請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91327完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊燿州 | zh_TW |
| dc.contributor.advisor | Yao-Joe Yang | en |
| dc.contributor.author | 王偉宜 | zh_TW |
| dc.contributor.author | Wei-Yi Wang | en |
| dc.date.accessioned | 2023-12-20T16:30:32Z | - |
| dc.date.available | 2023-12-21 | - |
| dc.date.copyright | 2023-12-20 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-10 | - |
| dc.identifier.citation | M. A. Horvath, I. Wamala, E. Rytkin, E. Doyle, C. J. Payne, T. Thalhofer, I. Berra, A. Solovyeva, M. Saeed, and S. Hendren, "An intracardiac soft robotic device for augmentation of blood ejection from the failing right ventricle," Annals of biomedical engineering, vol. 45, no. 9, pp. 2222-2233, 2017.
J. Zhang, B. Wang, C. Zhang, Y. Xiao, and M. Y. Wang, "An EEG/EMG/EOG-based multimodal human-machine interface to real-time control of a soft robot hand," Frontiers in neurorobotics, vol. 13, p. 7, 2019. Z. Q. Tang, H. L. Heung, K. Y. Tong, and Z. Li, "Model-based online learning and adaptive control for a “human-wearable soft robot” integrated system," The International Journal of Robotics Research, vol. 40, no. 1, pp. 256-276, 2019. X. Zhou, C. Majidi, and O. M. O’Reilly, "Soft hands: An analysis of some gripping mechanisms in soft robot design," International Journal of Solids and Structures, vol. 64, pp. 155-165, 2015. R. Sinatra Nina, B. Teeple Clark, M. Vogt Daniel, K. Parker Kevin, F. Gruber David, and J. Wood Robert, "Ultragentle manipulation of delicate structures using a soft robotic gripper," Science Robotics, vol. 4, no. 33, p. eaax5425, 2019. Y. Wu, K. Yim Justin, J. Liang, Z. Shao, M. Qi, J. Zhong, Z. Luo, X. Yan, M. Zhang, X. Wang, S. Fearing Ronald, J. Full Robert, and L. Lin, "Insect-scale fast moving and ultrarobust soft robot," Science Robotics, vol. 4, no. 32, p. eaax1594, 2019. H. Yuk, D. Kim, H. Lee, S. Jo, and J. H. Shin, "Shape memory alloy-based small crawling robots inspired by C. elegans," Bioinspiration & biomimetics, vol. 6, no. 4, p. 046002, 2011. Y. Han, T. Bai, and W. Liu, “Controlled heterogeneous stem cell differentiation on a shape memory hydrogel surface,” Scientific reports, vol. 4, no. 1, pp. 1-7, 2014. X. He, M. Aizenberg, O. Kuksenok, L. D. Zarzar, A. Shastri, A. C. Balazs, and J. Aizenberg, “Synthetic homeostatic materials with chemo-mechano-chemical self-regulation,” Nature, vol. 487, no. 7406, pp. 214-218, 2012. I. Must, F. Kaasik, I. Poldsalu, L. Mihkels, U. Johanson, A. Punning, and A. Aabloo, “Ionic and capacitive artificial muscle for biomimetic soft robotics,” Advanced Engineering Materials, vol. 17, no. 1, pp. 84-94, 2015. T.M.Tolley, R.F. Shepherd, K.C. Galloway, R.J. Wood, and M.G. Whitesides, "A resilient, untethered soft robot," Soft robotics, 2014 Q. Wang, Z. Wu, J. Huang, Z. Du, Y. Yue, D. Chen, D. Li, and B. Su, "Integration of sensing and shape-deforming capabilities for a bioinspired soft robot," Composites Part B: Engineering, p. 109116, 2021. T. G. Thuruthel, B. Shih, C. Laschi, and M. T. Tolley, "Soft robot perception using embedded soft sensors and recurrent neural networks," Science Robotics, vol. 4, no. 26, 2019. T. Sun, Y. Chen, T. Han, C. Jiao, B. Lian, and Y. Song, "A soft gripper with variable stiffness inspired by pangolin scales, toothed pneumatic actuator and autonomous controller," Robotics and Computer-Integrated Manufacturing, vol. 61, p. 101848, 2020. E. W. Hawkes, L. H. Blumenschein, J. D. Greer, and A. M. Okamura, "A soft robot that navigates its environment through growth," Science Robotics, vol. 2, no. 8, 2017. M. Taghavi, T. Helps, and J. Rossiter, “Electro-ribbon actuators and electro-origami robots,” Science Robotics, vol. 3, no. 25, 2018. R. Tabassian, J. Kim, V. H. Nguyen, M. Kotal, and I.-K. Oh, “Functionally antagonistic hybrid electrode with hollow tubular graphene mesh and nitrogen-doped crumpled graphene for high-performance ionic soft actuators,” Advance Functional Materials, vol. 28, no. 5, p. 1705714, 2018. H. Zhang, Y. Xiao, V. Cristian, Y. Chen, Y. Yang, S. Ma, W. Liang, F. Wei, “Wireless power transfer to electrothermal liquid crystal elastomer actuators,” ACS Applied Material Interfaces, vol. 15, no. 22, pp. 27195–27205, 2023.. S. Wu, Y. Hong, Y. Zhao, J. Yin, and Y. Zhu, “Caterpillar-inspired soft crawling robot with distributed programmable thermal actuation,” Science Advances, vol. 9, no. 12, 2023. Y. Yang, F. Ma, Z. Li, J. Qiao, Y. Wei, and Y. Ji, “Enabling the sunlight driven response of thermally induced shape memory polymers by rewritable CH3NH3PbI3 perovskite coating,” Journal of materials chemistry. A, Materials for energy and sustainability, vol. 5, no. 16, pp. 7285–7290, 2017. Z. Zhang, Y. Long, G. Chen, Q. Wu, H. Wang, and H. Jiang, “Soft and lightweight fabric enables powerful and high-range pneumatic actuation,” Science Advances, vol. 9, no. 15, 2023. M. Li, X. Wang, B. Dong, and M. Sitti, "In-air fast response and high speed jumping and rolling of a light-driven hydrogel actuator," Nature communications, vol. 11, no. 1, pp. 1-10, 2020. J. Qin, P. Feng, Y. Wang, X. Du, and B. Song, "Nanofibrous Actuator with an Alignment Gradient for Millisecond-Responsive, Multidirectional, Multimodal, and Multidimensional Large Deformation," ACS Applied Materials & Interfaces, vol. 12, no. 41, pp. 46719-46732, 2020. M. Amjadi and M. Sitti, "High-performance multiresponsive paper actuators," ACS nano, vol. 10, no. 11, pp. 10202-10210, 2016. T. G. Thuruthel, B. Shih, C. Laschi, and M. T. Tolley, "Soft robot perception using embedded soft sensors and recurrent neural networks," Science Robotics, vol. 4, no. 26, 2019. R. Wang, C. Zhang, W. Tan, J. Yang, D. Lin, and L. Liu, “Electroactive polymer-based soft actuator with integrated functions of multi-degree-of-freedom motion and perception,” Soft Robot., vol. 10, no. 1, pp. 119–128, 2023. H.P. Phan, T. Dinh, T.K. Nguyen, A. Vatani, A. R. Md Foisal, A. Qamar, A. R. Kermany, D. V. Dao, and N.-T. Nguyen, "Self-sensing paper-based actuators employing ferromagnetic nanoparticles and graphite," Applied Physics Letters, vol. 110, no. 14, p. 144101, 2017 B. Oh, Y.G. Park, H. Jung, S. Ji, W. H. Cheong, J. Cheon, W. Lee, and J.U. Park, "Untethered soft robotics with fully integrated wireless sensing and actuating systems for somatosensory and respiratory functions," Soft Robotics, vol. 7, no. 5, pp. 564-573, 2020. S. I. Moore and S. R. Moheimani, "Displacement measurement with a self-sensing MEMS electrostatic drive," Journal of microelectromechanical systems, vol. 23, no. 3, pp. 511-513, 2014. S. I. Moore, Y. K. Yong, and S. R. Moheimani, "Switched self-sensing actuator for a MEMS nanopositioner," in 2017 IEEE International Conference on Mechatronics (ICM), 2017: IEEE, pp. 372-377. J. Dong and P. M. Ferreira, "Simultaneous actuation and displacement sensing for electrostatic drives," Journal of Micromechanics and Microengineering, vol. 18, no. 3, p. 035011, 2008. P. G. del Corro, M. Imboden, D. J. Pérez, D. J. Bishop, and H. Pastoriza, "Single ended capacitive self-sensing system for comb drives driven XY nanopositioners," Sensors and Actuators A: Physical, vol. 271, pp. 409-417, 2018. T. A. Gisby, B. M. O'Brien, and I. A. Anderson, "Self sensing feedback for dielectric elastomer actuators," Applied Physics Letters, vol. 102, no. 19, p. 193703, 2013. K. Jung, K. J. Kim, and H. R. Choi, "A self-sensing dielectric elastomer actuator," Sensors and Actuators A: Physical, vol. 143, no. 2, pp. 343-351, 2008. L. Qin, Y. Tang, U. Gupta, and J. Zhu, "A soft robot capable of 2D mobility and self-sensing for obstacle detection and avoidance," Smart Materials and Structures, vol. 27, no. 4, p. 045017, 2018. J. Cao, W. Liang, J. Zhu, and Q. Ren, "Control of a muscle-like soft actuator via a bioinspired approach," Bioinspiration & biomimetics, vol. 13, no. 6, p. 066005, 2018. A. Dallinger, P. Kindlhofer, F. Greco, and A. M. Coclite, "Multiresponsive Soft Actuators Based on a Thermoresponsive Hydrogel and Embedded Laser-Induced Graphene," ACS applied polymer materials, vol. 3, no. 4, pp. 1809-1818, 2021. H. Liu, H. Tian, X. Li, X. Chen; K. Zhang, H. Shi, C.Wang, J. Shao, “Shape-programmable, deformation-locking, and self-sensing artificial muscle based on liquid crystal elastomer and low–melting point alloy,” Science Advances,, vol. 8, no. 20, 2022. C. Qian, Y. Li, C. Chen, L. Han, Q. Han, L. Liu, Z. Lu, “A stretchable and conductive design based on multi-responsive hydrogel for self-sensing actuators,” Chemical engineering journal, vol. 454, no. 140263, p. 140263, 2023. S. Luo and T. Liu, “SWCNT/graphite nanoplatelet hybrid thin films for self-temperature-compensated, highly sensitive, and extensible piezoresistive sensors,” Advanced Materials., vol. 25, no. 39, pp. 5650–5657, 2013. K. Chu, S.C. Lee, S. Lee, D. Kim, C. Moon, and S.H. Park, “Smart conducting polymer composites having zero temperature coefficient of resistance,” Nanoscale, vol. 7, no. 2, pp. 471–478, 2015 W.B. Zhu, S.S.Xue, H. Zhang, Y.Y. Wang, P. Huang, Z.H. Tang, Y.Q. Li, S.Y. Fu, “Direct ink writing of a graphene/CNT/silicone composite strain sensor with a near-zero temperature coefficient of resistance,” Journal of materials chemistry. C, Materials for optical and electronic devices, vol. 10, no. 21, pp. 8226–8233, 2022. L. Hines, K. Petersen, G. Z. Lum, and M. Sitti, "Soft actuators for small‐scale robotics," Advanced materials, vol. 29, no. 13, p. 1603483, 2017. D. Gennes, P. Gilles, and J. Prost, "The physics of liquid crystals," ed: ford University Press, Oxford, 1975. A. Katariya Jain, R. R. Deshmukh, “An overview of polymer-dispersed liquid crystals composite films and their applications,” Liquid Crystals and Display Technology, 2020. K. M. Herbert, H. E. Fowler, J. M. McCracken, K. R. Schlafmann, J. A. Koch, and T. J. White, "Synthesis and alignment of liquid crystalline elastomers," Nature Reviews Materials, vol. 7, no. 1, pp. 23-38, 2022. T. J. White and D. J. Broer, "Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers," Nature materials, vol. 14, no. 11, pp. 1087-1098, 2015. D. R. Merkel, R. K. Shaha, C. M. Yakacki, and C. P. Frick, "Mechanical energy dissipation in polydomain nematic liquid crystal elastomers in response to oscillating loading," Polymer, vol. 166, pp. 148-154, 2019. C. M. Yakacki, M. Saed, D. P. Nair, T. Gong, S. M. Reed, and C. N. Bowman, “Tailorable and programmable liquid-crystalline elastomers using a two-stage thiol–acrylate reaction,” RSC advances, vol. 5, no. 25, pp. 18997–19001, 2015. G. Ruschau, S. Yoshikawa, and R. Newnham, "Resistivities of conductive composites," Journal of Applied Physics, vol. 72, no. 3, pp. 953-959, 1992. N. Hu, Y. Karube, C. Yan, Z. Masuda, and H. Fukunaga, "Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor," Acta Materialia, vol. 56, no. 13, pp. 2929-2936, 2008. J. M. Hammersley and D. C. Handscomb, “Percolation Processes,” Monte Carlo Methods, Dordrecht: Springer Netherlands, 1964, pp. 134–141. S. R. Broadbent and J. M. Hammersley, "Percolation processes," Mathematical Proceedings of the Cambridge Philosophical Society, vol. 53, no. 03, p. 629, 2008, doi: 10.1017/s0305004100032680. J. W. Essam, "Percolation theory," Reports on Progress in Physics, vol. 43, no. 7, p. 833, 1980. H. Cruz, Y. Son, “Effect of Aspect Ratio on Electrical, Rheological and Glass Transition Properties of PC/MWCNT Nanocomposites.” Journal of Nanoscience and Nanotechnology.”18. 943-950. 10.1166/jnn., 2018 A.V. Kyrylyuk, P. Schoot, “Continuum percolation of carbon nanotubes in polymeric and colloidal media” Proceedings of the National Academy of Sciences of the United States of America, 2008 P. Greenwood, R. H. Thring, and R. Chen, “Material property models for polyethylene-based conductive blends suitable for PEM fuel cell bipolar plates,” Proceedings of the Institution of Mechanical Engineers Part L Journal of Materials Design and Applications, vol. 230, no. 1, pp. 131–141, 2016. S. Smirnov and W. Werner, “Critical exponents for two-dimensional percolation,” arXiv [math.PR], 2001. J. Quintanilla, “Measurement of the percolation threshold for fully penetrable disks of different radii,” Physical review. E, Statistical, nonlinear, and soft matter physics, vol. 63, no. 6, 2001. N. Hu, Y. Karube, C. Yan, Z. Masuda, and H. Fukunaga, "Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor," Acta Materialia, vol. 56, no. 13, pp. 2929-2936, 2008. M. Amjadi and M. Sitti, “Self-sensing paper actuators based on graphite-carbon nanotube hybrid films,” Advanced Science, vol. 5, no. 7, p. 1800239, 2018. "12th Physics : Current Electricity : Temperature dependence of resistivity " [Online]. Available: https://www.brainkart.com/article/Temperature-dependence-of-resistivity_38415/. A. Kaiser, V. Skakalova, and S. Roth, "Modelling conduction in carbon nanotube networks with different thickness, chemical treatment and irradiation," Physica E: Low-dimensional Systems and Nanostructures, vol. 40, no. 7, pp. 2311-2318, 2008. V. Skákalová, A. B. Kaiser, Y.S. Woo, and S. Roth, "Electronic transport in carbon nanotubes: From individual nanotubes to thin and thick networks," Physical Review B, vol. 74, no. 8, p. 085403, 2006 S. Luo and T. Liu, "Structure–property–processing relationships of single-wall carbon nanotube thin film piezoresistive sensors," Carbon, vol. 59, pp. 315-324, 2013 U. Khan, I. O’Connor, Y. K. Gun’ko, and J. N. Coleman, "The preparation of hybrid films of carbon nanotubes and nano-graphite/graphene with excellent mechanical and electrical properties," Carbon, vol. 48, no. 10, pp. 2825-2830, 2010. A. Benchirouf, C. Müller, and O. Kanoun, "Electromechanical behavior of chemically reduced graphene oxide and multi-walled carbon nanotube hybrid material," Nanoscale Research Letters, vol. 11, no. 1, p. 4, 2016. D. Cai, M. Song, and C. Xu, "Highly conductive carbon‐nanotube/graphite‐oxide hybrid films," Advanced Materials, vol. 20, no. 9, pp. 1706-1709, 2008. 陳翾宇,“具形變感測特性之高分子複合材料微型驅動器,”碩士論文,機械工程學研究所, 國立台灣大學, 2020 L. Dumée, K. Sears, J. Schütz, N. Finn, M. Duke, and S. Gray, "Influence of the sonication temperature on the debundling kinetics of carbon nanotubes in propan-2-ol," Nanomaterials, vol. 3, no. 1, pp. 70-85, 2013. A. O. Rashed, M. Andrea, K.Takeshi, L. Marcio, R. Joselito, K. Lingxue, H. Chi, D. Ludovic F, “Carbon nanotube membranes – Strategies and challenges towards scalable manufacturing and practical separation applications,” Separation and purification technology, vol. 257, no. 117929, p. 117929, 2021. Shweta, V. Singh, K. Kumar, S. Yarramaneni, and A. Kumar, “Assessing the optical properties of 2D MoS2 nanosheets synthesized using facile two-step sequential process,” ECS Journal of Solid State Science and Technology, vol. 12, no. 3, 2023. Li, Dong; Xin, Liantao; Yang, Bocheng; Chen, Zizheng; Wu, Qianru; Han, Fangqian; Hao, Shulan; Feng, Lihu; Wang, Xiaoyu; Wang, Shiying; Wang, Lei; He, Maoshuai;., “Sonication-free dispersion of single-walled carbon nanotubes for high-sorption-capacity aerogel fabrication,” Molecules, vol. 27, no. 21, p. 7657, 2022. R. Barbosa, R. Gonçalves, K. A. Tozzi, M. C. Saccardo, A. G. Zuquello, and C. H. Scuracchio, “Improving the swelling, mechanical, and electrical properties in natural rubber latex/carbon nanotubes nanocomposites: Effect of the sonication method,” Journal of Applied Polymer Science, vol. 139, no. 23, p. 52325, 2022. A. Gkaravela, I. Vareli, D. G. Bekas, N.-M. Barkoula, and A. S. Paipetis, “The use of Electrochemical Impedance Spectroscopy as a tool for the in-situ monitoring and characterization of carbon nanotube aqueous dispersions,” Nanomaterials (Basel), vol. 12, no. 24, p. 4427, 2022. L. Hawach Scientific Co., "A brief introduction of vacuum filtration," January 7, 2020. [Online]. Available: https://www.vacuumfiltrations.com/a-brief-introduction-of-vacuum-filtration/. M. Fan, J. Jimenez, S. Shirodkar, J. Wu, S.Chen, L.Song, M.M.Royko,J. Zhang, H. Guo, J. Cui, K. Zuo,W. Wang, C.Zhang, F. Yuan, R. Vajtai, J. Qian, J. Yang, B.Yakobson, J.M.Tour, J. Lauterbach, D. Sun, P.M.Ajayan, “Atomic Ru immobilized on porous h-BN through simple vacuum filtration for highly active and selective CO2 methanation,” ACS catalysis, vol. 9, no. 11, pp. 10077–10086, 2019. H. Dong, J. Sun, X. Liu, X. Jiang, and S. Lu, “Highly sensitive and stretchable MXene/CNTs/TPU composite strain sensor with bilayer conductive structure for human motion detection,” ACS Applied Material Interfaces, vol. 14, no. 13, pp. 15504–15516, 2022. D. P. Nair, M. Podgorski, S. Chatani, T. Gong, W. Xi, C. R. Fenoli, and C. N. Bowman, "The thiol-Michael addition click reaction: a powerful and widely used tool in materials chemistry," Chemistry of Materials, vol. 26, no. 1, pp. 724-744, 2014. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91327 | - |
| dc.description.abstract | 本研究提出一具形變感測功能之微型液晶高分子致動器,可透過兩電源輸入端達到同時致動與形變感測之功能。此致動器是利用微機電製程技術與真空抽濾技術製作而成之雙層結構,分別為液晶高分子層與混有石墨與奈米碳管之液晶高分子導電層。當通以一驅動電壓時,高分子導電層因焦耳加熱而迅速升溫並加熱整體元件。液晶高分子能於受溫度變化之刺激而產生良好可逆形變,從而達到元件致動之效果。此外,本研究之高分子導電層為一特定比例之石墨與奈米碳管均勻混合而成。透過兩者電阻溫度係數之中和,能使元件之電阻值不易隨溫度變化,達到溫度自補償之功能。因此,藉由量測電阻之變化即可推算元件之形變,使元件亦為一應變感測器。除此之外,本研究展示一由兩致動器組裝成之微型手爪,並展示其致動夾取與感測重量之特性。此元件展現了優異之致動力道,能抓取、移動與放置自身重量約五十倍之物品。元件抓取物品時,可透過量測元件受物品重力作用而拉伸時之電阻變化,達到預測夾取物品重量之感測能力。此微形致動器於實現多項感測回饋能力與實際應用情境中具有極大的潛力。 | zh_TW |
| dc.description.abstract | In this study, we present a miniaturized liquid crystal elastomer(LCE)-based micro-actuator with sensing capability. The proposed device is a bilayer structure consisting of an insulating layer and a conductive layer and can be realized with a standard soft-lithography technique and a novel two-step vacuum filtration process. The insulating layer is made of liquid crystal elastomer (LCE) and the conductive layer is composed of graphite microparticles and carbon nanotubes dispersed in LCE matrix. The actuation of the bilayer structure is generated by applying a voltage across the two input terminals of the conductive composite film. The temperature elevation caused by Joule heating induces the LC-to-isotropic phase transition phenomenon of LCE and results in the deformation of the LCE layer. Besides, by optimizing the ratio of graphite microparticles and carbon nanotubes (CNTs) in the composite films, the strain sensing and the electrothermal stimulation of the composite can be decoupled. Consequently, the conductive composite film is capable of serving as an electrothermal heater for actuating the device as well as a piezoresistive strain gauge for detecting the motion of the device. A gripper consisting of two proposed LCE actuators was implemented. The measured results indicate that the gripper exhibits excellent actuating force and is capable of gripping, lifting, and placing objects that are about fifty times its weight. In addition, it was also demonstrated that the weight of the lifted object can be estimated by measuring the resistance variation of the composite film as it is stretched by the weight of the object. The relationship between the resistance change of the composite film and the object weight was also obtained. The proposed simple approach of integrating self-sensing capability on a LCE-based actuating material is promising for developing intelligent soft robots. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-12-20T16:30:32Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-12-20T16:30:32Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 I
摘要 III Abstract V 目錄 VII 圖目錄 XI 表目錄 XV 符號說明 XVII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 軟性致動器之驅動 2 1.2.2 致動與感測功能整合之軟性致動器 7 1.2.3 溫度自補償之感測器 12 1.3 研究動機與目的 14 1.4 論文架構 15 第二章 研究理論基礎 17 2.1 元件之致動機制 17 2.1.1 液晶材料簡介 17 2.1.2 液晶材料性質 20 2.1.3 液晶彈性體(Liquid Crystal Elastomer) 22 2.1.4 焦耳加熱 25 2.2 元件之感測機制 26 2.2.1 滲透理論(Percolation Theory) 27 2.2.2 穿隧效應(Tunneling Effect) 29 2.2.3 導電高分子材料之溫度自補償特性 30 第三章 元件設計與製程 33 3.1 元件設計 33 3.2 元件工作原理 34 3.3 元件製作流程 35 3.4 光罩設計 38 3.5 元件微影製程 41 3.5.1 基材清潔與去水烘烤 42 3.5.2 旋轉塗佈(Spin Coating) 42 3.5.3 軟烤(Soft Bake) 44 3.5.4 曝光(Exposure) 45 3.5.5 曝後烤(Post Exposure Bake) 47 3.5.6 顯影(Development) 47 3.5.7 定影(Fixing) 48 3.5.8 硬烤(Hard Bake) 48 3.6 石墨-奈米碳管之分散與填充 48 3.6.1 石墨-奈米碳管分散 49 3.6.2 真空抽濾法 51 3.6.3 SU-8模具拆除 52 3.7 液晶彈性體之製備填充與配向定型 53 3.7.1 模具製作 53 3.7.2 液晶彈性體聚合物配製 54 3.7.3 液晶彈性體多重單軸配向 58 3.8 元件製作結果 58 第四章 量測結果與討論 61 4.1 材料與元件特性量測 61 4.1.1 電阻隨溫度變化量測架設 61 4.1.2 電阻隨溫度變化量測結果與討論 64 4.1.3 應變規因子(Gauge Factor)量測架設 65 4.1.4 應變規因子(Gauge Factor)量測結果與討論 66 4.2 元件致動與感測之特性量測 67 4.2.1 量測架設 67 4.2.2 量測結果與討論 68 4.3 元件情境展示與特性量測 72 4.3.1 量測情境說明與架設 72 4.3.2 量測結果討論 74 4.3.3 元件應用情境展示 76 第五章 結論與未來展望 81 5.1 結論 81 5.2 未來展望 82 參考文獻 83 附錄A 91 附錄B 95 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 形變感測 | zh_TW |
| dc.subject | 溫度自補償 | zh_TW |
| dc.subject | 微型致動器 | zh_TW |
| dc.subject | 形變感測 | zh_TW |
| dc.subject | 液晶高分子複合材料 | zh_TW |
| dc.subject | 溫度自補償 | zh_TW |
| dc.subject | 微型致動器 | zh_TW |
| dc.subject | 液晶高分子複合材料 | zh_TW |
| dc.subject | Temperature self-compensation | en |
| dc.subject | Liquid Crystal Elastomer | en |
| dc.subject | Polymer composites | en |
| dc.subject | Deformation sensing | en |
| dc.subject | Micro-actuator | en |
| dc.subject | Temperature self-compensation | en |
| dc.subject | Liquid Crystal Elastomer | en |
| dc.subject | Polymer composites | en |
| dc.subject | Deformation sensing | en |
| dc.subject | Micro-actuator | en |
| dc.title | 具溫度自補償形變感測與致動功能之液晶高分子材料特性與元件 | zh_TW |
| dc.title | A Liquid-Crystal-Elastomer Actuator with Nano-Particle-Based Strain Sensing Film | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳國聲;蘇裕軒 | zh_TW |
| dc.contributor.oralexamcommittee | Kuo-Shen Chen;Yu-Hsuan Su | en |
| dc.subject.keyword | 液晶高分子複合材料,形變感測,微型致動器,溫度自補償, | zh_TW |
| dc.subject.keyword | Liquid Crystal Elastomer,Polymer composites,Deformation sensing,Micro-actuator,Temperature self-compensation, | en |
| dc.relation.page | 95 | - |
| dc.identifier.doi | 10.6342/NTU202303282 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-11 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 未授權公開取用 | 4.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
