請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91347完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊吉水 | zh_TW |
| dc.contributor.advisor | Jye-Shane Yang | en |
| dc.contributor.author | 楊承叡 | zh_TW |
| dc.contributor.author | Cheng-Jui Yang | en |
| dc.date.accessioned | 2024-01-03T16:12:50Z | - |
| dc.date.available | 2024-01-04 | - |
| dc.date.copyright | 2024-01-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-12-15 | - |
| dc.identifier.citation | (1) Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276-279.
(2) Farrusseng, D.; Aguado, S.; Pinel, C. Metal–Organic Frameworks: Opportunities for Catalysis. Angew. Chem. Int. Ed. 2009, 48, 7502-7513. (3) Horcajada, P.; Serre, C.; Vallet-Regí, M.; Sebban, M.; Taulelle, F.; Férey, G. Metal–Organic Frameworks as Efficient Materials for Drug Delivery. Angew. Chem. Int. Ed. 2006, 45, 5974-5978. (4) Lustig, W. P.; Mukherjee, S.; Rudd, N. D.; Desai, A. V.; Li, J.; Ghosh, S. K. Metal–organic frameworks: functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev. 2017, 46, 3242-3285. (5) Wang, J.; Wang, Y.; Hu, H.; Yang, Q.; Cai, J. From metal–organic frameworks to porous carbon materials: recent progress and prospects from energy and environmental perspectives. Nanoscale 2020, 12, 4238-4268. (6) Horike, S.; Shimomura, S.; Kitagawa, S. Soft porous crystals. Nat. Chem 2009, 1, 695-704. (7) Atwood, J. L.; Barbour, L. J.; Jerga, A. Storage of Methane and Freon by Interstitial van der Waals Confinement. Science 2002, 296, 2367-2369. (8) Deng, J.-H.; Luo, J.; Mao, Y.-L.; Lai, S.; Gong, Y.-N.; Zhong, D.-C.; Lu, T.-B. π-π stacking interactions: Non-negligible forces for stabilizing porous supramolecular frameworks. Sci. Adv. 2020, 6, eaax9976. (9) Chen, C.; Guan, H.; Li, H.; Zhou, Y.; Huang, Y.; Wei, W.; Hong, M.; Wu, M. A Noncovalent π-Stacked Porous Organic Molecular Framework for Selective Separation of Aromatics and Cyclic Aliphatics. Angew. Chem. Int. Ed. 2022, 61, e202201646. (10) Yam, V. W.-W.; Cheng, E. C.-C. Highlights on the recent advances in gold chemistry—a photophysical perspective. Chem. Soc. Rev. 2008, 37, 1806-1813. (11) Pyykkö, P. Relativity, Gold, Closed-Shell Interactions, and CsAu⋅NH3. Angew. Chem. Int. Ed. 2002, 41, 3573-3578. (12) Angermaier, K.; Zeller, E.; Schmidbaur, H. Crystal structures of chloro(trimethylphosphine) gold(I), chloro(tri-ipropylphosphine)gold(I) and bis(trimethylphosphine) gold(I) chloride. J. Organomet. Chem. 1994, 472, 371-376. (13) Schmidbaur, H.; Schier, A. A briefing on aurophilicity. Chem. Soc. Rev. 2008, 37, 1931-1951. (14) Seki, T.; Ida, K.; Sato, H.; Aono, S.; Sakaki, S.; Ito, H. Aurophilicity-Mediated Construction of Emissive Porous Molecular Crystals as Versatile Hosts for Liquid and Solid Guests. Chem. Eur. J. 2020, 26, 735-744. (15) López-de-Luzuriaga, J. M.; Monge, M.; Olmos, M. E. Luminescent aryl–group eleven metal complexes. Dalton Trans. 2017, 46, 2046-2067. (16) Lima, J. C.; Rodriguez, L. Applications of gold (I) alkynyl systems: a growing field to explore. Chem. Soc. Rev. 2011, 40, 5442-5456. (17) Mirzadeh, N.; Priver, S. H.; Blake, A. J.; Schmidbaur, H.; Bhargava, S. K. Innovative molecular design strategies in materials science following the aurophilicity concept. Chem. Rev. 2020, 120, 7551-7591. (18) Yam, V. W.-W.; Au, V. K.-M.; Leung, S. Y.-L. Light-emitting self-assembled materials based on d8 and d10 transition metal complexes. Chem. Rev. 2015, 115, 7589-7728. (19) Jin, M.; Ito, H. Solid-state luminescence of Au(I) complexes with external stimuli-responsive properties. J. Photochem. Photobiol. C 2022, 51, 100478. (20) Zhao, Q.; Xu, W.; Sun, H.; Yang, J.; Zhang, K. Y.; Liu, S.; Ma, Y.; Huang, W. Tunable Electrochromic Luminescence of Iridium(III) Complexes for Information Self-Encryption and Anti-Counterfeiting. Advanced Optical Materials 2016, 4, 1167-1173. (21) Li, M.; Yuan, Y.; Chen, Y. Acid-Induced Multicolor Fluorescence of Pyridazine Derivative. ACS Applied Materials & Interfaces 2018, 10, 1237-1243. (22) Seki, T.; Takamatsu, Y.; Ito, H. A Screening Approach for the Discovery of Mechanochromic Gold(I) Isocyanide Complexes with Crystal-to-Crystal Phase Transitions. J. Am. Chem. Soc. 2016, 138, 6252-6260. (23) Ito, H.; Muromoto, M.; Kurenuma, S.; Ishizaka, S.; Kitamura, N.; Sato, H.; Seki, T. Mechanical stimulation and solid seeding trigger single-crystal-to-single-crystal molecular domino transformations. Nat. Commun. 2013, 4, 2009. (24) Mansour, M. A.; Connick, W. B.; Lachicotte, R. J.; Gysling, H. J.; Eisenberg, R. Linear Chain Au(I) Dimer Compounds as Environmental Sensors: A Luminescent Switch for the Detection of Volatile Organic Compounds. J. Am. Chem. Soc. 1998, 120, 1329-1330. (25) Liang, J.; Chen, Z.; Yin, J.; Yu, G.-A.; Liu, S. H. Aggregation-induced emission (AIE) behavior and thermochromic luminescence properties of a new gold (I) complex. Chem. Commun. 2013, 49, 3567-3569. (26) Seki, T.; Sakurada, K.; Muromoto, M.; Ito, H. Photoinduced single-crystal-to-single-crystal phase transition and photosalient effect of a gold(i) isocyanide complex with shortening of intermolecular aurophilic bonds. Chem. Sci 2015, 6, 1491-1497. (27) Yang, J.-S.; Swager, T. M. Fluorescent Porous Polymer Films as TNT Chemosensors: Electronic and Structural Effects. J. Am. Chem. Soc. 1998, 120, 11864-11873. (28) Tou, S.-L.; Huang, G.-J.; Chen, P.-C.; Chang, H.-T.; Tsai, J.-Y.; Yang, J.-S. Aggregation-induced emission of GFP-like chromophores via exclusion of solvent–solute hydrogen bonding. Chem. Commun. 2014, 50, 620-622. (29) Tu, L.; Che, W.; Li, S.; Li, X.; Xie, Y.; Li, Z. Alkyl chain regulation: distinctive odd–even effects of mechano-luminescence and room-temperature phosphorescence in alkyl substituted carbazole amide derivatives. J. Mater. Chem. C 2021, 9, 12124-12132. (30) Cheriya, R. T.; Joy, J.; Alex, A. P.; Shaji, A.; Hariharan, M. Energy Transfer in Near-Orthogonally Arranged Chromophores Separated through a Single Bond. J. Phys. Chem. C 2012, 116, 12489-12498. (31) Nagarajan, K.; Gopan, G.; Cheriya, R. T.; Hariharan, M. Long alkyl side-chains impede exciton interaction in organic light harvesting crystals. Chem. Commun. 2017, 53, 7409-7411. (32) Iwasaki, T.; Murakami, S.; Takeda, Y.; Tohnai, N.; Kambe, N. Effect of Alkyl Groups in Pyrene Chromophore on the Mechanical Response of Pyrene-Octafluoronaphthalene Co-Crystals. Chem. Asian J. 2020, 15, 1349-1354. (33) Dong, Y.-B.; Chen, Z.; Yang, L.; Hu, Y.-X.; Wang, X.-Y.; Yin, J.; Liu, S. H. Effect of alkyl chain length on the luminescence on-off mechanochromic behavior of solid-state Gold(I) isocyanide complexes. Dyes Pigm. 2018, 150, 315-322. (34) Bartlett, P. D.; Ryan, M. J.; Cohen, S. G. Triptycene1 (9,10-o-Benzenoanthracene). J. Am. Chem. Soc. 1942, 64, 2649-2653. (35) VR, S.; Shalaev, V. AROMATIC-HYDROCARBONS-NEW ARYN-2, 3-DEHYDROTRIPTYCENE IN REACTION WITH ANTHRACENE. Dokl. Akad. Nauk 1974, 216, 110-112. (36) Huebner, C. F.; Puckett, R. T.; Brzechffa, M.; Schwartz, S. L. A trimeric C48H30 hydrocarbon of unusual structural interest derived from 9,10-dihydro-9,10-ethenoanthracene. Tetrahedron Lett. 1970, 11, 359-362. (37) Hsu, L.-Y.; Maity, S.; Matsunaga, Y.; Hsu, Y.-F.; Liu, Y.-H.; Peng, S.-M.; Shinmyozu, T.; Yang, J.-S. Photomechanochromic vs. mechanochromic fluorescence of a unichromophoric bimodal molecular solid: multicolour fluorescence patterning. Chem. Sci 2018, 9, 8990-9001. (38) Kuo, C.-Z.; Hsu, L.-Y.; Chen, Y.-S.; Goto, K.; Maity, S.; Liu, Y.-H.; Peng, S.-M.; Kong, K. V.; Shinmyozu, T.; Yang, J.-S. Alkyl Chain Length- and Polymorph-Dependent Photomechanochromic Fluorescence of Anthracene Photodimerization in Molecular Crystals: Role of the Lattice Stiffness. Chem. Eur. J. 2020, 26, 11511-11521. (39) Lin, C.-J.; Liu, Y.-H.; Peng, S.-M.; Shinmyozu, T.; Yang, J.-S. Excimer–monomer photoluminescence mechanochromism and vapochromism of pentiptycene-containing cyclometalated platinum (II) complexes. Inorg. Chem. 2017, 56, 4978-4989. (40) Hsu, Y.-F.; Wu, T.-W.; Kang, Y.-H.; Wu, C.-Y.; Liu, Y.-H.; Peng, S.-M.; Kong, K. V.; Yang, J.-S. Porous Supramolecular Assembly of Pentiptycene-Containing Gold (I) Complexes: Persistent Excited-State Aurophilicity and Inclusion-Induced Emission Enhancement. Inorg. Chem. 2022, 61, 11981-11991. (41) Zhu, X.-Z.; Chen, C.-F. Iptycene Quinones: Synthesis and Structure. J. Org. Chem. 2005, 70, 917-924. (42) Tsai, C. Y.; Cheng, C. M.; Ho, Y. C.; Hsu, Y. F.; Liu, Y. H.; Peng, S. M.; Yang, J. S. Pseudopolymorphism of a luminescent anthracene‐pentiptycene π‐system: The persistent alkyl‐pentiptycene threading mode. J. Chin. Chem. Soc. 2022, 69, 1719-1729. (43) Han, S.; Yoon, Y. Y.; Jung, O.-S.; Lee, Y.-A. Luminescence on–off switching via reversible interconversion between inter-and intramolecular aurophilic interactions. Chem. Commun. 2011, 47, 10689-10691. (44) Yang, J.-S.; Ko, C.-W. Pentiptycene Chemistry: New Pentiptycene Building Blocks Derived from Pentiptycene Quinones. J. Org. Chem. 2006, 71, 844-847. (45) Nishina, N.; Yamamoto, Y. Gold-catalyzed intermolecular hydroamination of allenes: first example of the use of an aliphatic amine in hydroamination. Synlett 2007, 2007, 1767-1770. (46) Siemeling, U.; Rother, D.; Bruhn, C. Reactions of gold (I) acetylides with 1, 1′-diisocyanoferrocene: from orthodox to unorthodox behavior. Organometallics 2008, 27, 6419-6426. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91347 | - |
| dc.description.abstract | 理解分子結構和超分子自組裝之間的關係為晶體工程中最根本的問題。本實驗室先前合成出含五苯荑金(I)錯合物Ph分子,觀察其晶體發現其透過碳鏈、末端苯環與五苯荑之U型凹槽形成榫卯結構,以及四核金中心具豐富之Au-Au、Au-π、π-π作用力共同堆積形成具孔洞之骨架,並為金(I)錯合物之孔洞晶體中最大之孔隙尺寸,此外,亦同時具力致、光致、薰致放光變色之行為。於本研究中,我們調整其烷基鏈長度,合成出一系列Ph-Cn分子 (n = 5-7、9-12、16),探討烷基鏈長度對金(I)錯合物系統之超分子自組裝行為影響,並確立烷基鏈對於多孔框架形成之重要性。
隨烷基鏈長之增加,晶體排列模式以金之核數分類由Au2轉變為Au4再轉變為Au單核形式。研究結果發現形成榫卯結構所需之最佳烷基鍊長度為C8與C9,而親金作用力與CH−π作用力間的競爭對於決定晶體最終排列模式扮演重要之角色。令人驚訝的是,Ph-C11再度呈現出具孔洞結構之晶體排列,且為據我們所知具有最大孔徑比例之金(I)錯合物之多孔框架。此外,透過NMR實驗觀察到Ph-Cn分子於溶液狀態下之自組裝型為:利用二維DOSY數據的計算證明了四聚體的形成,且經由NOE信號證明了榫卯結構之超分子相互作用力。而錯合物Ph-Cn之晶體結構與其刺激響應特性亦具高度相關性。 | zh_TW |
| dc.description.abstract | Understanding the relationship between molecular structure and supramolecular architecture is the most fundamental issue in molecular crystal engineering. We recently discovered an intriguing pentiptycene-containing gold(I) molecular system (Ph) that crystalizes persistently in a porous crystalline framework via tongue-and-groove-like packing, and also shows rich stimuli-responsive behaviors. In this work, we study alkyl chain length effects (Ph-Cn, n = 5-7, 9-12, and 16) on the supramolecular self-assembly of this system to identify the importance of alkyl chains in forming the porous framework.
By tuning alkyl chain length, crystal packing modes transfer from supramolecular Au2 to Au4 and to Au along with increased chain lengths. We revealed that the optimal alkyl chain length for the tongue-and-groove joinery is C8 and C9, and the competition between aurophilicity and CH-π interactions plays a critical role in determining the crystal packing mode. To our surprise, Ph-C11 also presents a porous framework with the largest pore size for gold(I) complexes to our knowledge. Moreover, the assembly of Ph-Cn in solution states is detected by NMR experiments. The formation of tetramers is proved by the calculation of 2D DOSY data, and NOE signals evidence of the tongue-and-groove supramolecular interactions. In addition, a correlation between the supramolecular structures and the stimuli-responsive properties is also provided. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-01-03T16:12:50Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-01-03T16:12:50Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
謝誌 ii 摘要 iv Abstract v 目錄 vi 圖目錄 x 表目錄 xv 附圖目錄 xvi 附表目錄 xix 第一章 緒論 1 1.1 多孔結晶性材料 (Porous Crystalline Materials) 1 1.1.1 MOFs、COFs與HOFs之簡介 2 1.1.2 PSFs之介紹 2 1.2 金(I)錯合物之化學性質 5 1.2.1 親金作用力 5 1.2.2 金(I)錯合物之光物理性質 9 1.2.3 金(I)錯合物之刺激響應性質 10 1.2.3.1 力致放光變色 (Mechanochromism) 10 1.2.3.2 薰致放光變色 (Vapochromism) 12 1.2.3.3 熱致放光變色 (Thermochromism) 15 1.2.3.4 光致放光變色 (Photochromism) 16 1.3 烷基碳鏈之介紹 17 1.3.1 碳鏈於液相中之影響 18 1.3.1.1 提升溶解度 18 1.3.1.2 提供疏水性 18 1.3.2 碳鏈於固相中之影響 19 1.3.2.1 長碳鏈之奇偶效應 19 1.3.2.2 長碳鏈之立體障礙影響 21 1.4 含五苯荑衍生物之介紹 24 1.4.1 苯荑分子之結構特性 24 1.4.2 含五苯荑衍生物應用於智能發光材料 25 1.4.3 含金(I)五苯荑錯合物系統 28 1.5 研究動機 32 第二章 結果與討論 33 2.1 目標錯合物之合成 33 2.2 目標錯合物之自組裝行為分析 34 2.2.1 目標錯合物之晶體結構分析 34 2.2.1.1 Ph-C9~C11之晶體結構 36 2.2.1.2 Ph-C5~C7之晶體結構 41 2.2.1.3 Ph-C12及Ph-C16之晶體結構 43 2.2.2 目標錯合物於溶液態之自組裝行為 44 2.2.2.1 一維氫譜訊號之標定 44 2.2.2.2 二維擴散排序譜 (two dimensional diffusion-ordered spectroscopy, 2D DOSY) 47 2.2.2.3 一維選擇性核奧佛豪瑟譜 (one dimensional selective nuclear Overhauser effect spectroscopy, 1D selective NOESY) 51 2.3 目標錯合物之放光性質 54 2.3.1 目標錯合物於溶液態之光物理性質 54 2.3.2 目標錯合物於固態之光物理性質 55 2.3.3 目標錯合物之刺激響應性質 58 2.3.3.1 目標錯合物之力致放光變色 58 2.3.3.2 目標錯合物之光致放光變色 61 2.3.3.3 目標錯合物之薰致放光變色 64 第三章 結論 66 第四章 實驗部分 67 4.1 實驗藥品及溶劑 67 4.2 實驗儀器 69 4.2.1 核磁共振光譜儀 (Nuclear Magnetic Resonance, Bruker AVIII-400 or 500) 69 4.2.2 高解析度質譜儀 (High Resolution Mass, Bruker micrOTOF-QII) 69 4.2.3 X光單晶繞射儀 (Single crystal X-ray spectrometer, Oxford Gemini Dualsystem Single-crystal XRD equipped with Cryojet.) 70 4.2.4 紫外光/可見光吸收光譜儀 (UV-visible Spectrophotometer, Varian Cary300 Bio-type) 70 4.2.5 螢光光譜儀 (Fluorescence Spectrometer, Edinburgh FLS920) 70 4.2.5.1 溶液態光譜測定 70 4.2.5.2 固態光譜測定 71 4.2.5.3 溶液態放光量子產率測量方法 71 4.2.5.4 固態放光量子產率測量方法 71 4.2.6 螢光顯微鏡 (Fluorescence Microscopy) 72 4.2.7 熔點測定儀(Melting Point Apparatus, Melting point apparatus MP-2D) 72 4.2.8 熱重分析儀 72 4.2.9 低溫示差掃描量熱儀 (LT-DSC) 72 4.3 實驗方法 72 4.3.1 養晶條件 72 4.3.2 力致放光變色實驗 73 4.3.3 光致放光變色實驗 73 4.3.4 薰致放光變色實驗 73 4.4 合成步驟 74 4.4.1 化合物16之合成27 74 4.4.2 化合物17之合成44 74 4.4.3 化合物18之合成44 75 4.4.4 化合物19-Cn之合成 75 4.4.5 化合物Pi-Cn之合成 78 4.4.6 化合物20之合成45 81 4.4.7 化合物21之合成46 81 4.4.8 錯合物Ph-Cn之合成 82 第五章 參考資料 85 附圖 89 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 榫卯結構 | zh_TW |
| dc.subject | 孔洞晶體 | zh_TW |
| dc.subject | 烷基鏈長效應 | zh_TW |
| dc.subject | 金(I)錯合物 | zh_TW |
| dc.subject | tongue-and-groove | en |
| dc.subject | gold(I) complex | en |
| dc.subject | alkyl chain length effect | en |
| dc.subject | porous crystal | en |
| dc.title | 含五苯荑金(I)孔洞晶體之烷基鏈長效應對超分子自組裝行為之研究 | zh_TW |
| dc.title | Understanding the Supramolecular Assembly of Porous Pentiptycene-Containing Gold(I) Crystals by Alkyl Chain Length Effects | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 曾炳墝;林哲仁;王建隆 | zh_TW |
| dc.contributor.oralexamcommittee | Biing-Chiau Tzeng;Che-Jen Lin;Chien-Lung Wang | en |
| dc.subject.keyword | 金(I)錯合物,烷基鏈長效應,孔洞晶體,榫卯結構, | zh_TW |
| dc.subject.keyword | gold(I) complex,alkyl chain length effect,porous crystal,tongue-and-groove, | en |
| dc.relation.page | 156 | - |
| dc.identifier.doi | 10.6342/NTU202304518 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-12-18 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 化學系 | - |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf | 21.87 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
