Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91330
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊東霖zh_TW
dc.contributor.advisorT-Tony Yangen
dc.contributor.author蕭偉倫zh_TW
dc.contributor.authorWei-Lun Xiaoen
dc.date.accessioned2023-12-20T16:31:20Z-
dc.date.available2023-12-21-
dc.date.copyright2023-12-20-
dc.date.issued2023-
dc.date.submitted2023-11-25-
dc.identifier.citationMartin Ovesný, Pavel Křížek, Josef Borkovec, Zdeněk Švindrych, Guy M. Hagen, ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging, Bioinformatics, Volume 30, Issue 16, August 2014, Pages 2389–2390,

Khater IM, Nabi IR, Hamarneh G. A Review of Super-Resolution Single-Molecule Localization Microscopy Cluster Analysis and Quantification Methods. Patterns (N Y). 2020 Jun 12;1(3):100038. doi: 10.1016/j.patter.2020.100038. PMID: 33205106; PMCID: PMC7660399.

LELEK, Mickaël, et al. Single-molecule localization microscopy. Nature Reviews Methods Primers, 2021, 1.1: 39.

Sage, D., Pham, TA., Babcock, H. et al. Super-resolution fight club: assessment of 2D and 3D single-molecule localization microscopy software. Nat Methods 16, 387–395 (2019). https://doi.org/10.1038/s41592-019-0364-4

Mandracchia, B., Hua, X., Guo, C. et al. Fast and accurate sCMOS noise correction for fluorescence microscopy. Nat Commun 11, 94 (2020). https://doi.org/10.1038/s41467-019-13841-8

Thompson RE, Larson DR, Webb WW. Precise nanometer localization analysis for individual fluorescent probes. Biophys J. 2002 May;82(5):2775-83. doi: 10.1016/S0006-3495(02)75618-X. PMID: 11964263; PMCID: PMC1302065.

TAKESHIMA, T., et al. A multi‐emitter fitting algorithm for potential live cell super‐resolution imaging over a wide range of molecular densities. Journal of microscopy, 2018, 271.3: 266-281.

HENRIQUES, Ricardo, et al. QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ. Nature methods, 2010, 7.5: 339-340.

Sage, D., Pham, TA., Babcock, H. et al. Super-resolution fight club: assessment of 2D and 3D single-molecule localization microscopy software. Nat Methods 16, 387–395 (2019). https://doi.org/10.1038/s41592-019-0364-4

Tang, Y., Dai, L., Zhang, X. et al. SNSMIL, a real-time single molecule identification and localization algorithm for super-resolution fluorescence microscopy. Sci Rep 5, 11073 (2015). https://doi.org/10.1038/srep11073

Nicovich PR, Owen DM, Gaus K. Turning single-molecule localization microscopy into a quantitative bioanalytical tool. Nat Protoc. 2017 Mar;12(3):453-460. doi: 10.1038/nprot.2016.166. Epub 2017 Feb 2. PMID: 28151466.

Hecht, E. (2001). Optics. Addison-Wesley, 680 pages, 4 edition.

Ma, H., Xu, J., Jin, J. et al. Fast and Precise 3D Fluorophore Localization based on Gradient Fitting. Sci Rep 5, 14335 (2015). https://doi.org/10.1038/srep14335

Dertinger T, Colyer R, Iyer G, Weiss S, Enderlein J. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22287-92. doi: 10.1073/pnas.0907866106. Epub 2009 Dec 14. PMID: 20018714; PMCID: PMC2799731.

Gustafsson MG. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc. 2000 May;198(Pt 2):82-7. doi: 10.1046/j.1365-2818.2000.00710.x. PMID: 10810003.

Gustafsson MG. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci U S A. 2005 Sep 13;102(37):13081-6. doi: 10.1073/pnas.0406877102. Epub 2005 Sep 2. PMID: 16141335; PMCID: PMC1201569.

Moffitt JR, Osseforth C, Michaelis J. Time-gating improves the spatial resolution of STED microscopy. Opt Express. 2011 Feb 28;19(5):4242-54. doi: 10.1364/OE.19.004242. PMID: 21369254.

MIN, Junhong, et al. FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data. Scientific reports, 2014, 4.1: 4577.

Stein SC, Thiart J. TrackNTrace: A simple and extendable open-source framework for developing single-molecule localization and tracking algorithms. Sci Rep. 2016 Nov 25;6:37947. doi: 10.1038/srep37947. PMID: 27885259; PMCID: PMC5122847.

NIEVES, Daniel J., et al. A framework for evaluating the performance of SMLM cluster analysis algorithms. Nature methods, 2023, 20.2: 259-267.

Shechtman Y, Sahl SJ, Backer AS, Moerner WE. Optimal point spread function design for 3D imaging. Phys Rev Lett. 2014 Sep 26;113(13):133902. doi: 10.1103/PhysRevLett.113.133902. Epub 2014 Sep 26. PMID: 25302889; PMCID: PMC4381866.

Pavani SR, Thompson MA, Biteen JS, Lord SJ, Liu N, Twieg RJ, Piestun R, Moerner WE. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):2995-9. doi: 10.1073/pnas.0900245106. Epub 2009 Feb 11. PMID: 19211795; PMCID: PMC2651341.

VON DIEZMANN, Lexy; SHECHTMAN, Yoav; MOERNER, W. E. Three-dimensional localization of single molecules for super-resolution imaging and single-particle tracking. Chemical reviews, 2017, 117.11: 7244-7275.

Babcock H, Sigal YM, Zhuang X. A high-density 3D localization algorithm for stochastic optical reconstruction microscopy. Opt Nanoscopy. 2012;1(6):10.1186/2192-2853-1-6. doi: 10.1186/2192-2853-1-6. PMID: 25431749; PMCID: PMC4243665.

Ries J. SMAP: a modular super-resolution microscopy analysis platform for SMLM data. Nat Methods. 2020 Sep;17(9):870-872. doi: 10.1038/s41592-020-0938-1. PMID: 32814874.

Speiser A, Müller LR, Hoess P, Matti U, Obara CJ, Legant WR, Kreshuk A, Macke JH, Ries J, Turaga SC. Deep learning enables fast and dense single-molecule localization with high accuracy. Nat Methods. 2021 Sep;18(9):1082-1090. doi: 10.1038/s41592-021-01236-x. Epub 2021 Sep 3. Erratum in: Nat Methods. 2021 Sep 21;: PMID: 34480155; PMCID: PMC7611669.

Li L, Xin B, Kuang W, Zhou Z, Huang ZL. Divide and conquer: real-time maximum likelihood fitting of multiple emitters for super-resolution localization microscopy. Opt Express. 2019 Jul 22;27(15):21029-21049. doi: 10.1364/OE.27.021029. PMID: 31510188.

Garlick E, Faulkner EL, Briddon SJ, Thomas SG. Simple methods for quantifying super-resolved cortical actin. Sci Rep. 2022 Feb 17;12(1):2715. doi: 10.1038/s41598-022-06702-w. PMID: 35177729; PMCID: PMC8854627.thun

Abramoff, M., Magalhaes, P., and Ram, S. (2004). Image processing with imagej. Biophotonics International, 11(7):36–42.

Etheridge TJ, Carr AM, Herbert AD. GDSC SMLM: Single-molecule localisation microscopy software for ImageJ. Wellcome Open Res. 2022 Sep 29;7:241. doi: 10.12688/wellcomeopenres.18327.1. PMID: 37351368; PMCID: PMC10282564.

MOHAMMADNEJAD, Shahram; ROSHANI, Sobhan; SARVI, Mehdi Nasiri. Fixed pattern noise reduction method in CCD sensors for LEO satellite applications. In: Proceedings of the 11th International Conference on Telecommunications. IEEE, 2011. p. 441-446.

Shechtman Y, Sahl SJ, Backer AS, Moerner WE. Optimal point spread function design for 3D imaging. Phys Rev Lett. 2014 Sep 26;113(13):133902. doi: 10.1103/PhysRevLett.113.133902. Epub 2014 Sep 26. PMID: 25302889; PMCID: PMC4381866.

Tang Y, Hendriks J, Gensch T, Dai L, Li J. Automatic Bayesian single molecule identification for localization microscopy. Sci Rep. 2016 Sep 19;6:33521. doi: 10.1038/srep33521. PMID: 27641933; PMCID: PMC5027599.

Li Y, Mund M, Hoess P, Deschamps J, Matti U, Nijmeijer B, Sabinina VJ, Ellenberg J, Schoen I, Ries J. Real-time 3D single-molecule localization using experimental point spread functions. Nat Methods. 2018 May;15(5):367-369. doi: 10.1038/nmeth.4661. Epub 2018 Apr 9. PMID: 29630062; PMCID: PMC6009849.

Abbe, E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv f. mikrosk. Anatomie 9, 413–468 (1873). https://doi.org/10.1007/BF02956173

Small A, Stahlheber S. Fluorophore localization algorithms for super-resolution microscopy. Nat Methods. 2014 Mar;11(3):267-79. doi: 10.1038/nmeth.2844. Erratum in: Nat Methods. 2014 Sep;11(9):971. PMID: 24577277.

Kechkar A, Nair D, Heilemann M, Choquet D, Sibarita JB. Real-time analysis and visualization for single-molecule based super-resolution microscopy. PLoS One. 2013 Apr 30;8(4):e62918. doi: 10.1371/journal.pone.0062918. PMID: 23646160; PMCID: PMC3639901.

Babcock HP, Huang F, Speer CM. Correcting Artifacts in Single Molecule Localization Microscopy Analysis Arising from Pixel Quantum Efficiency Differences in sCMOS Cameras. Sci Rep. 2019 Dec 2;9(1):18058. doi: 10.1038/s41598-019-53698-x. PMID: 31792238; PMCID: PMC6889274.

Deschout H, Cella Zanacchi F, Mlodzianoski M, Diaspro A, Bewersdorf J, Hess ST, Braeckmans K. Precisely and accurately localizing single emitters in fluorescence microscopy. Nat Methods. 2014 Mar;11(3):253-66. doi: 10.1038/nmeth.2843. PMID: 24577276.

Wegel E, Göhler A, Lagerholm BC, Wainman A, Uphoff S, Kaufmann R, Dobbie IM. Imaging cellular structures in super-resolution with SIM, STED and Localisation Microscopy: A practical comparison. Sci Rep. 2016 Jun 6;6:27290. doi: 10.1038/srep27290. PMID: 27264341; PMCID: PMC4893670.

SAUER, Markus; HEILEMANN, Mike. Single-molecule localization microscopy in eukaryotes. Chemical reviews, 2017, 117.11: 7478-7509.

Beghin A, Kechkar A, Butler C, Levet F, Cabillic M, Rossier O, Giannone G, Galland R, Choquet D, Sibarita JB. Localization-based super-resolution imaging meets high-content screening. Nat Methods. 2017 Dec;14(12):1184-1190. doi: 10.1038/nmeth.4486. Epub 2017 Oct 30. PMID: 29083400.

Strauss MT. Picasso-server: a community-based, open-source processing framework for super-resolution data. Commun Biol. 2022 Sep 8;5(1):930. doi: 10.1038/s42003-022-03909-5. PMID: 36076006; PMCID: PMC9458736.

Przybylski A, Thiel B, Keller-Findeisen J, Stock B, Bates M. Gpufit: An open-source toolkit for GPU-accelerated curve fitting. Sci Rep. 2017 Nov 16;7(1):15722. doi: 10.1038/s41598-017-15313-9. PMID: 29146965; PMCID: PMC5691161.

Pujals S, Albertazzi L. Super-resolution Microscopy for Nanomedicine Research. ACS Nano. 2019 Sep 24;13(9):9707-9712. doi: 10.1021/acsnano.9b05289. Epub 2019 Aug 19. PMID: 31424198; PMCID: PMC6764015.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91330-
dc.description.abstract自超高分辨率顯微鏡(SRM)出現以來已發展了許多方法,使研究人員能透過遠超傳統光學顯微鏡的解析度在奈米尺度上研究生物細胞的分子結構,解析度遠超過傳統光學顯微鏡(約200 nm)。
在SRM領域中,單分子定位顯微鏡(SMLM)技術受到多數研究家的廣泛關注,因為它具備卓越的亞像素空間分辨率,能夠以低於5奈米的精度觀察整個細胞結構。此外雙螺旋點擴散函數是SMLM在3D研究上的重要工具,它允許我們能以高度精確的方式重建三維空間中的細胞結構,這項技術為深入探索細胞內部的分子組織和互動提供了新的可能性。
由於SMLM技術要精確定位所有單分子位置與重建圖像結構,當中通常涉及龐大的數據計算與處理工作以獲得最終的高解析度成像,因此有必要使用高效演算法來優化程式。
通過結合SMLM與Point Spread Function 的Double-Helix模型開發了一套程式碼,旨在獲取特定分子結構並精確定位每幀中熒光分子的位置。這套程式使用C++ QT Creator作為開發介面,結合PCO.EDGE科學相機作為檢測生物細胞的分析平台,其中涉及數十萬組的點雲數據計算則交由圖形處理器(Graphics Processing Unit)執行並行高效處理,實現快速且準確的評估。我的程式還能夠同時觀看細胞實時影像與超解析成像的擬合過程。
zh_TW
dc.description.abstractSince the advent of super-resolution microscopy (SRM), a multitude of techniques have emerged, enabling researchers to investigate the molecular structure of biological cells at the nanometer scale with resolutions far surpassing those achievable with traditional optical microscope (Resolution is approximately 200 nm).
In the realm of super-resolution microscopy studies, single-molecule localization microscopy (SMLM) technology holds a prominent position among researchers. Its appeal lies in its ability to provide an extraordinary spatial resolution of less than 5 nanometers, enabling the observation of entire cellular structures in unprecedented detail. The Double-Helix point spread function plays a pivotal role in 3D SMLM research, facilitating the precise reconstruction of cellular structures in three-dimensional space. This groundbreaking technology opens up new avenues for in-depth exploration of molecular organization and interactions within cells.
However, the demands of accurately locating the positions of individual molecules and reconstructing image structures in SMLM entail extensive data calculation and processing. As a result, efficient algorithms are indispensable to optimize computational resources.
Here, I developed a set of codes that specifically target molecular structures and enable precise localization of individual fluorescent molecules. My program utilizes C++ QT Creator as the development interface and leverages the PCO.EDGE scientific camera as an analysis platform for cellular tissue observation. The processing of hundreds of thousands of sets of point cloud data is efficiently carried out in parallel by Graphics Processing Unit (GPU), enabling rapid and precise evaluation. My program can also observe the real-time cell imaging and super-resolution imaging processes simultaneously.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-12-20T16:31:20Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-12-20T16:31:20Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書...I
致謝...II
摘要...III
ABSTRACT...IV
CONTENTS...VI
LIST OF FIGURES...VIII

Chapter1 Introduction...1
1.1 Limitation of traditional optical microscope...2
1.2 Breakthrough in Super-Resolution Nanoscopy Technologies...4
1.2.1 Structured illumination microscopy...6
1.2.2 Stimulated emission-depletion microscopy...8
1.2.3 Stochastic super-resolution microscopy...8
1.3 Scope of thesis...10
Chapter2 Localization Algorithms Theory...11
2.1 Principle of SMLM imaging...11
2.1.1 Point spread function...12
2.2 Candidate molecule detection...15
2.3 PSF model selection...16
2.4 3D Model...17
2.5 SMLM competition - Super-resolution fight club...20
2.6 Chapter Summary...24
Chapter3 Methodology...26
3.1 Motivation for the research goal...26
3.2 System architecture...28
3.2.1 NVIDIA CUDA...29
3.2.2 Development framework with QT...33
3.3 Preprocessing of captured images and STORM’s framework...33
3.3.1 Step 1: Obtain photoelectrons from original intensity image...36
3.3.2 Step 2: Finding local Brightest position of molecules...38
3.3.3 Step 3: Discard non-isolated local highlight locations...39
3.3.4 Step 4: Image Gaussian Smoothing...40
3.3.5 Step 5: Least squares method fitting of Gaussian model...42
3.3.6 Step 6: Nonlinear parameter estimation with Levenberg-Marquardt...43
3.3.7 Step 7: Choose the correct fitting result...46
3.3.8 Step 8: Rendering and display...49
3.4 Chapter summary...49
Chapter4 Experimental positioning comparison results...52
4.1 Model evaluation metrics...52
4.2 Comparison with Meta-Morph analysis results...58
4.3 3D Double-Helix...63
Chapter5 Conclusion and future work...66
Reference ...68
-
dc.language.isoen-
dc.subject實時顯示zh_TW
dc.subject超分辨率zh_TW
dc.subject影像辨識zh_TW
dc.subject影像處理zh_TW
dc.subject實時顯示zh_TW
dc.subject單分子定位顯微鏡 (SMLM)zh_TW
dc.subject超分辨率zh_TW
dc.subject影像辨識zh_TW
dc.subject影像處理zh_TW
dc.subject單分子定位顯微鏡 (SMLM)zh_TW
dc.subjectSuper-resolutionen
dc.subjectSingle molecule localization microscopy (SMLM)en
dc.subjectReal-time displayen
dc.subjectImage processingen
dc.subjectImage detectionen
dc.subjectSuper-resolutionen
dc.subjectSingle molecule localization microscopy (SMLM)en
dc.subjectReal-time displayen
dc.subjectImage processingen
dc.subjectImage detectionen
dc.title具有雙螺旋點擴散函數的 3D 單分子定位顯微鏡實時定位zh_TW
dc.titleReal-time localization for 3D single-molecule localization microscopy with double-helix point spread functionen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃念祖;陳奕帆zh_TW
dc.contributor.oralexamcommitteeNien-Tsu Huang;Yih-Fan Chenen
dc.subject.keyword單分子定位顯微鏡 (SMLM),實時顯示,影像處理,影像辨識,超分辨率,zh_TW
dc.subject.keywordSingle molecule localization microscopy (SMLM),Real-time display,Image processing,Image detection,Super-resolution,en
dc.relation.page73-
dc.identifier.doi10.6342/NTU202304443-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-11-27-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept生醫電子與資訊學研究所-
dc.date.embargo-lift2028-11-22-
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  未授權公開取用
3.4 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved