請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91313
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 施路易 | zh_TW |
dc.contributor.advisor | Ludvig Löwemark | en |
dc.contributor.author | 許冠毅 | zh_TW |
dc.contributor.author | Kuan-Yi Hsu | en |
dc.date.accessioned | 2023-12-20T16:26:48Z | - |
dc.date.available | 2023-12-21 | - |
dc.date.copyright | 2023-12-20 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-10-04 | - |
dc.identifier.citation | Aaby, B., & Digerfeldt, G. (1986). Sampling techniques for lakes and bogs. Handbook of holocene palaeoecology and palaeohydrology, 181, 194.
Appleby, P. (2001). Chronostratigraphic techniques in recent sediments. Tracking environmental change using lake sediments: basin analysis, coring, and chronological techniques, 171-203. Austin, S. A. (1979). Depositional environment of the Kentucky No. 12 coal Bed (Middle Pennsylvanian) of Western Kentucky, with special reference to the origin of coal lithotypes. The Pennsylvania State University. Bakri, F., Sumardani, D., & Muliyati, D. (2021). Radioactive decay model based on augmented reality. Journal of Physics: Conference Series, Beckhoff, B., Kanngießer, B., Langhoff, N., Wedell, R., & Wolff, H. (2007). Handbook of practical X-ray fluorescence analysis. Springer Science & Business Media. Blake, A., Chadwick, B., White, P., & Jones, C. (2007). Assessing Sediment Transport at Navy Facilities (User's Guide). Boak, E. H., & Turner, I. L. (2005). Shoreline definition and detection: a review. Journal of coastal research, 21(4), 688-703. Bornette, G., Amoros, C., & Lamouroux, N. (1998). Aquatic plant diversity in riverine wetlands: the role of connectivity. Freshwater biology, 39(2), 267-283. Brock, F., Higham, T., Ditchfield, P., & Ramsey, C. B. (2010). Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon, 52(1), 103-112. Burr, G., Jull, A., Gross, M., & Caprioli, R. (2009). Accelerator mass spectrometry for radiocarbon research. Encyclopedia of mass spectrometry, 5, 656-669. Carrivick, J. L., & Tweed, F. S. (2013). Proglacial lakes: character, behaviour and geological importance. Quaternary Science Reviews, 78, 34-52. Carroll, A. R., & Bohacs, K. M. (1999). Stratigraphic classification of ancient lakes: Balancing tectonic and climatic controls. Geology, 27(2), 99-102. Chen, C.-S., & Chen, Y.-L. (2003). The Rainfall Characteristics of Taiwan. Monthly Weather Review, 131, 1323-1341. Chen, S.-H., Wu, J.-T., Yang, T.-N., Chuang, P.-P., Huang, S.-Y., & Wang, Y.-S. (2009). Late Holocene paleoenvironmental changes in subtropical Taiwan inferred from pollen and diatoms in lake sediments. Journal of Paleolimnology, 41, 315-327. Cranwell, P. A. (1973). Chain‐length distribution of n‐alkanes from lake sediments in relation to post‐glacial environmental change. Freshwater biology, 3(3), 259-265. Croudace, I. W., Rindby, A., & Rothwell, R. G. (2006). ITRAX: description and evaluation of a new multi-function X-ray core scanner. Geological Society, London, Special Publications, 267(1), 51-63. Crozaz, G., Picciotto, E., & De Breuck, W. (1964). Antarctic snow chronology with Pb210. Journal of Geophysical Research, 69(12), 2597-2604. Dean, M. C., Le Cabec, A., Van Malderen, S. J., & Garrevoet, J. (2020). Synchrotron X-ray fluorescence imaging of strontium incorporated into the enamel and dentine of wild-shot orangutan canine teeth. Archives of oral biology, 119, 104879. Dean, W. E. (1981). Carbonate minerals and organic matter in sediments of modern north temperate hard-water lakes. Dearing, J. (1991). Lake sediment records of erosional processes. Environmental History and Palaeolimnology: Proceedings of the Vth International Symposium on Palaeolimnology, held in Cumbria, UK, Downing, J. A., Prairie, Y., Cole, J., Duarte, C., Tranvik, L., Striegl, R. G., McDowell, W., Kortelainen, P., Caraco, N., & Melack, J. (2006). The global abundance and size distribution of lakes, ponds, and impoundments. Limnology and oceanography, 51(5), 2388-2397. Ficken, K. J., Li, B., Swain, D., & Eglinton, G. (2000). An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Organic Geochemistry, 31(7-8), 745-749. Garcia-Castellanos, D. (2006). Long-term evolution of tectonic lakes: climatic controls on the development of internally drained basins. Gleason, P. J., Piepgras, D., Stone, P. A., & Stipp, J. (1980). Radiometric evidence for involvement of floating islands in the formation of Florida Everglades tree islands. Geology, 8(4), 195-199. Godwin, H. (1962). Half-life of radiocarbon. Nature, 195(4845), 984-984. Goldberg, E. D. (1963). Geochronology with lead-210, radioactive dating, IAEA. Vienna, 1, 21-131. Hatté, C., & Jull, A. (2015). 14C in Plant Macrofossils. In. Havens, K. E., Sharfstein, B., Brady, M. A., East, T. L., Harwell, M. C., Maki, R. P., & Rodusky, A. J. (2004). Recovery of submerged plants from high water stress in a large subtropical lake in Florida, USA. Aquatic Botany, 78(1), 67-82. Hirose, K. (2012). 2011 Fukushima Dai-ichi nuclear power plant accident: summary of regional radioactive deposition monitoring results. Journal of environmental radioactivity, 111, 13-17. Holgerson, M. A., & Raymond, P. A. (2016). Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nature Geoscience, 9(3), 222-226. https://doi.org/10.1038/ngeo2654 Hsu, S.-T. (2015). Modern sediment dispersal paths and mechanisms off southwestern Taiwan. Huang, Y., Shuman, B., Wang, Y., & Webb, T. (2004). Hydrogen isotope ratios of individual lipids in lake sediments as novel tracers of climatic and environmental change: a surface sediment test. Journal of Paleolimnology, 31, 363-375. Huh, C.-A., & Su, C.-C. (1999). Sedimentation dynamics in the East China Sea elucidated from 210Pb, 137Cs and 239,240 Pu. Marine Geology, 160(1-2), 183-196. Hutchinson, G. E., & Edmondson, Y. H. (1957). A treatise on limnology / George Evelyn Hutchinson. John Wiley. Jansen, J., Van der Gaast, S., Koster, B., & Vaars, A. (1998). CORTEX, a shipboard XRF-scanner for element analyses in split sediment cores. Marine Geology, 151(1-4), 143-153. Kalnicky, D. J., & Singhvi, R. (2001). Field portable XRF analysis of environmental samples. Journal of hazardous materials, 83(1-2), 93-122. Kershaw, A. P. (1997). A modification of the Troels-Smith system of sediment description and portrayal. Quaternary Australasia, 15(2), 63-68. Klaminder, J., Appleby, P., Crook, P., & Renberg, I. (2012). Post‐deposition diffusion of 137Cs in lake sediment: Implications for radiocaesium dating. Sedimentology, 59(7), 2259-2267. Korponai, J., Braun, M., Buczkó, K., Gyulai, I., Forró, L., Nédli, J., & Papp, I. (2010). Transition from shallow lake to a wetland: a multi-proxy case study in Zalavári Pond, Lake Balaton, Hungary. Hydrobiologia, 641, 225-244. Löwemark, L., Chen, H.-F., Yang, T.-N., Kylander, M., Yu, E.-F., Hsu, Y.-W., Lee, T.-Q., Song, S.-R., & Jarvis, S. (2011). Normalizing XRF-scanner data: a cautionary note on the interpretation of high-resolution records from organic-rich lakes. Journal of Asian Earth Sciences, 40(6), 1250-1256. Löwemark, L., Bloemsma, M., Croudace, I., Daly, J. S., Edwards, R. J., Francus, P., Galloway, J. M., Gregory, B. R., Huang, J.-J. S., & Jones, A. F. (2019). Practical guidelines and recent advances in the Itrax XRF core-scanning procedure. Quaternary International, 514, 16-29. Łachacz, A., Nitkiewicz, M., & Pisarek, W. (2009). Soil conditions and vegetation on gyttia lands in the Masurian Lakeland. Contemporary Problems of Management and Environmental Protection Wetlands–Their Functions and Protection, 2, 61-94. Lan, J., Wang, T., Chawchai, S., Cheng, P., Yu, K., Yan, D., Wang, Y., Zang, J., Liu, Y., & Tan, L. (2020). Time marker of 137Cs fallout maximum in lake sediments of Northwest China. Quaternary Science Reviews, 241, 106413. Lau, K.-M., & Li, M.-T. (1984). The monsoon of East Asia and its global associations—A survey. Bulletin of the American Meteorological Society, 65(2), 114-125. Leng, M. J., & Marshall, J. D. (2004). Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quaternary Science Reviews, 23(7-8), 811-831. Li, Y.-H., Chen, C., & Hung, J.-J. (1997). Aquatic chemistry of lakes and reservoirs in Taiwan. TAO, 8(4), 405. Libby, W. F., & Johnson, F. (1955). Radiocarbon dating (Vol. 2). University of Chicago Press Chicago. Liew, P.-M., Huang, S.-Y., & Kuo, C.-M. (2006). Pollen stratigraphy, vegetation and environment of the last glacial and Holocene—a record from Toushe Basin, central Taiwan. Quaternary International, 147(1), 16-33. Liew, P.-M., Wu, M.-H., Lee, C.-Y., Chang, C.-L., & Lee, T.-Q. (2014). Recent 4000 years of climatic trends based on pollen records from lakes and a bog in Taiwan. Quaternary International, 349, 105-112. Lin, C. (2009). Conferring the Composition and Distribution of Vegetation Diversity in Taiwan. Master’s Thesis. Lin, S.-F. (2004). Environmental and Climatic Changes in Ilan Plain over the Recent 4200 Years as Revealed by Pollen Data and their Relationship to Prehistory colonization (in Chinese) (Publication Number 2004年) 國立臺灣大學]. AiritiLibrary. Lin, S.-F., Huang, T.-C., Liew, P.-M., & Chen, S.-H. (2007). A palynological study of environmental changes and their implication for prehistoric settlement in the Ilan Plain, northeastern Taiwan. Vegetation history and archaeobotany, 16, 127-138. Lin, T.-W., Kaboth-Bahr, S., Bahr, A., Yamoah, K. A., Su, C.-C., Wang, L.-C., Wang, P.-L., & Löwemark, L. (2023). Disentangling the impact of anthropogenic and natural processes on the environment in a subtropical subalpine lake catchment in northeastern Taiwan over the past 150 years. Science of The Total Environment, 866, 161300. Liritzis, I., & Zacharias, N. (2011). Portable XRF of archaeological artifacts: current research, potentials and limitations. X-ray fluorescence spectrometry (XRF) in geoarchaeology, 109-142. Lou, J.-Y., Chen, C.-T. A., & Wann, J.-K. (1997). Paleoclimatological records of the Great Ghost Lake in Taiwan. Science in China Series D: Earth Sciences, 40, 284-292. McNichol, A. P., Jull, A. J. T., & Burr, G. S. (2001). Converting AMS Data to Radiocarbon Values: Considerations and Conventions. Radiocarbon, 43(2A), 313-320. https://doi.org/10.1017/s0033822200038169 Merkt, J. (1971). Reliable counting of annually laminated layers of lake sediments by means of long-sized thin sections. Arch. Hydrobiol, 69, 145-154. Pennington, W., Tutin, T., Cambray, R., & Fisher, E. (1973). Observations on lake sediments using fallout 137Cs as a tracer. Nature, 242(5396), 324-326. Pitkänen, A., & Lukasiuk, K. (2011). Mechanisms of epileptogenesis and potential treatment targets. The Lancet Neurology, 10(2), 173-186. Poynter, J., & Eglinton, G. (1990). 14. Molecular composition of three sediments from hole 717c: The Bengal fan. Proceedings of the Ocean Drilling Program: Scientific results, Poynter, J., Farrimond, P., Robinson, N., & Eglinton, G. (1989). Aeolian-derived higher plant lipids in the marine sedimentary record: Links with palaeoclimate. Paleoclimatology and paleometeorology: modern and past patterns of global atmospheric transport, 435-462. Ramage, C. S. (1971). Monsoon meteorology. (No Title). Ramsey, C. B. (2009). Bayesian analysis of radiocarbon dates. Radiocarbon, 51(1), 337-360. Richardson, D. C., Holgerson, M. A., Farragher, M. J., Hoffman, K. K., King, K. B., Alfonso, M. B., Andersen, M. R., Cheruveil, K. S., Coleman, K. A., & Farruggia, M. J. (2022). A functional definition to distinguish ponds from lakes and wetlands. Scientific reports, 12(1), 10472. Ritchie, J. C., & McHenry, J. R. (1990). Application of radioactive fallout cesium‐137 for measuring soil erosion and sediment accumulation rates and patterns: A review. Journal of environmental quality, 19(2), 215-233. Rothwell, R. G., Hoogakker, B., Thomson, J., Croudace, I. W., & Frenz, M. (2006). Turbidite emplacement on the southern Balearic Abyssal Plain (western Mediterranean Sea) during Marine Isotope Stages 1–3: an application of ITRAX XRF scanning of sediment cores to lithostratigraphic analysis. Geological Society, London, Special Publications, 267(1), 79-98. Rouwet, D., Tassi, F., Mora-Amador, R., Sandri, L., & Chiarini, V. (2014). Past, present and future of volcanic lake monitoring. Journal of Volcanology and Geothermal Research, 272, 78-97. Schleiss, A. J., Franca, M. J., Juez, C., & De Cesare, G. (2016). Reservoir sedimentation. Journal of Hydraulic Research, 54(6), 595-614. Schlolaut, G., Brauer, A., Marshall, M. H., Nakagawa, T., Staff, R. A., Ramsey, C. B., Lamb, H. F., Bryant, C. L., Naumann, R., & Dulski, P. (2014). Event layers in the Japanese Lake Suigetsu ‘SG06’sediment core: description, interpretation and climatic implications. Quaternary Science Reviews, 83, 157-170. Schnitchen, C., Charman, D. J., Magyari, E., Braun, M., Grigorszky, I., Tóthmérész, B., Molnár, M., & Szántó, Z. (2006). Reconstructing hydrological variability from testate amoebae analysis in Carpathian peatlands. Journal of Paleolimnology, 36, 1-17. Schnurrenberger, D., Russell, J., & Kelts, K. (2003). Classification of lacustrine sediments based on sedimentary components. Journal of Paleolimnology, 29, 141-154. Schumacher, B. A. (2002). Methods for the determination of total organic carbon (TOC) in soils and sediments. US Environmental Protection Agency, Office of Research and Development …. Scott, A. G. (2003). SUB-FOSSIL SPIDERS FROM HOLOCENE PEAT CORES. The Journal of Arachnology. https://doi.org/10.1636/0161-8202 Selvaraj, K., Wei, K.-Y., Liu, K.-K., & Kao, S.-J. (2012). Late Holocene monsoon climate of northeastern Taiwan inferred from elemental (C, N) and isotopic (δ13C, δ15N) data in lake sediments. Quaternary Science Reviews, 37, 48-60. Simoneit, B. R., Sheng, G., Chen, X., Fu, J., Zhang, J., & Xu, Y. (1991). Molecular marker study of extractable organic matter in aerosols from urban areas of China. Atmospheric Environment. Part A. General Topics, 25(10), 2111-2129. Stauch, G. (2015). Geomorphological and palaeoclimate dynamics recorded by the formation of aeolian archives on the Tibetan Plateau. Earth-Science Reviews, 150, 393-408. Stenström, K., Skog, G., Georgiadou, E., Genberg, J., & Mellström, A. (2011). A guide to radiocarbon units and calculations. Thomson, J., Croudace, I., & Rothwell, R. (2006). A geochemical application of the ITRAX scanner to a sediment core containing eastern Mediterranean sapropel units. Geological Society, London, Special Publications, 267(1), 65-77. Tjallingii, R., Röhl, U., Kölling, M., & Bickert, T. (2007). Influence of the water content on X‐ray fluorescence core‐scanning measurements in soft marine sediments. Geochemistry, Geophysics, Geosystems, 8(2). Troels-Smith, J. (1955). Characterization of unconsolidated sediments. Reitzels Forlag. Verpoorter, C., Kutser, T., Seekell, D. A., & Tranvik, L. J. (2014). A global inventory of lakes based on high-resolution satellite imagery. Geophysical Research Letters, 41(18), 6396-6402. https://doi.org/10.1002/2014gl060641 Wang, L.-C., Lee, T.-Q., Chen, S.-H., & Wu, J.-T. (2010). Diatoms in Liyu lake, eastern Taiwan. Taiwania, 55(3), 228-242. Williams, P., Whitfield, M., Biggs, J., Bray, S., Fox, G., Nicolet, P., & Sear, D. (2004). Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biological conservation, 115(2), 329-341. Woolway, R. I., Kraemer, B. M., Lenters, J. D., Merchant, C. J., O’Reilly, C. M., & Sharma, S. (2020). Global lake responses to climate change. Nature Reviews Earth & Environment, 1(8), 388-403. https://doi.org/10.1038/s43017-020-0067-5 Wu, J.-T., Chuang, P.-P., Wu, L.-Z., & Chen, C.-T. A. (1997). Diatoms as indicators of environmental changes: a case study in Great Ghost Lake. Proceedings of the National Science Council, Republic of China. Part B, Life Sciences, 21(3), 112-119. Wu, J.-T., & Wang, Y.-F. (2009). Diatoms of the Mystery Lake, Taiwan (III). Taiwania, 54(3), 231-240. Xing, Y., Xie, P., Yang, H., Ni, L., Wang, Y., & Rong, K. (2005). Methane and carbon dioxide fluxes from a shallow hypereutrophic subtropical Lake in China. Atmospheric Environment, 39(30), 5532-5540. Yamoah, K. A., Callac, N., Chi Fru, E., Wohlfarth, B., Wiech, A., Chabangborn, A., & Smittenberg, R. H. (2016). A 150-year record of phytoplankton community succession controlled by hydroclimatic variability in a tropical lake. Biogeosciences, 13(13), 3971-3980. Zheng, Y., Zhou, W., Meyers, P. A., & Xie, S. (2007). Lipid biomarkers in the Zoigê-Hongyuan peat deposit: Indicators of Holocene climate changes in West China. Organic Geochemistry, 38(11), 1927-1940. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91313 | - |
dc.description.abstract | 東亞季風帶是全球季風系統中,一個相當重要的子系統。它影響了將近全球四分之一的人口。台灣地處東亞季風系統中,其特殊的地理位置提供了絕佳的條件,使其在時間尺度上研究西太平洋的季風以及颱風等天氣變化之紀錄。然而,從台灣各個湖泊中檢索到之全新世古氣候記錄中存在許多差異。這可能是因為過往的研究中缺乏了湖泊沉積學的觀察,限制了我們對控制湖泊沉積的機制的理解,因此在解釋湖泊記錄時引入了不確定性。
為了解存在於湖泊沉積中的古氣候記錄,必須建立一個可靠的年代模型去解釋隱藏在湖泊沉積物中所顯現出的意義。本研究旨在了解位於台灣宜蘭縣太平山區(24°30'N, 121°35'E, 海拔2095公尺)的小型濕地湖泊,三星妹池的湖泊演化過程,以及隱藏在湖泊沉積物中之意義。本研究透過鑽取湖泊岩心作為主要的研究材料。使用來自溼地中不同位置的多個沉積岩心,包括已經被草木覆蓋的樹林沼澤、緊鄰水邊之沼澤區和池子中,等各種不同的沉積環境,目的在於建立一個合理的湖泊形成與演化的過程。 本研究於湖泊沉積岩心中應用了多種不同的分析指標,包含:碳14、鉛210、銫137等定年分析,總有機碳和總氮量分析,生物指標分析,與X射線螢光光譜分析(XRF)。然而,來自濕地不同部分的岩心在經過多種的實驗方法中,發現了年代與沉積速率存在了令人困惑之差異。由多個放射性碳14定年測定的結果證實了這種倒轉並不是由於採樣之人為因素或是實驗分析偏差,而是真實反映了沉積序列的逆轉。可能解釋這種年代反轉的假設包括人為採樣疏失,浮島的翻轉,山崩等。臺灣其他山區湖泊的案例顯示,由水生植物、苔蘚植物和沉積物混合而成的浮島在颱風期間可以移動數百米。如果浮島翻轉,可能會導致反轉之年代序列。建立的穩健年代模型和湖泊演替模型將對後續的氣候研究有所幫助。 | zh_TW |
dc.description.abstract | Monsoon rainfall in East Asia is a subsystem of the global monsoon system and affects nearly one-quarter of the world's population. Taiwan, an island in the subtropical East Asian monsoon system, provides the unique opportunity to study monsoon and typhoon variability over the western subtropical Pacific on both historical and geological time-scales. However, the Holocene paleoclimate records retrieved from various lakes in Taiwan have shown discrepancies in their recorded climate variability. This could partly be caused by the lack of modern sedimentological observations, limiting our understanding of the mechanisms controlling lake sedimentation and thus introducing uncertainty in the interpretation of lake records.
The aim of this study is to understand the complex processes that led to the formation of a small wetland, Sanxingmei Pond, which is located in the Taiping Mountains, Yilan County, NE Taiwan. (24°30' N, 121°35' E, 2095 meters above sea level). This study shows how lake succession can explain differences in lithology between nearby coring sites. Moreover, the study emphasizes the need for robust age models to understand paleoclimate records archived in lacustrine sediments. Convoluted sedimentary layers caused by floating islands are hypothesized as the preferred explanation for significant age reversals observed in some cores. This study uses several sediment cores from different parts of the wetland, including wooded swamps, fens, and open ponds, to construct a robust model for lake formation and succession. A multi-proxy approach was applied in these cores, including 14C, 210Pb, 137Cs, bulk organic analysis (TOC, TN), and X-ray fluorescence (XRF) data. Cores from different parts of the wetland display puzzling differences in maximum ages and sedimentation rates. Multiple radiocarbon dates demonstrate that observed age reversals are not a sampling or analytical artifact, but actually reflect an inversion of the sediment sequence. Possible hypotheses explaining age reversals include typhoons, landslides, and overturned floating fens. Other mountain lakes in Taiwan provide examples of these floating islands where a mixture of aquatic plants, bryophytes, helophytes, and sediment can move hundreds of meters during typhoons. If a floating island is blown by typhoon winds it may become overturned, resulting in an inverse age sequence. An improved understanding of age model and lake succession will be helpful for future paleoclimatic research utilizing lacustrine records. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-12-20T16:26:48Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-12-20T16:26:48Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 i
中文摘要 iii Abstract iv Contents vi List of figures ix List of tables xii Chapter 1 Introduction 1 1.1 Lakes as paleoclimate records 1 1.2. Previous studies 2 1.3 Lakes and Ponds 4 1.3.1 Definition of lakes and ponds 4 1.3.2 Subtropical high mountain lake 5 1.3.3 Lake sediment 6 1.4 Objective 7 Chapter 2 Background 8 2-1 Geological setting 8 2-2 Climate features 10 2-2-1 Overview 10 2-2-2 Five primary seasons and three types of climatic patterns 12 2-3 Classification of lake formation 14 Chapter 3 Materials and Methods 17 3-1 Experimental design 17 3-1-1 Determination of paleo-wetland area 17 3-1-2 Sampling points 18 3-1-3 Sediment cores used for analysis 20 3-2 Experiment flow and data collection 21 3-2-1 Russian peat corer sample curation 21 3-2-2 Core description flow 21 3-2-3 Classification of lake sediment 22 3-2-4 Sampling tools 25 3-3 210Pb dating 28 3-3-1 210Pb dating theory 28 3-3-2 Experiment flow 30 3-2-3 Formula for calculating activity 32 3-4 137Cs Dating 33 3-5 Radiocarbon dating 34 3-5-1 Background of Radiocarbon dating 34 3-5-2 Sample preparation for radiocarbon dating 35 3-5-3 Protocol for radiocarbon dating sample selection and pretreatment 36 3-5-4 Data analysis 37 3-6 X-Ray fluorescence core scanning 39 3-7 Total organic carbon (TOC) content analysis 45 3-8 Biomarker analysis 46 Chapter 4 Results 49 4-1 Core descriptions 49 4-2 210Pb dating results 54 4-3 137Cs dating results 57 4-4 Radiocarbon dating results 58 4-5 XRF scanning results 64 4-6 TOC results 68 4-7 Biomarker results 72 Chapter 5 Discussion 77 Chapter 5-1 Origin and formation of Sanxingmei Pond 77 5-1-1 Determining the lake formation mechanism through the process of exclusion. 77 5-1-2 Evidence of Sanxingmei Pond being a landslide lake 78 5-2 Alternative explanations for the age reversals in radiocarbon ages 80 5-3 Lake succession 85 5-3-1 Investigation by drilling results 85 5-3-2 Lake Succession Dynamics in Sanxingmei Pond 91 Chapter 6 Conclusions 94 | - |
dc.language.iso | en | - |
dc.title | 台灣東北部地區高山湖泊的演化過程與沉積作用之探討,以三星妹池為例 | zh_TW |
dc.title | Succession and sedimentation process in a small mountainous lake in NE Taiwan: the study of Sanxingmei Pond | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 博爾;Stefanie Kaboth-Bahr;André Bahr | zh_TW |
dc.contributor.oralexamcommittee | George Strother Burr;Stefanie Kaboth-Bahr;André Bahr | en |
dc.subject.keyword | 湖泊學,古湖泊學,湖泊沉積物,湖泊形成,湖泊演替, | zh_TW |
dc.subject.keyword | limnology,paleolimnology,lake sediments,paleolakes,lake formation,lake succession, | en |
dc.relation.page | 102 | - |
dc.identifier.doi | 10.6342/NTU202304291 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-10-05 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 地質科學系 | - |
顯示於系所單位: | 地質科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-1.pdf | 4.28 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。