Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91310
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor魏志平zh_TW
dc.contributor.advisorChih-Ping Weien
dc.contributor.author陳佑甄zh_TW
dc.contributor.authorYu-Chen Chenen
dc.date.accessioned2023-12-20T16:25:59Z-
dc.date.available2023-12-21-
dc.date.copyright2023-12-20-
dc.date.issued2023-
dc.date.submitted2023-10-04-
dc.identifier.citationBordes, A., Usunier, N., Garcia-Duran, A., Weston, J., & Yakhnenko, O. (2013). Translating Embeddings for Modeling Multi-Relational Data. Advances in Neural Information Processing Systems, 26.
Chao, L., He, J., Wang, T., & Chu, W. (2020). PairRE: Knowledge Graph Embeddings via Paired Relation Vectors. arXiv preprint arXiv:2011.03798.
Cross, J. (2006). Medline, PubMed, PubMed Central, and the NLM. Editors' Bulletin, 2(1), 1-5.
Fionda, V., & Pirrò, G. (2018). Fact Checking via Evidence Patterns. In Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI) (Vol. 18, pp. 3755-3761).
Her, Y.C. (2021). Knowledge Graph Verification: Feature Engineering vs. Deep Learning Methods. Unpublished Master Thesis. Department of Information Management, National Taiwan University, Taipei, Taiwan, ROC.
Kilicoglu, H., Fiszman, M., Rodriguez, A., Shin, D., Ripple, A., & Rindflesch, T.C. (2008). Semantic MEDLINE: A Web Application for Managing the Results of PubMed Searches. In Proceedings of the Third International Symposium for Semantic Mining in Biomedicine, (Vol. 2008, pp. 69-76).
Kilicoglu, H., Rosemblat, G., Fiszman, M., & Shin, D. (2020). Broad-coverage Biomedical Relation Extraction with SemRep. BMC Bioinformatics, 21, 1-28.
Kilicoglu, H., Shin, D., Fiszman, M., Rosemblat, G., & Rindflesch, T.C. (2012). SemMedDB: A PubMed-Scale Repository of Biomedical Semantic Predications. Bioinformatics, 28(23), 3158-3160.
Kingma, D.P., & Ba, J. (2014). ADAM: A Method for Stochastic Optimization. arXiv preprint arXiv:1412.6980.
Lin, P., Song, Q., & Wu, Y. (2018). Fact Checking in Knowledge Graphs with Ontological Subgraph Patterns. Data Science and Engineering, 3(4), 341-358.
Lin, P., Song, Q., Wu, Y., & Pi, J. (2019). Discovering Patterns for Fact Checking in Knowledge Graphs. Journal of Data and Information Quality (JDIQ), 11(3), 1- 27.
Lin, Y., Liu, Z., Sun, M., Liu, Y., & Zhu, X. (2015). Learning Entity and Relation Embeddings for Knowledge Graph Completion. In Proceedings of the AAAI Conference on Artificial Intelligence, 29(1).
Lindberg, D.A., Humphreys, B.L., & McCray, A.T. (1993). The Unified Medical Language System. Yearbook of Medical Informatics, 2(01), 41-51.
Nickel, M., Tresp, V., & Kriegel, H.P. (2011). A Three-Way Model for Collective Learning on Multi-Relational Data. In Proceedings of the 28th International *Conference on International Conference on Machine Learning (ICML)* (Vol. 11, pp. 809-816).
Rindflesch, T.C., & Fiszman, M. (2003). The Interaction of Domain Knowledge and Linguistic Structure in Natural Language Processing: Interpreting Hypernymic Propositions in Biomedical Text. Journal of Biomedical Informatics, 36(6), 462- 477.
Rogers, F.B. (1964). The Development of MEDLARS. Bulletin of the Medical Library Association, 52(1), 150-151.
Shan, Y., Bu, C., Liu, X., Ji, S., & Li, L. (2018). Confidence-aware Negative Sampling Method for Noisy Knowledge Graph Embedding. In Proceedings of 2018 IEEE International Conference on Big Knowledge (ICBK) (pp. 33-40).
Sun, Z., Deng, Z.H., Nie, J.Y., & Tang, J. (2019). RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space. In Proceedings of the 7th International Conference on Learning Representation (ICLR).
Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., & Bouchard, G. (2016). Complex Embeddings for Simple Link Prediction. In Proceedings of the 33rd International Conference on Machine Learning (pp.2071-2080).
Wang, Z., Zhang, J., Feng, J., & Chen, Z. (2014). Knowledge Graph Embedding by Translating on Hyperplanes. In Proceedings of the 28th AAAI Conference on Artificial Intelligence (AAAI) (pp. 1112-1119).
Weng, J.H. (2018). Literature-based Discovery for Drug Repurposing: An Improved Path-importance-based Approach by Considering Predicate Effects. Unpublished Master Thesis. Department of Information Management, National Taiwan University, Taipei, Taiwan, ROC.
Wu, Z., Ramsundar, B., Feinberg, E. N., Gomes, J., Geniesse, C., Pappu, A. S., Leswing, K., & Pande, V. (2018). MoleculeNet: A Benchmark for Molecular Machine Learning. Chemical Science, 9(2), 513-530.
Yang, B., Yih, W.T., He, X., Gao, J., & Deng, L. (2014). Embedding Entities and Relations for Learning and Inference in Knowledge Bases. arXiv preprint arXiv:1412.6575.
Zeng, D., Liu, K., Chen, Y., & Zhao, J. (2015). Distant Supervision for Relation Extraction via Piecewise Convolutional Neural Networks. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP) (pp. 1753-1762).
Zeng, X., Tu, X., Liu, Y., Fu, X., & Su, Y. (2022). Toward Better Drug Discovery with Knowledge Graph. Current Opinion in Structural Biology, 72, 114-126.
Zhao, S., Qin, B., Liu, T., & Wang, F. (2020). Biomedical Knowledge Graph Refinement with Embedding and Logic Rules. arXiv preprint arXiv:2012.01031.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91310-
dc.description.abstract生物醫學知識圖譜在生物醫藥學領域有廣泛的應用,例如提供彙整的知識給醫療從業人員、進行舊藥新用的推論、化學或藥物的發現及藥物間作用的預測等。然而,大型生物醫學知識圖譜(例如 SemMedDB)是從生物醫學文獻中利用自動化的關係萃取技術所得到的,往往充滿錯誤的關聯。若在應用時使用這些含有雜訊的知識圖譜,可能會導致結果表現下降或產生錯誤的結論。
知識圖譜驗證的目標是判斷知識圖譜中實體間的關係是否正確,這項任務可以幫助進行知識圖譜的清理,有效改善其品質。過去知識圖譜驗證的相關研究考量的特徵主要可分為三類:區域特徵、基於知識圖譜嵌入的特徵、與基於路徑的特徵。如 Her (2021)考慮資料的統計資訊產生區域特徵並獲得良好的結果,而知識圖譜嵌入特徵能夠有效地將知識圖譜中的實體與實體關係表達成嵌入表示,另外基於路徑的方法利用專家定義的規則或規則模式來萃取路徑型態的特徵。
本文提出一混合方法,結合以上特徵的特點,使用三類特徵進行生物醫學知識圖譜驗證任務並分析其效能。實驗結果顯示,利用特徵工程產生的統計性區域特徵和利用知識圖譜嵌入產生的全域特徵,均能有效幫助判斷實體間關係的正確性。本文提出的混合方法在準確率、精確度、召回率和 F1 分數方面均優於單純考慮單一特徵的方法,顯示考慮多樣特性的特徵能夠有效提升結果表現。
zh_TW
dc.description.abstractBiomedical knowledge graphs have extensive applications in the field of biomedicine, such as providing comprehensive knowledge to healthcare practitioners, facilitating drug repurposing, drug discovery, and predicting drug-drug interactions. However, large biomedical knowledge graphs, such as SemMedDB (Kilicoglu et al., 2012), are generated through automated relation extraction techniques from biomedical literature and often contain erroneous associations. Utilizing such noisy knowledge graphs in downstream applications can lead to decreased performance and erroneous conclusions.
Knowledge graph verification aims to determine the correctness of relationships between entities in a knowledge graph. This task facilitates knowledge graph cleaning and improves its quality. Previous research on knowledge graph verification has focused on three main types of features: local features, knowledge graph embedding features, and path-based features. For example, Her (2021) considered statistical information to derive local features and achieved promising results. Knowledge graph embedding features effectively represent entity-entity relationships in a focal knowledge graph, while path-based features incorporate expert-defined rules or patterns to extract path-based features for knowledge graph verification purposes.
In this thesis, we propose a hybrid approach by combining the strengths of the aforementioned types of features for biomedical knowledge graph verification. We empirically evaluate our proposed approach using a set of knowledge triplets whose correctness is annotated by a domain expert. Experimental results demonstrate that both locally derived statistical features and global features derived from knowledge graph embedding effectively contribute to determining the correctness of entity relationships. This hybrid approach outperforms single-feature-type approaches in accuracy, precision, recall, and F1 score, highlighting the effectiveness of considering diverse features in improving verification effectiveness.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-12-20T16:25:59Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-12-20T16:25:59Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 II
摘要 III
Abstracts IV
Table of Contents VI
List of Figures VIII
List of Tables IX
Chapter 1 Introduction 1
1.1 Background 1
1.2 Research Motivation 3
1.3 Research Objective 5
Chapter 2 Literature Review 7
2.1 Biomedical Knowledge Graph 7
2.2 Feature Engineering Approach 11
2.3 Knowledge Graph Embedding Approach 14
2.4 Path-based Approach 16
Chapter 3 Methodology 19
3.1 Problem Definition 19
3.2 Knowledge Graph Verification Method: H-KGV 20
3.2.1 Local Feature Extraction 21
3.2.2 Knowledge Graph Embedding Learning and Knowledge Graph Features 22
3.2.3 Path-based Feature Extraction 28
3.2.4 Knowledge Graph Triplet Classification Model 36
Chapter 4 Empirical Evaluation 39
4.1 Data Collection and Dataset 39
4.2 Experiment Procedure and Criteria 43
4.3 Experimental Settings 46
4.4 Evaluation Results 47
4.5 Additional Evaluation Experiments 50
4.5.1 Influence of OOV Ratio 50
4.5.2 Effectiveness of KGE Strategies 51
4.5.3 Effectiveness of Classification Model Architecture 52
4.5.4 Influence of Knowledge Graph Size 55
Chapter 5 Conclusion 57
5.1 Research Contributions 57
5.2 Future Works 57
References 59
-
dc.language.isoen-
dc.title生物醫學知識圖譜驗證之特徵工程及知識圖譜嵌入混合法zh_TW
dc.titleA Hybrid Approach of Feature Engineering and Knowledge Graph Embedding for Biomedical Knowledge Graph Verificationen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳建錦;楊錦生zh_TW
dc.contributor.oralexamcommitteeChien-Chin Chen;Chin-Sheng Yangen
dc.subject.keyword知識圖譜,知識圖譜驗證,生物醫學知識圖譜,生物醫學知識圖譜推論,特徵工程,知識圖譜嵌入,規則模式,zh_TW
dc.subject.keywordKnowledge graph,Knowledge graph verification,Biomedical knowledge graph,Biomedical knowledge graph verification,Feature engineering,Knowledge graph embedding,Path pattern,en
dc.relation.page63-
dc.identifier.doi10.6342/NTU202304281-
dc.rights.note未授權-
dc.date.accepted2023-10-05-
dc.contributor.author-college管理學院-
dc.contributor.author-dept資訊管理學系-
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  目前未授權公開取用
1.89 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved