological variations, the prediction model established in this study maintains a good generalizability (F1_score consistently around 0.7). Predicting in different years, the model maintains high-level performance in most cases (F1_score consistently above 0.6), demonstrating the temporal generalizability. In comparison to previous studies, this research achieves a more stable and robust landslide prediction performance. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-01-26T16:15:08Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-01-26T16:15:08Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 I
中文摘要 II Abstract III 目次 V 圖次 VII 表次 IX 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 第二章 文獻回顧 3 2.1 崩塌機制及衝擊 3 2.2 機器學習建置崩塌潛勢地圖 4 2.3 機器學習及深度神經網路 6 2.4 機器學習模型差異 9 2.5 特徵值選擇差異 11 第三章 研究區域 14 3.1 研究區域選擇 14 3.2 地形 15 3.3 地質條件 17 3.4 氣候及水文特性 19 3.5 崩塌地概述 21 第四章 研究方法 22 4.1 研究流程 22 4.2 崩塌資料庫的建置 25 4.2.1 崩塌資料來源 26 4.2.2 崩塌資料篩選 27 4.3 訓練特徵的選擇及前處理 29 4.3.1 地形特徵 31 4.3.2 降水特徵 32 4.3.3 地質條件 32 4.3.4 線狀構造距離 33 4.3.5 植被及開發 34 4.3.6 特徵可用性探討 35 4.3.7 特徵共線性探討 35 4.3.8 特徵重要性探討 36 4.4 神經網路原理及模型設計邏輯 36 4.4.1 神經網路原理 36 4.4.2 自注意力機制 41 4.4.3 模型設計邏輯 46 4.5 模型架構 48 4.6 訓練流程 49 4.6.1 模型超參數 49 4.6.2 訓練設定 51 4.6.3 終止條件及目標 51 4.7 評估方法 52 第五章 結果 56 5.1 特徵可用性 56 5.2 特徵共線性 56 5.3 特徵重要性 57 5.4 模型評估成果 59 5.5 崩塌潛勢地圖 62 第六章 討論 68 6.1 歷史崩塌之於推測的效果 68 6.2 空間關係之於推測的效果 69 6.3 模型在空間上的泛用性 71 6.4 模型在時間上的泛用性 72 6.5 模型閾值與F1-score關係 77 6.6 模型評估能力差異 79 第七章 結論 83 參考文獻 84 附錄 97 | - |
dc.language.iso | zh_TW | - |
dc.title | 以機器學習方法建立考量歷史崩塌及空間關聯性的崩塌潛勢預測模型 | zh_TW |
dc.title | Developing a machine learning-based landslide susceptibility prediction model considering historical landslides and spatial correlations | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 陳宏宇;林冠瑋 | zh_TW |
dc.contributor.oralexamcommittee | Hongey Chen;Guan-Wei Lin | en |
dc.subject.keyword | 崩塌潛勢,歷史崩塌,自注意力機制,機器學習,崩塌評估, | zh_TW |
dc.subject.keyword | landslide susceptibility,historical landslide,Self-attention,machine learning,landslide assessment, | en |
dc.relation.page | 108 | - |
dc.identifier.doi | 10.6342/NTU202400078 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-01-17 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 地質科學系 | - |
顯示於系所單位: | 地質科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-1.pdf 目前未授權公開取用 | 17.98 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。