Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工業工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91357
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳政鴻zh_TW
dc.contributor.advisorCheng-Hung Wuen
dc.contributor.author蘇泳樺zh_TW
dc.contributor.authorYung-Hua Suen
dc.date.accessioned2024-01-12T16:10:12Z-
dc.date.available2024-01-13-
dc.date.copyright2024-01-12-
dc.date.issued2023-
dc.date.submitted2023-08-08-
dc.identifier.citation[1] (ISTI), 2023, 全球半導體產業發展趨勢分析報告, 工研院產業科技國際策略發展所
[2] 陳嘉慶,2003 年,「擴散型封裝產業競爭策略分析:以A 公司個案為例」,清華大學科技管理學院碩士論文。
[3] 沈靜蕙,2015 年,「台灣封裝測試業競爭策略與未來展望」,國立中興大學高階經理人碩士在職專班碩士論文。
[4] 劉建惟,2013 年9 月,「三維積體電路直通矽穿孔技術之應用趨勢與製程簡介」,奈米通訊第20 期卷3,頁20-27。
[5] 劉佩真,2016 年2 月,「我國積體電路製造業之回顧與展望」,今日合庫第494 期,頁37-69。
[6] 李幸宜,2015 年5 月,「展望物聯網台灣IC 封裝產業力拼第三金」,工研院工業技術與資訊月刊第283 期,頁30-35。
[7] 楊啟鑫,2016 年6 月,「物聯網暨先進扇出型封裝技術現況及未來發展趨勢剖析」,工業材料354 期,頁140-150。
[8] 陳婉儀,2016 年,「2016 半導體產業年鑑」,經濟部技術處 產業技術知識服務計劃。
[9] 維基百科: https://zh.wikipedia.org/wiki/%E6%91%A9%E5%B0%94%E5%AE%9A%E5%BE%8B
[10] 維基百科: https://zh.wikipedia.org/wiki/%E5%BC%B7%E5%BC%B1%E5%8D%B1%E6%A9%9F%E5%88%86%E6%9E%90
[11] 科技產業資訊室SWOT分析與策略擬定: https://iknow.stpi.narl.org.tw/Post/Read.aspx?PostID=3068
[12] 台積電年報: 1994 – 2020 https://investor.tsmc.com/chinese/annual-reports
[13] 電子工程專輯: 芯思想研究院(Chip Insights)2020年全球封测十强排名https://www.eet-china.com/news/202103311055.html
[14] 一看就懂的 IC 產業結構與競爭關係: https://www.inside.com.tw/article/9029-structure-of-ic-industry
[15] 科技新報: 大面積單晶技術大突破,台積電與交大登上國際頂尖期刊https://technews.tw/2020/03/17/tsmc-and-nctu-join-forces-to-develop-wafer-scale-ultra-thin-insulator/
[16] 工研院產科國際所【IEK產業情報網】https://ieknet.iek.org.tw/iekrpt/default.aspx?actiontype=rpt&indu_idno=15&domain=77
[17] 科技政策研究與資訊中心: 5奈米及3奈米戰爭=台積電與三星對壘https://iknow.stpi.narl.org.tw/Post/Read.aspx?PostID=16294
[18] 財經新報 台積電南科砸百億購地: https://finance.technews.tw/2020/09/25/stsp-is-rapidly-changing-to-tsmc-city/
[19] DIGITIMES Research因應高效能與即時上市要求 CoWoS與SiP將成人工智慧重要封裝技術 (1) https://www.digitimes.com.tw/tech/showimg.asp?sourcetype=2&filename=0000020189630_1_JE8F019MR7.png&source=20180125-16
[20] Liu, L. (2021). 後摩爾定律時代 製程微縮不是唯一選項. EE Times Taiwan. Retrieved from https://www.eettaiwan.com/202103xxnt31-scaling-is-not-the-only-option-in-the-post-moore-era/
[21] Li, S. (2021). 一文看懂先進封裝. Retrieved from https://www.gushiciku.cn/dl/1p4No/zh-tw
[22] SEMI. (2019). 扇出型晶圓級封裝技術,半導體產業變革趨勢. SEMI Taiwan. Retrieved from https://www.semi.org/zh/blogs/technology-trends/packaging/fanout
[23] TrendForce. (2019). 【集邦點評】AI、5G潮流下,晶圓先進封測成大廠目標,中國IC封測廠能分杯羹?. TrendForce 集邦科技. Retrieved from https://medium.com/@trendforcemkt/%E9%9B%86%E9%82%A6%E9%BB%9E%E8%A9%95-ai-5g%E6%BD%AE%E6%B5%81%E4%B8%8B-%E6%99%B6%E5%9C%93%E5%85%88%E9%80%B2%E5%B0%81%E6%B8%AC%E6%88%90%E5%A4%A7%E5%BB%A0%E7%9B%AE%E6%A8%99-%E4%B8%AD%E5%9C%8Bic%E5%B0%81%E6%B8%AC%E5%BB%A0%E8%83%BD%E5%88%86%E6%9D%AF%E7%BE%B9-66f4901edecf
[24] TSMC. (1997). 台積公司與日月光集團簽訂聯盟協議虛擬晶圓廠服務擴及構裝階段台積電新聞集錦. Retrieved from https://pr.tsmc.com/chinese/news/2456Walker, J.,
[25] Freeman, D., & Stromberg, M. (2010). SoC/SiP/3D IC各具優勢 TSV左右晶片演化成敗. 新通訊. Retrieved from https://www.2cm.com.tw/2cm/zh-tw/archives/69CC48F7E2FF43D6B4E3A8547EC5B364
[26] 尹慧中. (2021a). 我半導體產值 明年衝4.5兆. 經濟日報. Retrieved from https://money.udn.com/money/story/11162/5867865?from=edn_hotestlist_storybottom
[27] 尹慧中. (2021b). 余振華:異質封裝 台積電和日月光共創價值. 經濟日報. Retrieved from https://money.udn.com/money/story/5612/5926780?from=edn_newestlist_cate_side
[28] 王彤勻. (2014). InFO比CoWoS成本更低,台積3D IC封裝再突破. MoneyDJ理財網. Retrieved from https://www.moneydj.com/kmdj/news/newsviewer.aspx?a=a78aff30-7ad8-49df-8be9-42819112faaf
[29] 王怡茹. (2020). 台積電高階封裝踩地盤 封測廠危機感倍增? MoneyDJ理財網. Retrieved from https://www.moneydj.com/KMDJ/News/NewsViewer.aspx?a=5f30ae38-2144-44de-b69e-e748f5c4ebb9&c=MB010000
[30] 朱智穎. (2001). 封裝龍頭-日月光及矽品. MoneyDJ 理財網. Retrieved from https://www.moneydj.com/report/zd/zdc/zdcz/zdcz_374F886D-4326-40A0-B042-8F8A53BB2EC0.djhtm
[31] 吳禹潼. (2021). 小晶片Chiplet大商機. 先探投資週刊(2167期). Retrieved from https://www.chinatimes.com/realtimenews/20211031000010-260410?chdtv
[32] 李淑蓮. (2020). 《SEMICON Taiwan 2020》先進封裝技術大盤點. 聯合新聞網. Retrieved from https://udn.com/news/story/6871/4779184
[33] 李壽鵬. (2018). 台積電新核心競爭力成型,三星和格芯正在奮起直追!. 壹讀. Retrieved from https://read01.com/DGen6Ad.html
[34] 林芳如. (2020). SiP、SoC、IC封測是什麼?5G時代的IC產業鏈全貌白話解析. 數位時代. Retrieved from https://www.bnext.com.tw/article/56653/5g-ic
[35] 林苑卿. (2020). 台積電、鴻海上下夾擊沒在怕!日月光用「兩大秘密武器」穩住封測龍頭霸業 站上10年成長大浪. 財訊. Retrieved from https://www.wealth.com.tw/articles/e2f50132-74e4-4e23-a813-8b9a7de860e9
[36] 林崇銘. (2011). 滿足行動裝置設計要求 SiP技術優勢受青睞. 新通訊. Retrieved from https://www.2cm.com.tw/2cm/zh-tw/tech/5A1A7E6F5FAE441784A877547321D6C5
[37] 邵樂峰. (2021). 先進封裝:八仙過海各顯神通. EE Times Taiwan Retrieved from https://www.eettaiwan.com/20210805nt61-advanced-packaging/
[38] 侯冠州. (2020). 【產業科普】先進封裝正夯,2.5D、3D 和 Chiplets 技術有何特點. 科技新報 Tech News. Retrieved from https://technews.tw/2020/10/01/chiplets-soc-emib/
[39] 張嘉華, & 唐經洲. (2010). TSV技術考驗多 3D IC量產起步難. 新通訊. Retrieved from https://www.2cm.com.tw/2cm/zh-tw/market/9D0AF0DAB05442E29A3868E3E2FE1DF1
[40] 郭家宏. (2021). 摩爾定律的救世主,「先進封裝」成為半導體產業的新寵兒!. 科技橘報Tech Orange. Retrieved from https://buzzorange.com/techorange/2021/09/23/advanced-packaging-and-moore-law/
[41] 陳妍蓁. (2011). 面對高度整合、低耗能、即時上市的3D IC製造技術及產品應用趨勢. DigiTimes. Retrieved from https://www.digitimes.com.tw/tech/dt/n/shwnws.asp?cnlid=14&id=0000251128_FWY2OCT91YHT6G9AVZFJU
[42] 陳良榕. (2018). 一個「小媳婦部門」為何能讓台積電擊敗三星、獨吃蘋果?. 天下Web only. Retrieved from https://www.cw.com.tw/article/5089325
[43] 陳婉潔. (2020). 先進IC封裝技術往TSV 3D IC為必然發展方向. DigiTimes. Retrieved from https://www.digitimes.com.tw/tech/dt/n/shwnws.asp?cnlid=13&id=0000592916_922LRTQH0M8MGZ7LGGQAU
[44] 黃日燦. (2013). 黃日燦看併購, 垂直整合 日月光成就封測大業 Jones Day. Retrieved from https://www.jonesday.com/zh-hant/insights/2013/07/%E9%BB%83%E6%97%A5%E7%87%A6%E7%9C%8B%E4%BD%B5%E8%B3%BC,-%E5%9E%82%E7%9B%B4%E6%95%B4%E5%90%88-%E6%97%A5%E6%9C%88%E5%85%89%E6%88%90%E5%B0%B1%E5%B0%81%E6%B8%AC%E5%A4%A7%E6%A5%AD
[45] 楊啟鑫. (2021). 半導體小晶片(Chiplet)模式暨異質整合封裝發展趨勢. Retrieved from https://www.moea.gov.tw/MNS/doit/industrytech/IndustryTech.aspx?menu_id=13545&it_id=345
[46] 熊毅晰. (2019). 地表最接近工業4.0!台積電兩大獨門武器首度公開. 天下雜誌(665期). Retrieved from https://www.cw.com.tw/article/5093674?template=transformers
[47] 劉佩真. (2021). 國內外半導體業景氣走向與發展之趨勢. 台灣經濟研究院全球資訊網. Retrieved from https://www.tier.org.tw/achievements/pec3010.aspx?GUID=ff3f4cb2-d90a-40fe-93a8-4c9fb686d257
[48] 劉烱德. (2021). 3D封裝技術及發展趨勢. 恆穩團隊. Retrieved from http://www.pra.com.tw/product_con_A.php?id=1905
[49] 盧智芳. (1998). 共創日月光雙傳奇 — 張虔生、張洪本. 天下雜誌(203期). Retrieved from https://www.cw.com.tw/article/5106455
[50] 鍾榮峰, & 張建中. (2021). 台積電:異質整合攻系統微縮 面對兩大挑戰. 中央社. Retrieved from https://www.cna.com.tw/news/afe/202111300140.aspx譚偉晟. (2020). 日月光遭台積踩地盤 如何守住高階市場 今周刊 1242期. Retrieved from https://www.businesstoday.com.tw/article/category/183015/post/202010070035/%E6%97%A5%E6%9C%88%E5%85%89%E9%81%AD%E5%8F%B0%E7%A9%8D%E8%B8%A9%E5%9C%B0%E7%9B%A4%E3%80%80%E5%A6%82%E4%BD%95%E5%AE%88%E4%BD%8F%E9%AB%98%E9%9A%8E%E5%B8%82%E5%A0%B4
[51] 半導體高端製造專題報告2020/03/25:半導體封裝基板行業深度, 研究來源:小兵講科技 原文網址:https://read01.com/Dnez7P3.html
[52] Cadence, EETimes, Feb 2019延續摩爾定律 異質整合技術將扮演要角
[53] 白育綸 2022-02-07「載板荒」蔓延2022!龍頭廠欣興如何保持優勢?, 遠見雜誌
[54] TPCA, 2019, 台灣PCB產業技術發展藍圖(2019-2023版)
[55] StockFeel,2019 年 1 月 21 日, 系統封裝(SiP:System in a Package)的種類與優缺點,
[56] Mordor Intelligence Pvt Ltd, 2023年01月23日|Panel Level Packaging Market - Growth, Trends, Covid-19 Impact, and Forecasts (2023 - 2028)
[57] Ravi Mahajan, October 2021, Advanced Packaging Architectures for Heterogenous Integration, Intel Fellow, Assembly & Test Technology Development Group
[58] Chien-Jung Chen, June 2021, The Research On The Development Strategy Of Semiconductor Packaging Companies In Advanced Packaging, NYCU
[59] YC Wu,Jan 2022, Exploring the Co-competition between Semiconductor Foundry and OSAT: A Case study of TSMC and ASE, NCCU.
[60] Tien-Ning Chang, July 2017, Reliability assessment and parametric analysis of Fan-out wafer level packaging with glass substrate, NTHU
[61] Shih-Feng Huang, May 2017The Market Analysis and Future Development of Fan-Out Wafer level packaging (FOWLP) in advanced Packaging Technology, Fu Jen Catholic University
[62] Braun, T., Topper, M., Raatz, S., Voges, S., Kahle, R., Bader, V., Bauer, J.,Becker, K.F., Thomas, T., Aschenbrenner, R. & Lang, K.D., “Opportunities and Challenges for Fan-Out Panel Level Packaging (FOPLP)”, paper presented at SiP Global Summit 2015. Taipei. Taiwan, September 02-04.
[63] Chai T. C. & Yang J. B., 2014 “IME Technical Proposal–High Density FOWLP for Mobile Application”. Working paper, Singapore: Institute of Microelectronics Project Report.
[64] Chai T. C. & Yang J. B., 2016, “IME Industry Forum–Multi-Chip Fan-Out Wafer Level Packaging Consortium for Next Generation Mobile/2.5C/5G Application”, Working paper, Singapore: Institute of Microelectronics Project Report.
[65] Keser, B., “Introduction to Fan-Out Wafer Level Package”, San Jose: International Wafer Level Packaging Conference, 2015.
[66] Tseng, C.F., Liu C.S., Wu C.H. & Yu, D., “InFO (Wafer Level Integrated Fan-Out) Technology”, paper presented at IEEE 66th Electronic Components and Technology Conference, Florida, 2016.
[67] TSMC on-line Homepage https://www.tsmc.com/english
[68] M.E Porter, 1980, Competitive Strategies Techniques for analysis industries and competitors: Free Press, New-York
[69] M.E Porter, 1985, Competitive Advantage: creating and sustaining superior performance: Free Press, New-York
[70] ASE. Heterogeneous Integration (HI). ASE Group. Retrieved from https://ase.aseglobal.com/en/heterogeneous_integration Cadence. (2018). Chiplets -- Reinventing systems design. Cadence. Retrieved from https://community.cadence.com/cadence_blogs_8/b/spi/posts/chiplets
[71] Desai, A. (2020). 2.5D and 3D ICs: New paradigms in ASIC. einfochips. Retrieved from https://www.einfochips.com/blog/2-5d-3d-ics-new-paradigms-in-asic/
[72] ITRS. (2010). International Technology Roadmap for Semiconductors (ITRS) Updates 2010. Retrieved from http://maltiel-consulting.com/ITRS_2010_Updates_maltiel_semiconductor_consulting.html
[73] ITRS. (2011). International Technology Roadmap for Semiconductors (ITRS) Updates 2011. Retrieved from https://www.semiconductors.org/resources/2011-international-technology-roadmap-for-semiconductors-itrs/
[74] Lee, C. (2017). What’s what in advanced packaging. SemiEngineering. Retrieved from https://semiengineering.com/whats-what-in-advanced-packaging/
[75] Park. (2020). This is not your fathers advanced semiconductor packaging...An EDA perspective. Cadence. Retrieved from https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/ic-package-design-analysis/imaps-dev-pack-20-eda-perspective.pdf
[76] Schor, D. (2019). Chiplet. WikiChip. Retrieved from https://en.wikichip.org/wiki/chiplet
[77] Wesling, P. (2019). Heterogeneous Integration Roadmap (HIR) 2019 Edition. IEEE Electronics Packaging Society (EPS). Retrieved from https://eps.ieee.org/technology/heterogeneous-integration-roadmap.html
[78] Yole. (2020a). System-in-Package (SiP) Technology and Market Trends 2020 report. Yole Développement. Retrieved from http://www.yole.fr/SiP_Technology_Market_Overview.aspx
[79] Yole. (2020b). Status of the Advanced Packaging Industry 2020 report. Yole Développement. Retrieved from http://www.yole.fr/AdvancedPackaging_Industry_MarketFigures_SYNAPS.aspx
[80] Yole. (2021a). Status of the Advanced Packaging Industry 2021 report. Yole Développement. Retrieved from http://www.yole.fr/Status_Of_The_Advanced_Packaging_Industry_Yole_Sept2021.aspx
[81] Yole. (2021b). System-in-Package Technology and Market Trends 2021 report. Yole Développement. Retrieved from http://www.yole.fr/System_In_Package_Market_Update_2021.aspx
[82] Yole. (2021c). Fan-Out WLP and PLP Applications and Technologies 2021 report. Yole Développement. Retrieved from http://www.yole.fr/Fan_Out_WLP_PLP_HiSilicon_Hi1382_2021.aspx
[83] https://www.tsmc.com/english/aboutTSMC/dc_infographics_supplychain
[84] Fan-Out Packaging | ASE (aseglobal.com)
[85] Heterogeneous Integration and IC Packaging - EE Times Europe
[86] Yole Development, 2023, Advanced technology & marketing report Jan 2023
[87] Strauss & Corbin, 1998, Basics of Qualitative Research: Grounded Theory Procedures and Techniques
[88] Nadine Pahl, Anne Richter, 2009; SWOT Analysis; Idea, Methodology and a Practical Approach
[89] John H. Lau, Jan 2022 Recent Advances and Trends in Advanced Packaging
[90] Ajay Kumar, Rao Yalamanchili, Apr 2012, Die singulation technologies for advanced packaging: A critical review
[91] Ravi Mahajan, Farhana Sheikh, Mar 2020, Multi-die Integration Using Advanced Packaging Technologies
[92] G Duan, Y Kanaoka, 2021, Die embedding challenges for EMIB advanced packaging technology
[93] B Keser, C Amrine, T Duong, 2007, The redistributed chip package: A breakthrough for advanced packaging
[94] CF Tseng, CS Liu, CH Wu, D Yu, 2016, InFO (wafer level integrated fan-out) technology
[95] CC Liu, SM Chen, FW Kuo, HN Chen, 2012, High-performance integrated fan-out wafer level packaging (InFO-WLP): Technology and system integration
[96] VS Rao, CT Chong, D Ho, 2016, Development of high density fan out wafer level package (HD FOWLP) with multi-layer fine pitch RDL for mobile applications
[97] T Bruan, S Voges, T Thomas, 2014, Material and process trends for moving from FOWLP to FOPLP
[98] JH Lau, CT Ko, CY Peng, 2020, Chip-last (RDL-first) fan-out panel-level packaging (FOPLP) for heterogeneous integration
[99] T Braun, KF Becker, M Topper, 2016, Opportunities and Challenges for FOWLP and FOPLP
[100] CT Ko, H Yang, J Lau, M Li, 2018, Design, materials, process, and fabrication of fan-out panel-level heterogeneous integration
[101] S Kroehnert, SA Nanium, AP de Maio, 2017, Panel fan-out manufacturing why, when, and how?
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91357-
dc.description.abstract近年來,隨著智慧型手機、平板電腦等消費電子產品的日益普及,半導體產業對於微小化、高密度、高效能的封裝技術有著越來越高的需求。除前段製程微縮越來越困難外,5G通訊對高頻寬、低延遲與大量連線的要求,使得通訊晶片必須要有更高的整合性,才能滿足5G通訊提出的效能標準;再加上絕大多數物聯網裝置都有嚴格的成本、能耗與外觀尺寸的限制,通訊晶片業者如果不能利用先進封裝技術,將更多通訊元件、甚至天線整合在單一封裝機構內,形成完整的微型通訊模組,恐怕將難以滿足未來應用市場的需求。
此外,為滿足AI人工智慧晶片所需要的高速運算處理能力,將一顆SoC設計切割成chiplet,再用先進封裝技術提供的高密度互聯,將多顆chiplet包在同一個封裝結構內,將會是未來的發展趨勢,而這個趨勢也會讓原本使用不同供應鏈跟設備的前後段半導體製程,變得越來越相似。當然,製程設備與相關材料的費用與成本,也將隨之高漲。其中,晶圓級封裝(WLP)作為一種高效能、低成本、微小化的封裝方式,在市場上也獲得了廣泛應用。
然而,晶圓級封裝 (WLP) 也存在一些限制,例如製程複雜度高、封裝高度有限且隨著封裝單位尺寸逐步增大等問題,進一步促使了先進封裝技術從晶圓級封裝(WLP)向面板級封裝(PLP)轉變的趨勢,而其兩種封裝方式,並非零和戰局,而是希望在其間找到最適合的成本效能方案。因此,晶圓代工廠與封裝製造廠因應客戶的高階製程需求,除了發展先進封裝產業,也同時發展面板級封裝技術,以建立不同的ECO system。
本論文內容主要在說明扇出型封裝(Fan-out packaging) 的發展沿革,藉由文獻整理回顧分析早期扇出型封裝製程發展歷程、歷年的市場狀況與變化,並對未來可開發的市場契機與技術發展方向提供建議。本研究並針對主要封裝方式,整理封裝產業發展扇出型製程技術的現況與未來機會,提供封裝產業未來發展策略之參考。
zh_TW
dc.description.abstractIn recent years, with the increasing popularity of consumer electronic products such as smartphones and tablet computers, the semiconductor industry has increasingly high demand for miniaturized, high-density, and high-efficiency packaging technologies. In addition to the increasingly difficult miniaturization of the front-end process, 5G communication requires high bandwidth, low latency, and many connections, so that communication chips must have higher integration to meet the performance standards proposed by 5G communication. Most IoT devices have strict cost, energy consumption and appearance size restrictions. If communication chip manufacturers cannot use advanced packaging technology, they can integrate more communication components and even antennas into a single packaging mechanism to form a complete miniature communication module, I am afraid that it will be difficult to meet the needs of the future application market.
In addition, in order to meet the high-speed computing and processing capabilities required by AI (artificial intelligence) chips, cutting a SoC design into chiplets, and then using the high-density interconnection provided by advanced packaging technology to package multiple chiplets in the same packaging mechanism, will it is the future development trend, and this trend will make the front and rear semiconductor processes that originally use different supply chains and equipment become more and more similar. Of course, the cost of process equipment and related materials will also rise accordingly. Among them, wafer-level packaging (WLP), as a high-efficiency, low-cost, and miniaturized packaging method, has also been widely used in the market.
However, wafer-level packaging (WLP) also has some limitations, such as high process complexity, limited package height, and gradually increasing packaging unit size, which further promotes advanced packaging technology from wafer-level packaging (WLP) to the changing trend of panel-level packaging (PLP), and the two packaging methods, are not a zero-sum battle, but hope to find the most suitable cost-effective solution among them. In response to customers' high-level process requirements, wafer foundries and packaging manufacturers not only develop advanced packaging industries, but also develop panel-level packaging technologies to establish different ECO systems.
The content of this paper is mainly to explain the development history of fan-out packaging (Fan-out packaging), review and analyze the development history of the early fan-out packaging process, the market conditions and changes over the years, and the market opportunities that can be developed in the future providing advice with directions. This study also explains the status and future opportunities of the fan-out process technology in the packaging industry for the main packaging methods and provides a reference for the future development strategy of the packaging industry.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-01-12T16:10:12Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-01-12T16:10:12Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員審定書 i
致 謝 ii
中文摘要 iii
Abstract iv
圖目錄 viii
表目錄 x
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 6
第二章 研究方法與文獻探討 7
2.1 文獻研究法與產業相關資料研究分析 8
2.2 三維晶片 (3DIC) 封裝製程定義 8
2.3 扇出型封裝 (Fan-Out Packaging) 製程定義與特性說明 10
2.4波特五力分析模型理論 11
2.5 SWOT模型理論 14
第三章 扇出型封裝產業現況 17
3.1先進封裝產品定義與市場 17
3.2扇出型封裝製程的定義 18
3.3扇出型封裝製程的發展與沿革 19
3.4扇出型封裝製程的市場分析 27
3.5面板級扇出型封裝的崛起、挑戰與市場 30
第四章 扇出型封裝製程應用與競爭分析 35
4.1扇出型封裝製程的分類與應用 35
4.2 扇出型封裝製程的主要優勢 39
4.3扇出型封裝製程趨勢 40
4.4 扇出型封裝技術的五力分析 41
4.4.1 產業內現有競爭者 42
4.4.2 潛在進入者的威脅 42
4.4.3 替代品的威脅 43
4.4.4 購買者的議價能力 44
4.4.5 供應商的議價能力 44
4.5 扇出型封裝技術的SWOT分析 45
4.5.1 內部優勢 46
4.5.2 內部劣勢 46
4.5.3 外部機會 47
4.5.4 外部威脅 47
第五章 結論與建議 49
5.1 後續研究建議 50
參考文獻列表 53
-
dc.language.isozh_TW-
dc.title扇出型封裝技術的市場趨勢、競爭力與未來發展zh_TW
dc.titleA Study on Industry Trend、Competitiveness and Development of FO (Fan-Out) Packaging Technologyen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳文智;周育樂zh_TW
dc.contributor.oralexamcommitteeWen-Chih Chen;Ywh-Leh Chouen
dc.subject.keyword晶圓級封裝,扇出型封裝,面板級封裝,小晶片,重構線路層,zh_TW
dc.subject.keywordWLP,PLP,Fan-Out packaging,Chiplet,RDL,en
dc.relation.page63-
dc.identifier.doi10.6342/NTU202302104-
dc.rights.note未授權-
dc.date.accepted2023-08-09-
dc.contributor.author-college工學院-
dc.contributor.author-dept工業工程學研究所-
顯示於系所單位:工業工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
4.69 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved