Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91337
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江簡富zh_TW
dc.contributor.advisorJean-Fu Kiangen
dc.contributor.author葉達謙zh_TW
dc.contributor.authorTa-Chien Yehen
dc.date.accessioned2024-01-03T16:09:42Z-
dc.date.available2024-01-04-
dc.date.copyright2024-01-03-
dc.date.issued2023-
dc.date.submitted2023-12-26-
dc.identifier.citation[1] J. L. Kaplan and J. A. York, “Chaotic behavior of multidimensional difference equations,” Functional differential equations and approximations of fixed points, lecture notes in mathematics, Vol. 730, ed. by H. O. Peitgen and H. O.Walter, Berlin: Springer, 1979.
[2] Q. Lai and C. Lai, “Design and implementation of a new hyperchaotic memristive map,” IEEE Trans. Circuits Systems II: Express Briefs, vol. 69, no. 4, pp. 2331-2335, April, 2022, doi: 10.1109/TCSII.2022.3151802.
[3] R. Devaney and L. Devaney, An Introduction to Chaotic Dynamical Systems, 2nd ed., Avalon Publishing, 1989, pp. 268-269.
[4] J. Sun, “2D-SCMCI hyperchaotic map for image encryption algorithm,” IEEE Access, vol. 9, pp. 59313-59327, 2021, doi: 10.1109/ACCESS.2021.3070350.
[5] R. May, “Simple mathematical models with very complicated dynamics,” Nature, 261, pp. 459-467, 1976, doi:10.1038/261459a0.
[6] E. N. Lorenz, “Deterministic nonperiodic flow,” J. Atmospheric Sci., 20(2), pp. 130-141, 1963. doi: https://doi.org/10.1175/1520-0469(1963)020¡0130:DNF¿2.0.CO;2
[7] M. Henon, “A two-dimensional mapping with a strange attractor,” Commun. Math., Phys., 50, pp. 69-77, 1976. doi:10.1007/BF01608556.
[8] M. S. Shabbir, Q. Din, R. Alabdan, A. Tassaddiq and K. Ahmad, “Dynamical complexity in a class of novel discrete-time predator-prey interaction with cannibalism,” IEEE Access, vol. 8, pp. 100226-100240, 2020, doi: 10.1109/ACCESS.2020.2995679.
[9] J. S. Muthu and P. Murali, “Review of chaos detection techniques performed on chaotic maps and systems in image encryption,” Springer Nature Comput. Sci. 2, pp. 392, 2021, doi: 10.1007/s42979-021-00778-3.
[10] Z. Hua, Y. Zhang and Y. Zhou, “Two-dimensional modular chaotification system for improving chaos complexity,” IEEE Trans. Signal Processing, vol. 68, pp. 1937-1949, 2020, doi: 10.1109/TSP.2020.2979596.
[11] Z. Hua and Y. Zhou, “Exponential chaotic model for generating robust chaos,” IEEE Trans. Systems, Man, Cybernetics: Systems, vol. 51, no. 6, pp. 3713-3724, June 2021, doi: 10.1109/TSMC.2019.2932616.
[12] J. Gu, C. Li, Y. Chen, H. H. C. Iu and T. Lei, “A conditional symmetric memristive system with infinitely many chaotic attractors,” IEEE Access, vol. 8, pp. 12394-12401, 2020, doi: 10.1109/ACCESS.2020.2966085.
[13] B. Bao, K. Rong, H. Li, K. Li, Z. Hua and X. Zhang, “Memristor-coupled logistic hyperchaotic map,” IEEE Trans. Circuits Systems II: Express Briefs, vol. 68, no. 8, pp. 2992-2996, Aug. 2021, doi: 10.1109/TCSII.2021.3072393.
[14] A. A. Karawia and Y. A. Elmasry, “New encryption algorithm using bit-level permutation and non-invertible chaotic Map,” IEEE Access, vol. 9, pp. 101357-101368, 2021, doi: 10.1109/ACCESS.2021.3096995.
[15] S. Vaidyanathan et al., “A new 4-D multi-stable hyperchaotic system with no balance point: Bifurcation analysis, circuit simulation, FPGA realization and image cryptosystem,” IEEE Access, vol. 9, pp. 144555-144573, 2021, doi: 10.1109/ACCESS. 2021.3121428.
[16] H. Zhang, X. Wang, H. Xie, C. Wang and X. Wang, “An efficient and secure image encryption algorithm based on non-adjacent coupled maps,” IEEE Access, vol. 8, pp. 122104-122120, 2020, doi: 10.1109/ACCESS.2020.3006513.
[17] X. Wang and P. Liu, “A new image encryption scheme based on a novel one-dimensional chaotic system,” IEEE Access, vol. 8, pp. 174463-174479, 2020, doi: 10.1109/ACCESS. 2020.3024869.
[18] W. Marszalek, M. Walczak and J. Sadecki, “Two-parameter 0-1 test for chaos and sample entropy bifurcation diagrams for nonlinear oscillating systems,” IEEE Access, vol. 9, pp. 22679-22687, 2021, doi: 10.1109/ACCESS.2021.3055715.
[19] X. Du, L. Wang, D. Yan and S. Duan, “A multiring Julia fractal chaotic system with separated-scroll attractors,” IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol. 29, no. 12, pp. 2210-2219, Dec. 2021, doi: 10.1109/TVLSI.2021.3106312.
[20] H. Li, H. Bao, L. Zhu, B. Bao and M. Chen, “Extreme multistability in simple areapreserving map,” IEEE Access, vol. 8, pp. 175972-175980, 2020, doi: 10.1109/ACCESS. 2020.3026676.
[21] S. He, K. Sun, and S. Banerjee, “Dynamical properties and complexity in fractional-order diffusionless Lorenz system,” Euro. Phys. J. Plus, 131, 254, 2016. https://doi.org/10.1140/epjp/i2016-16254-8
[22] C. Bandt and B. Pompe, “Permutation entropy: A natural complexity measure for time series,” Phys Rev Lett., 2002, Apr, 29;88(17):174102. doi: 10.1103/Phys-RevLett.88.174102. Epub 2002 Apr 11. PMID: 12005759.
[23] A. Toktas, U. Erkan, F. Toktas and Z. Yetgn, “Chaotic map optimization for image encryption using triple objective differential evolution algorithm,” IEEE Access, vol. 9, pp. 127814-127832, 2021, doi: 10.1109/ACCESS.2021.3111691.
[24] Z. Elhadj and J. Sprott, “On the dynamics of a new simple 2-D rational discrete mapping,” Int. J. Bifurcation Chaos, vol. 21, no. 1, 2011.
[25] A. Mahdi, A. K. Jawad, and S. S. Hreshee, “Digital chaotic scrambling of voice based on duffing map,” Int. J. Inf. Commun. Sci. Commun., vol. 1, no. 2, 2016.
[26] H. Bao, Z. Hua, N. Wang, L. Zhu, M. Chen and B. Bao, “Initials-boosted coexisting chaos in a 2-D sine map and its hardware implementation,” IEEE Trans. Industrial Informatics, vol. 17, no. 2, pp. 1132-1140, Feb. 2021, doi: 10.1109/TII.2020.2992438.
[27] X. L. Chai, Y. R. Chen, and L. Broyde, “A novel chaos-based image encryption algorithm using DNA sequence operations,” Optics and Lasers in Engineering, vol. 88, 2017, pp. 197-213, doi:10.1016/j.optlaseng.2016.08.009.
[28] J. H. Wu, X. F. Liao, and B. Yang, “Image encryption using 2D Henon-Sine map and DNA approach,” Signal Processing, vol. 153, 2018, pp. 11-23, doi:10.1016/j.sigpro.2018.06.008.
[29] C. Cao, K. Sun, and W. H. Liu, “A novel bit-level image encryption algorithm based on 2D-LICM hyperchaotic map,” Signal Processing, vol. 143, 2018, pp. 122-133, doi:10.1016/j.sigpro.2017.08.020.
[30] Z. Y. Hua, Y. Y. Chen, H. Bao and Y. C. Zhou, “Two-dimensional parametric polynomial chaotic system,” IEEE Trans. Systems, Man, Cybernetics, vol. 52, no. 7, pp. 4402-4414, July 2022, doi: 10.1109/TSMC.2021.3096967.
[31] J. Fridrich, “Symmetric ciphers based on two-dimensional chaotic maps,” Int. J. Bifurcation Chaos, vol. 08, no. 06, pp. 1259-1284, Jun. 1998.
[32] J. Sun, C. Li, T. Lu, A. Akgul and F. Min, “A memristive chaotic system with hypermultistability and its application in image encryption,” IEEE Access, vol. 8, pp. 139289-139298, 2020, doi: 10.1109/ACCESS.2020.3012455.
[33] X. Y.Wang and P. B. Liu, “A new full chaos coupled mapping lattice and its application in privacy image encryption,” IEEE Trans. Circuits Syst. I, vol. 69, no. 3, pp. 1291-1301, Mar. 2022, doi: 10.1109/TCSI.2021.3133318.
[34] Y. P. Zhang, H. Y. Xiang, S. J. Zhang, and L. F. Liu, “Construction of high-dimensional cyclic symmetric chaotic map with one-dimensional chaotic map and its security appli- cation,” Multimed. Tools Appl., 82, pp. 17715-17740, 2023, doi : 10.1007/s11042-022-14044-y.
[35] Z. Y. Hua, Y. X. Zhang, H. Bao, H. J. Huang, and Y. C. Zhou, “n-dimensional polynomial chaotic system with applications,” IEEE Trans. Circuits Syst. I, vol. 69, no. 2, pp. 784-797, Feb. 2022, doi: 10.1109/TCSI.2021.3117865.
[36] W. J. Cao, H. Cai, and Z. Y. Hua, “n-dimensional chaotic map with application in secure communication,” Chaos, Solitons & Fractals, vol. 163, 2022, 112519, doi: 10.1016/j.chaos.2022.112519.
[37] H. M. Li, T. Li, W. Feng, J. Zhang, J. Zhang, L. X. Gan and C. L. Li, “A novel image encryption scheme based on non-adjacent parallelable permutation and dynamic DNA-level two-way diffusion,” J. Info. Security Appl., vol. 61, 2021, 102844, doi: 10.1016/j.jisa.2021.102844.
[38] W. Feng, X. Y. Zhao, J. Zhang, Z. T. Qin, J. K. Zhang and Y. G. He, “Image encryption algorithm based on plane-level image filtering and discrete logarithmic transform,” Mathematics, 10, no. 15: 2751, 2022, doi: 10.3390/math10152751.
[39] K. Qian, W. Feng, Z. T. Qin, J. Zhang, X. G. Luo and Z. G. Zhu, “A novel image encryption scheme based on memristive chaotic system and combining bidirectional bit-level cyclic shift and dynamic DNA-level diffusion,” Frontiers Phys., vol. 10, 2022, doi: 10.3389/fphy.2022.963795.
[40] X. Y.Wang and P. B. Liu, “Image encryption based on roulette cascaded chaotic system and alienated image library,” Vis. Comput., 38, 763-779, 2022, doi: 10.1007/s00371-020- 02048-4.
[41] W. Feng, Z. T. Qin, J. Zhang and M. Ahmad, “Cryptanalysis and Improvement of the image encryption scheme based on Feistel network and dynamic DNA encoding,” IEEE Access, vol. 9, pp. 145459-145470, 2021, doi: 10.1109/ACCESS.2021.3123571.
[42] W. Feng and J. Zhang, “Cryptanalzing a novel hyper-chaotic image encryption scheme based on pixel-level filtering and DNA-level diffusion,” IEEE Access, vol. 8, pp. 209471-209482, 2020, doi: 10.1109/ACCESS.2020.3038006.
[43] W. Feng, Y.-G. He, H.-M. Li, and C.-L. Li, “Cryptanalysis of the integrated chaotic systems based image encryption algorithm,” Optik, vol. 186, pp. 449-457, 2019, doi: 10.1016/j.ijleo.2018.12.103.
[44] P. B. Liu, X. Y. Wang, Y. N. Su, H. P. Liu and S. Unar, “Globally coupled private : image encryption algorithm based on infinite interval spatiotemporal chaotic system,” IEEE Trans. Circuits Syst. I, vol. 70, no. 6, pp. 2511-2522, June 2023, doi: 10.1109/TCSI.2023.3250713.
[45] Y. J. Xian and X. Y. Wang, “Fractal sorting matrix and its application on chaotic image encryption,” Information Sciences, vol. 547, 2021, pp. 1154-1169, doi:10.1016/j.ins.2020.09.055.
[46] A. Sambas et al., “A 3-D multi-stable system with a peanut-shaped equilibrium curve: Circuit design, FPGA realization, and an application to image encryption,” IEEE Access, vol. 8, pp. 137116-137132, 2020, doi: 10.1109/ACCESS.2020.3011724.
[47] H. Lin et al., “An extremely simple multiwing chaotic system: Dynamics analysis, encryption application, and hardware implementation,” IEEE Trans. Industrial Electronics, vol. 68, no. 12, pp. 12708-12719, Dec. 2021, doi: 10.1109/TIE.2020.3047012.
[48] W. K. Chen, The Circuits and Filters Handbook, CRC Press, 2002, https://books.google.com.tw/books?id=SmDImt1zHXkC.
[49] I. Ahmad and B. Srisuchinwong, “Simple chaotic jerk flows with families of self-excited and hidden attractors: Free control of amplitude, frequency, and polarity,” IEEE Access, vol. 8, pp. 46459-46471, 2020, doi: 10.1109/ACCESS.2020.2978660.
[50] S. Zhang, C. Li, J. Zheng, X. Wang, Z. Zeng and X. Peng, “Generating any number of initial offset-boosted coexisting Chua’s double-scroll attractors via piecewise-nonlinear memristor,” IEEE Trans. Industrial Electronics, vol. 69, no. 7, pp. 7202-7212, July 2022, doi: 10.1109/TIE.2021.3099231.
[51] A. Douady and J. Oesterle, Dimension de Hausdorff des Attracteurs, C. R. Acad. Sc. Paris, 290, Series A, 1980, 1135-1138.
[52] G. A. Gottwald and I. Melbourne, “The 0-1 test for chaos: A review,” Chaos Detection and Predictability, Lecture Notes in Physics, vol. 915, ed. C. Skokos, G. Gottwald, and J. Laskar, Springer, Berlin, Heidelberg. doi: 10.1007/978-3-662-48410-4 7, 2016.
[53] “IEEE standard for floating-point arithmetic,” IEEE Std 754-2019 (Revision of IEEE 754-2008), pp.1-84, 22 July 2019, doi: 10.1109/IEEESTD.2019.8766229.
[54] J. Hao, H. Li, H. Yan and J. Mou, “A new fractional chaotic system and its application in image encryption with DNA mutation,” IEEE Access, vol. 9, pp. 52364-52377, 2021, doi: 10.1109/ACCESS.2021.3069977.
[55] W. Feng, Y.-G. He, H.-M. Li and C.-L. Li, “A plain-image-related chaotic image encryption algorithm based on DNA sequence operation and discrete logarithm,” IEEE Access, vol. 7, pp. 181589-181609, 2019, doi: 10.1109/ACCESS.2019.2959137.
[56] W. Feng, Y.-G. He, H.-M. Li, and C.-L. Li, “Image encryption algorithm based on discrete logarithm and memristive chaotic system,” Euro. Phys. J. Spec. Top. 228, 1951-1967, 2019, doi: 10.1140/epjst/e2019-800209-3.
[57] P. B. Liu, X. Y. Wang and Y. N. Su, “Image encryption via complementary embedding algorithm and new spatiotemporal chaotic system,” IEEE Trans. Circuits Syst., Video Technol., vol. 33, no. 5, pp. 2506-2519, May 2023, doi: 10.1109/TCSVT.2022.3222559.
[58] Y. -Q. Zhang, J. -L. Hao and X. -Y. Wang, “An efficient image encryption scheme based on S-boxes and fractional-order differential logistic map,” IEEE Access, vol. 8,pp. 54175-54188, 2020, doi: 10.1109/ACCESS.2020.2979827.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91337-
dc.description.abstract混沌映射因其複雜性和敏感性而被廣泛應用於圖像加密到關鍵變化。在本篇論文中,我們提出了用最佳化的二階混沌映射隨機係數來產生用於影像加密的混沌序列。利用兩種篩選條件,依據複雜度指數 K 和 SE 找出 300 個候選的混沌映射利用粒子群最佳化演算法來搜尋最優八種不同加權方案下的混沌映射。最優混沌映射可以達到 Np = 2,DKY = 2,CD = 2,K > 0.9,SE > 0.9 且 PE > 0.7。所有關鍵敏感度分析系統參數和初始值證實了最優混沌映射的高安全性。另提出了混合序列生成(HSG)方案以進一步減少影像加密時間。zh_TW
dc.description.abstractChaotic maps have been widely applied on image encryption for their complexity and sensitivity to key variation. In this work, we propose second-order chaotic maps with optimized random coefficients to generate chaotic sequences for image encryption. Two screening conditions are proposed to identify 300 candidate chaotic maps in terms of complexity indices K and SE. A particle swarm optimization algorithm is developed to search for the optimal chaotic maps under eight different weighting schemes. The optimal chaotic maps can achieve Np = 2, DKY = 2, CD= 2, K > 0.9, SE> 0.9 and PE> 0.7. Key sensitivity analysis on all the system parameters and initial values confirms high security of the optimal chaotic maps. A hybrid sequence generation (HSG) scheme is also proposed to further reduce the image encryption time.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-01-03T16:09:42Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-01-03T16:09:42Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAbstract i
Table of Contents iii
List of Figures viii
Acknowledgment ix
1 Introduction 1
2 Optimization of Chaotic Maps 10
2.1 Screening of Initial Population . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Phase Portraits of Chaotic Maps . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Optimization of System Parameters with PSO Algorithm . . . . . . . . . . . 23
2.4 Optimal Chaotic Maps under Different Weighting Schemes . . . . . . . . . . 24
2.5 Demonstration under uni-s Scheme . . . . . . . . . . . . . . . . . . . . . . . 31
3 Image Encryption 40
3.1 Cryptography with Hybrid Sequence Generation . . . . . . . . . . . . . . . . 40
3.2 Encrypted Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Resilience to Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4 CPU Time for Sequence Generation and Image Encryption . . . . . . . . . . 55
3.5 Highlight of Novelty and Contributions . . . . . . . . . . . . . . . . . . . . . 57
4 Conclusion 60
Bibliography 62
-
dc.language.isoen-
dc.subject超混沌zh_TW
dc.subject影像加密zh_TW
dc.subject混沌密碼學zh_TW
dc.subject混沌映射zh_TW
dc.subject非線性系統zh_TW
dc.subject混沌zh_TW
dc.subjectchaotic mapen
dc.subjectnonlinear dynamicsen
dc.subjecthyperchaoticen
dc.subjectchaotic behavioren
dc.subjectimage encryptionen
dc.subjectchaos cryptographyen
dc.title具隨機係數之二階混沌映射產生用於高安全性影像加密之複雜混沌序列zh_TW
dc.titleSecond-Order Chaotic Maps with Random Coefficients to Generate Complex Chaotic Sequences for High-Security Image Encryptionen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee丁建均;李翔傑zh_TW
dc.contributor.oralexamcommitteeJian-Jiun Ding;Hsiang-Chieh Leeen
dc.subject.keyword混沌,超混沌,非線性系統,混沌映射,混沌密碼學,影像加密,zh_TW
dc.subject.keywordchaotic behavior,hyperchaotic,nonlinear dynamics,chaotic map,chaos cryptography,image encryption,en
dc.relation.page72-
dc.identifier.doi10.6342/NTU202304539-
dc.rights.note未授權-
dc.date.accepted2023-12-26-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  未授權公開取用
69.7 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved