Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91380
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉雅瑄zh_TW
dc.contributor.advisorYa-Hsuan Liouen
dc.contributor.author蕭賢毅zh_TW
dc.contributor.authorHsien-Yi Hsiaoen
dc.date.accessioned2024-01-26T16:14:52Z-
dc.date.available2024-01-27-
dc.date.copyright2024-01-26-
dc.date.issued2024-
dc.date.submitted2024-01-16-
dc.identifier.citationAlfredsson, H. A., Hardarson, B. S., Franzson, H., & Gislason, S. R. (2018). CO2 sequestration in basaltic rock at the Hellisheidi site in SW Iceland: stratigraphy and chemical composition of the rocks at the injection site. Mineralogical Magazine, 72(1), 1-5. https://doi.org/10.1180/minmag.2008.072.1.1
Alfredsson, H. A., Oelkers, E. H., Hardarsson, B. S., Franzson, H., Gunnlaugsson, E., & Gislason, S. R. (2013). The geology and water chemistry of the Hellisheidi, SW-Iceland carbon storage site. International Journal of Greenhouse Gas Control, 12, 399-418. https://doi.org/10.1016/j.ijggc.2012.11.019
Aminu, M. D., Nabavi, S. A., Rochelle, C. A., & Manovic, V. (2017). A review of developments in carbon dioxide storage. Applied Energy, 208, 1389-1419. https://doi.org/10.1016/j.apenergy.2017.09.015
Bae, Y., Crompton, N. M., Sharma, N., Yuan, Y., Catalano, J. G., & Giammar, D. E. (2022). Impact of dissolved oxygen and pH on the removal of selenium from water by iron electrocoagulation. Water Res, 213, 118159. https://doi.org/10.1016/j.watres.2022.118159
Banfield, J. F., Jones, B. F., & Veblen, D. R. (1991). An aem-tem study of weathering and diagenesis, Abert Lake, Oregon: I. Weathering reactions in the volcanics. Geochimica et Cosmochimica Acta, 55(10), 2781-2793. https://doi.org/https://doi.org/10.1016/0016-7037(91)90444-A
Bang, J.-H., Yoo, Y., Lee, S.-W., Song, K., & Chae, S. (2017). CO2 Mineralization Using Brine Discharged from a Seawater Desalination Plant. Minerals, 7(11). https://doi.org/10.3390/min7110207
Chen, Y., Wang, D., Qin, H., Zhang, H., Zhang, Z., Zhou, G., Gao, C., & Hu, J. (2019). CO2 sensing properties and mechanism of PrFeO3 and NdFeO3 thick film sensor. Journal of Rare Earths, 37(1), 80-87. https://doi.org/10.1016/j.jre.2018.06.007
Crovisier, J. L., Honnorez, J., Fritz, B., & Petit, J. C. (1992). Dissolution of subglacial volcanic glasses from Iceland: laboratory study and modelling. Applied Geochemistry, 7, 55-81. https://doi.org/https://doi.org/10.1016/S0883-2927(09)80064-4
Eggleton, R. A., Foudoulis, C., & Varkevisser, D. (1987). Weathering of basalt; changes in rock chemistry and mineralogy. Clays and Clay Minerals, 35(3), 161-169.
Eric H. Oelkers, J. S. (1995). Experimental study of anorthite dissolution and the relative mechanism of feldspar hydrolysis. Geochimica et Cosmochimica Acta, 59(24), 5039-5053. https://doi.org/https://doi.org/10.1016/0016-7037(95)00326-6.
Gíslason, S. R., Arnórsson, S. n., & Ármannsson, H. (1996). Chemical weathering of basalt in Southwest Iceland; effects of runoff, age of rocks and vegetative/glacial cover. American Journal of Science, 296, 837-907.
Gislason, S. R., & Oelkers, E. H. (2014). Carbon Storage in Basalt. Science, 344(6182), 373-374. https://doi.org/doi:10.1126/science.1250828
Gislason, S. R., Wolff-Boenisch, D., Stefansson, A., Oelkers, E. H., Gunnlaugsson, E., Sigurdardottir, H., Sigfusson, B., Broecker, W. S., Matter, J. M., & Stute, M. (2010). Mineral sequestration of carbon dioxide in basalt: A pre-injection overview of the CarbFix project. International Journal of Greenhouse Gas Control, 4(3), 537-545. https://doi.org/10.1016/j.ijggc.2009.11.013
Golubev, S. V., Pokrovsky, O. S., & Schott, J. (2005). Experimental determination of the effect of dissolved CO2 on the dissolution kinetics of Mg and Ca silicates at 25 °C. Chemical Geology, 217(3-4), 227-238. https://doi.org/10.1016/j.chemgeo.2004.12.011
Gudbrandsson, S., Wolff-Boenisch, D., Gislason, S. R., & Oelkers, E. H. (2011). An experimental study of crystalline basalt dissolution from 2 ⩽ pH ⩽ 11 and temperatures from 5 to 75 °C. Geochimica et Cosmochimica Acta, 75(19), 5496-5509. https://doi.org/10.1016/j.gca.2011.06.035
Gysi, A. P., & Stefánsson, A. (2012a). CO2-water–basalt interaction. Low temperature experiments and implications for CO2 sequestration into basalts. Geochimica et Cosmochimica Acta, 81, 129-152. https://doi.org/10.1016/j.gca.2011.12.012
Gysi, A. P., & Stefánsson, A. (2012b). Experiments and geochemical modeling of CO2 sequestration during hydrothermal basalt alteration. Chemical Geology, 306-307, 10-28. https://doi.org/10.1016/j.chemgeo.2012.02.016
Gysi, A. P., & Stefánsson, A. (2012c). Mineralogical aspects of CO2 sequestration during hydrothermal basalt alteration — An experimental study at 75 to 250°C and elevated pCO2. Chemical Geology, 306-307, 146-159. https://doi.org/10.1016/j.chemgeo.2012.03.006
Hsieh, P.-S., Tien, N.-C., Lin, C.-K., Lin, W., & Lu, H.-Y. (2017). A multi-sequestration concept of CO 2 geological storage: Shale-Sandstone-Basalt system in Northwestern Taiwan. International Journal of Greenhouse Gas Control, 64, 137-151. https://doi.org/10.1016/j.ijggc.2017.07.008
Hu, J., & Deng, W. (2016). Application of supercritical carbon dioxide for leather processing. Journal of Cleaner Production, 113, 931-946. https://doi.org/10.1016/j.jclepro.2015.10.104
IEA. (2021). About CCUS. https://www.iea.org/reports/about-ccus
IPCC, 2005 – Bert Metz, Ogunlade Davidson, Heleen de Coninck, Manuela Loos and Leo Meyer (Eds.) Cambridge University Press, UK. pp 431. Available from Cambridge University Press, The Edinburgh Building Shaftesbury Road, Cambridge CB2 2RU ENGLAND
Kumar, A., & Shrivastava, J. P. (2019). Long-term CO2 capture-induced calcite crystallographic changes in Deccan basalt, India. Environmental Earth Sciences, 78(13). https://doi.org/10.1007/s12665-019-8378-x
Kumar, A., & Shrivastava, J. P. (2020). Secondary Silicates as a Barrier to Carbon Capture and Storage in Deccan Basalt. Acta Geologica Sinica - English Edition, 94(3), 861-876. https://doi.org/10.1111/1755-6724.14291
Liu, D., Agarwal, R., Li, Y., & Yang, S. (2019). Reactive transport modeling of mineral carbonation in unaltered and altered basalts during CO2 sequestration. International Journal of Greenhouse Gas Control, 85, 109-120. https://doi.org/10.1016/j.ijggc.2019.04.006
Lu, H.-Y., Lin, C.-K., Lin, W., Liou, T.-S., Chen, W.-F., & Chang, P.-Y. (2011). A natural analogue for CO2 mineral sequestration in Miocene basalt in the Kuanhsi-Chutung area, Northwestern Taiwan. International Journal of Greenhouse Gas Control, 5(5), 1329-1338. https://doi.org/10.1016/j.ijggc.2011.05.037
Marieni, C., Matter, J. M., & Teagle, D. A. H. (2020). Experimental study on mafic rock dissolution rates within CO2-seawater-rock systems. Geochimica et Cosmochimica Acta, 272, 259-275. https://doi.org/10.1016/j.gca.2020.01.004
Marieni, C., Voigt, M., Clark, D. E., Gíslason, S. R., & Oelkers, E. H. (2021). Mineralization potential of water-dissolved CO2 and H2S injected into basalts as function of temperature: Freshwater versus Seawater. International Journal of Greenhouse Gas Control, 109. https://doi.org/10.1016/j.ijggc.2021.103357
Matter, J. M., Stute, M., Snæbjörnsdottir, S. Ó., Oelkers, E. H., Gislason, S. R., Aradottir, E. S., Sigfusson, B., Gunnarsson, I., Sigurdardottir, H., Gunnlaugsson, E., Axelsson, G., Alfredsson, H. A., Wolff-Boenisch, D., Mesfin, K., Taya, D. F. d. l. R., Hall, J., Dideriksen, K., & Broecker, W. S. (2016). Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science, 352(6291), 1312-1314. https://doi.org/doi:10.1126/science.aad8132
McGrail, B. P., Spane, F. A., Amonette, J. E., Thompson, C. R., & Brown, C. F. (2014). Injection and Monitoring at the Wallula Basalt Pilot Project. Energy Procedia, 63, 2939-2948. https://doi.org/10.1016/j.egypro.2014.11.316
McKelvy, M., Chizmeshya, A., Squires, K., Carpenter, R., & Bearat, H. (2006). A novel approach to mineral carbonation: Enhancing carbonation while avoiding mineral pretreatment process cost. https://doi.org/10.13140/RG.2.1.4706.5041
Mekala, P., Busch, M., Mech, D., Patel, R. S., & Sangwai, J. S. (2014). Effect of silica sand size on the formation kinetics of CO2 hydrate in porous media in the presence of pure water and seawater relevant for CO2 sequestration. Journal of Petroleum Science and Engineering, 122, 1-9. https://doi.org/10.1016/j.petrol.2014.08.017
Menefee, A. H., Li, P., Giammar, D. E., & Ellis, B. R. (2017). Roles of Transport Limitations and Mineral Heterogeneity in Carbonation of Fractured Basalts. Environ Sci Technol, 51(16), 9352-9362. https://doi.org/10.1021/acs.est.7b00326
Min, Y., Li, Q., Voltolini, M., Kneafsey, T., & Jun, Y. S. (2017). Wollastonite Carbonation in Water-Bearing Supercritical CO(2): Effects of Particle Size. Environ Sci Technol, 51(21), 13044-13053. https://doi.org/10.1021/acs.est.7b04475
Nesbitt, H. W., & Wilson, R. E. (1992). Recent chemical weathering of basalts. American Journal of Science, 292, 740-777.
Oelkers, E. H., Arkadakskiy, S., Afifi, A. M., Hoteit, H., Richards, M., Fedorik, J., Delaunay, A., Torres, J. E., Ahmed, Z. T., Kunnummal, N., & Gislason, S. R. (2022). The subsurface carbonation potential of basaltic rocks from the Jizan region of Southwest Saudi Arabia. International Journal of Greenhouse Gas Control, 120. https://doi.org/10.1016/j.ijggc.2022.103772
Raza, A., Glatz, G., Gholami, R., Mahmoud, M., & Alafnan, S. (2022). Carbon mineralization and geological storage of CO2 in basalt: Mechanisms and technical challenges. Earth-Science Reviews, 229. https://doi.org/10.1016/j.earscirev.2022.104036
Rigopoulos, I., Harrison, A. L., Delimitis, A., Ioannou, I., Efstathiou, A. M., Kyratsi, T., & Oelkers, E. H. (2018). Carbon sequestration via enhanced weathering of peridotites and basalts in seawater. Applied Geochemistry, 91, 197-207. https://doi.org/10.1016/j.apgeochem.2017.11.001
Rigopoulos, I., Petallidou, K. C., Vasiliades, M. A., Delimitis, A., Ioannou, I., Efstathiou, A. M., & Kyratsi, T. (2015). Carbon dioxide storage in olivine basalts: Effect of ball milling process. Powder Technology, 273, 220-229. https://doi.org/10.1016/j.powtec.2014.12.046
Rogers, K. L., Neuhoff, P. S., Pedersen, A. K., & Bird, D. K. (2006). CO2 metasomatism in a basalt-hosted petroleum reservoir, Nuussuaq, West Greenland. Lithos, 92(1-2), 55-82. https://doi.org/10.1016/j.lithos.2006.04.002
Saldi, G. D., Jordan, G., Schott, J., & Oelkers, E. H. (2009). Magnesite growth rates as a function of temperature and saturation state. Geochimica et Cosmochimica Acta, 73(19), 5646-5657. https://doi.org/10.1016/j.gca.2009.06.035
Sandalow, D., Aines, R, Friedmann, J, Kelemen, P, McCormick, C, Power, I, Schmidt, B, Wilson. (2021). Carbon Mineralization Roadmap.
Sanna, A., Uibu, M., Caramanna, G., Kuusik, R., & Maroto-Valer, M. M. (2014). A review of mineral carbonation technologies to sequester CO2. Chem Soc Rev, 43(23), 8049-8080. https://doi.org/10.1039/c4cs00035h
Snæbjörnsdóttir S. Ó., E. H. Oelkers, K. Mesfin, E. S. Aradóttir, K. Dideriksen, I. Gunnarsson, et al.International Journal of Greenhouse Gas Control 2017 Vol. 58 Pages 87-102. https://doi.org/10.1016/j.ijggc.2017.01.007
Snæbjörnsdóttir, S. Ó., Gislason, S. R., Galeczka, I. M., & Oelkers, E. H. (2018). Reaction path modelling of in-situ mineralisation of CO2 at the CarbFix site at Hellisheidi, SW-Iceland. Geochimica et Cosmochimica Acta, 220, 348-366. https://doi.org/10.1016/j.gca.2017.09.053
Snæbjörnsdóttir, S. Ó., Sigfússon, B., Marieni, C., Goldberg, D., Gislason, S. R., & Oelkers, E. H. (2020). Carbon dioxide storage through mineral carbonation. Nature Reviews Earth & Environment, 1(2), 90-102. https://doi.org/10.1038/s43017-019-0011-8
Voigt, M., Marieni, C., Baldermann, A., Galeczka, I. M., Wolff-Boenisch, D., Oelkers, E. H., & Gislason, S. R. (2021). An experimental study of basalt–seawater–CO2 interaction at 130 °C. Geochimica et Cosmochimica Acta, 308, 21-41. https://doi.org/10.1016/j.gca.2021.05.056
Wolff-Boenisch, D., & Galeczka, I. M. (2018). Flow-through reactor experiments on basalt-(sea)water-CO 2 reactions at 90 °C and neutral pH. What happens to the basalt pore space under post-injection conditions? International Journal of Greenhouse Gas Control, 68, 176-190. https://doi.org/10.1016/j.ijggc.2017.11.013
Wolff-Boenisch, D., Gislason, S. R., & Oelkers, E. H. (2006). The effect of crystallinity on dissolution rates and CO2 consumption capacity of silicates. Geochimica et Cosmochimica Acta, 70(4), 858-870. https://doi.org/10.1016/j.gca.2005.10.016
Wolff-Boenisch, D., Wenau, S., Gislason, S. R., & Oelkers, E. H. (2011). Dissolution of basalts and peridotite in seawater, in the presence of ligands, and CO2: Implications for mineral sequestration of carbon dioxide. Geochimica et Cosmochimica Acta, 75(19), 5510-5525. https://doi.org/10.1016/j.gca.2011.07.004
Xiong, W., Wells, R. K., Horner, J. A., Schaef, H. T., Skemer, P. A., & Giammar, D. E. (2018). CO2 Mineral Sequestration in Naturally Porous Basalt. Environmental Science & Technology Letters, 5(3), 142-147. https://doi.org/10.1021/acs.estlett.8b00047
Yadav, S., & Mehra, A. (2021). A review on ex situ mineral carbonation. Environ Sci Pollut Res Int, 28(10), 12202-12231. https://doi.org/10.1007/s11356-020-12049-4
Yang, F., Bai, B., Tang, D., Shari, D.-N., & David, W. (2010). Characteristics of CO2 sequestration in saline aquifers. Petroleum Science, 7(1), 83-92. https://doi.org/10.1007/s12182-010-0010-3
Zhu, C., Yao, X., Zhao, L., & Teng, H. H. (2016). A composite reactor with wetted-wall column for mineral carbonation study in three-phase systems. Rev Sci Instrum, 87(11), 115115. https://doi.org/10.1063/1.4967715
林朝棨 (1963). 臺灣之第四紀:台灣文獻,地14卷,第一期,1-53頁
林朝棨 (1967). 臺灣外島之地質:台灣銀行季刊,第18卷,第4期,229-256頁
宋聖榮 (2004). 澎湖火山的故事, 澎湖縣政府文化局.
宋聖榮 (1990). 臺灣東部海岸山脈中段火成岩研究兼論北呂宋火山島弧的演變:
國立臺灣大學地質學研究所博士論文,251頁
陳培源;張郇生 (2009). 澎湖群島之地質與地史, 澎湖縣政府文化局.
李寄嵎 (1994). 澎湖地區玄武岩類與福建地區基性脈岩之定年學與地球化學研究
兼論中生代晚期以來中國東南地函之演化:國立臺灣大學地質學研究所博士論文,共226頁
顏一勤,李寄嵎. (2017). 澎湖群島(第二版), 經濟部中央地質調查所.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91380-
dc.description.abstract自工業革命以來,大氣中二氧化碳濃度急遽上升,進而導致大氣平均溫度上升,促使極端氣候事件及生物滅絕事件頻傳,因此減少大氣中二氧化碳濃度勢在必行;除此之外,臺灣國發會也於 2022 年發布了 2050 年淨零排放政策策略,其中也提及了需要發展碳封存等負排放技術。地質碳封存被認為是一門具有龐大發展潛力的一種封存技術,而礦化封存是地質封存中永久且最安全的封存反應機制,其原理利用材料中的鹼性物質中與二氧化碳反應,產生碳酸鹽材料達成負碳的效果,但在傳統的砂頁岩系統中的礦化封存需要千年至萬年的反應時間,在過程中有極大的二氧化碳洩漏風險。而玄武岩在近幾年來被認為是一種極具快速達成礦化封存的地質材料之一,冰島於 2014 年進行了現地玄武岩碳封存試驗當中,將大量二氧化碳氣體混和水溶液後注入到玄武岩地層中,經歷兩年的地下水井監測,據其計算有注入之 95%的二氧化碳氣體在兩年之年完成礦化封存反應。因此,在本研究中應用此概念,設計一套在實驗室模擬玄武岩的礦化封存反應系統,並以澎湖玄武岩作為研究材料,嘗試於實驗室中模擬玄武岩礦化封存反應。因此,在本研究實驗過程中,我們連續監測了反應中水溶液的 pH 值變化,並定期取樣分析水中離子濃度,希望透過 pH 值與水中陽離子濃度的變化得知礦化封存反應的機制。通過 ICP-OES分析水溶液中有利於礦化反應之陽離子,如鈣 (Ca)、鐵 (Fe)、鎂 (Mg) 等元素;並搭配化學計量分析濃度作圖、水化學沉澱相圖等水化學分析技術探討不同水岩比例下玄武岩溶解及二次礦物沉澱反應,自結果中可以得知水岩比例 D2 有最佳的反應條件及環境;而為了更進一步分析整體礦化封存反應的結果,以電子顯微鏡搭
配能量色散光譜儀分析反應後的玄武岩表面特徵,其在水岩比例 D2 的組別中能在玄武岩的表面上發現微量的碳酸鹽訊號,由此證實本研究框下的反應已有初步的礦化反應出現;除此之外,在本研究中也嘗試探討反應完畢之水溶液中所含之二氧化碳,因此將水溶液蒸乾並收集其沉澱固體進行熱重分析,其中分析可以得知水溶液中能在短時間內將注入之二氧化碳以電荷平衡方式將其初步封存於水溶液之中,在水岩比例二比一組合反應 70 天的組別中可以達到 43%的封存效率。由常壓系統及固體表面特徵分析可以得知水岩比例 D2 為最佳的反應分別,因此在本研究中也以此水岩比例模擬高壓地下封存之環境進行實驗,自結果中可以得知增加二氧化碳之分壓有助於玄武岩的溶解且使其沉澱環境更快速的達成相較於常壓有更佳的碳酸鹽沉澱條件。因此綜合以上研究及討論結果可以得知在澎湖鹼性玄武岩極具二氧化碳礦化封存之潛力。
zh_TW
dc.description.abstractSince the industrial revolution, the concentration of carbon dioxide in the atmosphere has increased dramatically, which has led to an increase in the average temperature of the atmosphere and contributed to the frequent occurrence of extreme climate events and biocide. therefore, it is imperative to reduce the concentration of carbon dioxide in the atmosphere; in addition, the National Development Council of Taiwan has released the policy strategy of net-zero emissions by 2050 in 2022, which also mentions the need to develop negative emission technologies such as carbon sequestration. Geological carbon sequestration is regarded as a sequestration technology with great development potential, and mineralization sequestration is the permanent and safest sequestration reaction mechanism in geological sequestration. which uses the alkaline substances in materials to react with carbon dioxide to produce carbonate materials to achieve the effect of negative carbon emissions, But mineralization sequestration in the traditional sandstone system requires a reaction time of one thousand to ten thousand years, and there is a great risk of carbon dioxide leakage during the process. In recent years, basalt has been regarded as one of the geological materials that can achieve mineralization and sequestration very quickly compared with traditional sandstione system. In 2014, Iceland conducted an in-situ basalt carbon sequestration test, in which a large amount of carbon dioxide gas was injected into the basalt layer by mixing it with an aqueous solution, and after two years of monitoring underground water wells, In CarbFix they calculated that 95% of the carbon dioxide gas injected into the basalt layer has been mineralized the mineralization and sequestration reaction within two years. Therefore, this concept was applied in this study to design an in-house system to simulate the mineralization sequestration reaction of basalt in the laboratory. Penghu basalt was used as the research material to simulate the mineralization sequestration reaction of basalt in the laboratory. During the experimental process of this study, we continuously monitored the pH changes of the aqueous solution in the reaction, and regularly sampled and analyzed the ion concentration in the water, aiming to understand the mechanism of the mineralization sequestration reaction through the changes of pH and cation concentration in the water. Through Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) analysis, we analyzed the cations in the aqueous solution that are beneficial to the mineralization reaction, such as calcium (Ca), iron (Fe), magnesium (Mg) and other elements. With the chemical metrology analysis, concentration mapping, hydrochemical precipitation phase diagram and other hydrochemical analysis techniques , We explored the dissolution of basalt and the secondary mineral precipitation reaction under different water and rock ratios. We find that there are optimal conditions and environments for the reaction under the water-rock ratio of 2. For further analysis, we can also analyse the overall mineralization and sequestration reaction mechanism through the changes in pH and cation concentrations in the water. To further analyze we find trace carbonate signals could be find on the surface of the basalt in the D2 water-rock ratio group, which confirms that the reaction under the present study has already had a preliminary mineralization reaction. In addition, in this study, we also tried to investigate the carbon dioxide contained in the aqueous solution at the end of the reaction. The aqueous solution was evaporated and the precipitated solid was collected for thermogravimetric analysis. We found that the carbon dioxide injected into the aqueous solution could be initially sequestered into the aqueous solution by charge equilibrium in a short period of time, and a sequestration efficiency of 43% could be achieved in the 70 days reaction group with water-rock ratio D2. From the analysis of atmospheric pressure system and solid surface characteristics, we find that the water-rock ratio D2 is more better in our reaction group. Therefore, in this study, this water-rock ratio is also used to simulate the environment of high-pressure underground storage for the experiment. Our results showed that increasing the partial pressure of carbon dioxide promotes the dissolution of basalt and expedites the precipitation environment faster to achieve better carbonate precipitation conditions compared to atmospheric pressure. Finally we conclud that the basalt in Penghu has great potential for carbon dioxide mineralization and storage.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-01-26T16:14:51Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-01-26T16:14:52Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
目次 vi
圖次 viii
表次 x
第一章 緒論 1
1-1 研究緣起 1
1-2 研究目的與內容 3
第二章 文獻回顧 4
2-1 碳封存 Carbon Storage 4
2-1-1 碳封存技術 5
2-1-2 玄武岩碳封存 10
2-2 國外現地玄武岩碳封存案例 11
2-2-1 冰島玄武岩碳封存計畫CarbFix project 11
2-2-2 美國玄武岩碳封存計畫Wallula Basalt Pilot Project 12
2-2-3 台灣國內碳封存場址評估 13
2-3 實驗室模擬礦化封存實驗回顧 14
2-4 澎湖地質概況 18
第三章 實驗方法及設備 21
3-1 研究架構與內容 21
3-2 研究材料 23
3-2-1 玄武岩採集 23
3-2-2 玄武岩前處理 23
3-3 實驗裝置設計與方法 26
3-3-1 常溫常壓玄武岩碳封存實驗設計與方法 26
3-3-2 高壓玄武岩碳封存實驗設計與方法 28
3-4 水化學分析 30
3-4-1 pH計 30
3-4-2 感應耦合電漿光學發射光譜儀 (ICP-OES) 31
3-5 特徵分析 32
3-5-1 X-射線粉末繞射儀 (XRD) 32
3-5-2 場發射掃描式電子顯微鏡/能量散射光譜儀 (Scanning Electron Microscope/ Energy Dispersive Spectrometer,SEM&EDS) 33
3-5-3 X射線螢光光譜儀 (X-ray Fluorescence Spectrometer,XRF) 34
3-5-4 熱重分析儀 (Thermogravimetric Analysis,TGA) 34
3-5-5 光學偏光顯微鏡 (Polarized Optical Microscope) 35
第四章 結果與討論 36
4-1 玄武岩岩石分析 36
4-1-1 玄武岩礦物組成分析 36
4-1-2 X射線螢光分析 39
4-1-3 玄武岩粒徑及表面積分析 40
4-2 常壓礦化封存反應 43
4-2-1 常壓礦化封存反應pH值監測及陽離子濃度分析 43
4-2-2 水溶液陽離子濃度比值 58
4-2-3 濃度–pH圖 73
4-3 常壓礦化封存固體材料特徵分析 84
4-3-1 水溶液固碳分析 84
4-3-2 玄武岩表面特徵分析 90
4-4 現地高壓玄武岩礦化封存模擬 93
4-4-1 高壓玄武岩礦化封存水化學分析 93
4-4-2 高壓玄武岩礦化封存岩石表面分析 98
4-5 玄武岩礦化封存潛能評估 100
第五章 研究結論與建議 102
5-1結論 102
5-2 研究建議 104
參考文獻 105
-
dc.language.isozh_TW-
dc.subject水化學zh_TW
dc.subject水質化學zh_TW
dc.subject碳封存zh_TW
dc.subject玄武岩zh_TW
dc.subject礦化封存zh_TW
dc.subjectwater chemistryen
dc.subjectMineral Sequestrationen
dc.subjectCarbon Sequestrationen
dc.subjectBasalten
dc.subjectWater quality analysisen
dc.title澎湖鹼性玄武岩二氧化碳礦化封存岩水試驗zh_TW
dc.titleWater-Rock Interaction for Carbon Dioxide Mineralization Sequestration in Penghu's Alkali Basalten
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee胡景堯;謝文斌;謝佩珊;高立誠zh_TW
dc.contributor.oralexamcommitteeChing-Yao Hu;Wen-Pin Hsieh;Pei-Shan Hsieh;Li-Cheng Kaoen
dc.subject.keyword礦化封存,碳封存,玄武岩,水質化學,水化學,zh_TW
dc.subject.keywordMineral Sequestration,Carbon Sequestration,Basalt,Water quality analysis,water chemistry,en
dc.relation.page110-
dc.identifier.doi10.6342/NTU202400106-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-01-17-
dc.contributor.author-college理學院-
dc.contributor.author-dept地質科學系-
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf6.29 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved