Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91300
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor孫珍理zh_TW
dc.contributor.advisorChen-li Sunen
dc.contributor.author王淳民zh_TW
dc.contributor.authorChun-Ming Wangen
dc.date.accessioned2023-12-20T16:23:09Z-
dc.date.available2023-12-21-
dc.date.copyright2023-12-20-
dc.date.issued2023-
dc.date.submitted2023-09-23-
dc.identifier.citation[1] J. Shuja, K. Bilal, S. A. Madani, M. Othman, R. Ranjan, P. Balaji, and S. U. Khan, "Survey of techniques and architectures for designing energy-efficient data centers," IEEE Systems Journal, vol. 10, no. 2, pp. 507-519, 2016, doi: 10.1109/JSYST.2014.2315823.
[2] G. I. Meijer, "Cooling energy-hungry data centers," Science, vol. 328, no. 5976, pp. 318-319, 2010, doi: 10.1126/science.1182769.
[3] A. Habibi Khalaj and S. K. Halgamuge, "A review on efficient thermal management of air- and liquid-cooled data centers: from chip to the cooling system," Applied Energy, vol. 205, pp. 1165-1188, 2017, doi: 10.1016/j.apenergy.2017.08.037.
[4] S. V. Garimella, T. Persoons, J. Weibel, and L.-T. Yeh, "Technological drivers in data centers and telecom systems: Multiscale thermal, electrical, and energy management," Applied Energy, vol. 107, pp. 66-80, 2013, doi: 10.1016/j.apenergy.2013.02.047.
[5] A. S. G. Andrae and T. Edler, "On global electricity usage of communication technology: trends to 2030," Challenges, vol. 6, no. 1, pp. 117-157, 2015, doi: 10.3390/challe6010117.
[6] G. Xia, L. Cao, and G. Bi, "A review on battery thermal management in electric vehicle application," Journal of Power Sources, vol. 367, pp. 90-105, 2017, doi: 10.1016/j.jpowsour.2017.09.046.
[7] Y. A. Cengel and A. J. Ghajar, Heat and Mass Transfer: Fundamentals and Applications, 6e ed. Singapore: McGraw Hill, 2020.
[8] K. Nishikawa, Y. Fujita, S. Uchida, and H. Ohta, "Effect of surface configuration on nucleate boiling heat transfer," International Journal of Heat and Mass Transfer, vol. 27, no. 9, pp. 1559-1571, 1984, doi: 10.1016/0017-9310(84)90268-0.
[9] A. Priarone, "Effect of surface orientation on nucleate boiling and critical heat flux of dielectric fluids," International Journal of Thermal Sciences, vol. 44, no. 9, pp. 822-831, 2005, doi: 10.1016/j.ijthermalsci.2005.02.014.
[10] K. N. Rainey and S. M. You, "Effects of heater size and orientation on pool boiling heat transfer from microporous coated surfaces," International Journal of Heat and Mass Transfer, vol. 44, no. 14, pp. 2589-2599, 2001, doi: 10.1016/S0017-9310(00)00318-5.
[11] B. D. Marcus and D. Dropkin, "The effect of surface configuration on nucleate boiling heat transfer," International Journal of Heat and Mass Transfer, vol. 6, no. 9, pp. 863-866, 1963, doi: 10.1016/0017-9310(63)90069-3.
[12] M. El-Genk, "Combined effects of subcooling and surface orientation on pool boiling of HFE-7100 from a simulated electronic chip," Experimental Heat Transfer, vol. 16, no. 4, pp. 281-301, 2003, doi: 10.1080/08916150390242244.
[13] C. Wang, P. Li, D. Zhang, W. Tian, S. Qiu, G. H. Su, and J. Deng, "Experimental study on the influence of heating surface inclination angle on heat transfer and CHF performance for pool boiling," Nuclear Engineering and Technology, vol. 54, no. 1, pp. 61-71, 2022, doi: 10.1016/j.net.2021.07.033.
[14] M. S. El-Genk and A. F. Ali, "Saturation boiling critical heat flux of PF-5060 dielectric liquid on microporous copper surfaces," Journal of Heat Transfer, vol. 137, no. 4, 2015, Art no. 041501, doi: 10.1115/1.4029455.
[15] J. Y. Chang and S. M. You, "Heater orientation effects on pool boiling of micro-porous-enhanced surfaces in saturated FC-72," Journal of Heat Transfer, vol. 118, no. 4, pp. 937-943, 1996, doi: 10.1115/1.2822592.
[16] S. M. Kwark, M. Amaya, R. Kumar, G. Moreno, and S. M. You, "Effects of pressure, orientation, and heater size on pool boiling of water with nanocoated heaters," International Journal of Heat and Mass Transfer, vol. 53, no. 23, pp. 5199-5208, 2010, doi: 10.1016/j.ijheatmasstransfer.2010.07.040.
[17] X. Wang, Y. Du, Y. Tang, L. Liu, B. Liu, B. Zhang, M. Wang, Y. Zhao, and C. Huan, "Heater size and gravity level effects on nucleate pool boiling heat transfer under controlled wall heat flux condition," Experimental Thermal and Fluid Science, vol. 134, 2022, Art no. 110603, doi: 10.1016/j.expthermflusci.2022.110603.
[18] M. S. Lee, J. Y. Jung, D. H. Kam, and Y. H. Jeong, "Experimental evaluations of the critical heat flux in terms of the heater dimensions, orientation, and surface morphology," International Communications in Heat and Mass Transfer, vol. 136, 2022, Art no. 106211, doi: 10.1016/j.icheatmasstransfer.2022.106211.
[19] N. Tran, U. Sajjad, R. Lin, and C.-C. Wang, "Effects of surface inclination and type of surface roughness on the nucleate boiling heat transfer performance of HFE-7200 dielectric fluid," International Journal of Heat and Mass Transfer, vol. 147, 2020, Art no. 119015, doi: 10.1016/j.ijheatmasstransfer.2019.119015.
[20] C. Li and G. P. Peterson, "Parametric study of pool boiling on horizontal highly conductive microporous coated surfaces," Journal of Heat Transfer, vol. 129, no. 11, pp. 1465-1475, 2007, doi: 10.1115/1.2759969.
[21] S. Zhang, X. Jiang, Y. Li, G. Chen, Y. Sun, Y. Tang, and C. Pan, "Extraordinary boiling enhancement through micro-chimney effects in gradient porous micromeshes for high-power applications," Energy Conversion and Management, vol. 209, 2020, Art no. 112665, doi: 10.1016/j.enconman.2020.112665.
[22] M. M. Rahman, J. Pollack, and M. McCarthy, "Increasing Boiling Heat Transfer using Low Conductivity Materials," Scientific Reports, vol. 5, no. 1, p. 13145, 2015, doi: 10.1038/srep13145.
[23] C. K. Yu and D. C. Lu, "Pool boiling heat transfer on horizontal rectangular fin array in saturated FC-72," International Journal of Heat and Mass Transfer, vol. 50, no. 17, pp. 3624-3637, 2007, doi: 10.1016/j.ijheatmasstransfer.2007.02.003.
[24] B. Liu, X. Yang, Q. Li, H. Chang, and Y. Qiu, "Enhanced pool boiling on composite microstructured surfaces with microcavities on micro-pin-fins," International Communications in Heat and Mass Transfer, vol. 138, 2022, Art no. 106350, doi: 10.1016/j.icheatmasstransfer.2022.106350.
[25] S. H. Kim, G. C. Lee, J. Y. Kang, K. Moriyama, M. H. Kim, and H. S. Park, "Boiling heat transfer and critical heat flux evaluation of the pool boiling on micro structured surface," International Journal of Heat and Mass Transfer, vol. 91, pp. 1140-1147, 2015, doi: 10.1016/j.ijheatmasstransfer.2015.07.120.
[26] "3M HFE-7100 dielectric fluid." 3M. https://www.3m.com.tw/3M/zh_TW/p/d/b40044867/ (accessed Aug. 09, 2023).
[27] "Thermocouple types." Omega Engineering. https://www.omega.com/en-us/resources/thermocouple-types (accessed Apr. 24, 2023).
[28] LabVIEW. (2014). National Instruments. [Online]. Available: https://www.ni.com/en-us/shop/labview.html
[29] Motion Studio. (2022). Integrated Design Tools. [Online]. Available: https://idtvision.com/products/software/motion-studio/
[30] ProCam 8. (14.1.2). [Online]. Available: https://www.procamapp.com/
[31] S. Kakac, R. K. Shah, and W. Aung, Handbook of single-phase convective heat transfer. United States: John Wiley and Sons Inc, 1987.
[32] Python. (3.7.13). [Online]. Available: https://www.python.org/
[33] J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, "Fiji: an open-source platform for biological-image analysis," Nature Methods, vol. 9, no. 7, pp. 676-682, 2012, doi: 10.1038/nmeth.2019.
[34] A. H. Howard and I. Mudawar, "Orientation effects on pool boiling critical heat flux (CHF) and modeling of CHF for near-vertical surfaces," International Journal of Heat and Mass Transfer, vol. 42, no. 9, pp. 1665-1688, 1999, doi: 10.1016/S0017-9310(98)00233-6.
[35] T. J. Chuang, Y. H. Chang, and Y. M. Ferng, "Investigating effects of heating orientations on nucleate boiling heat transfer, bubble dynamics, and wall heat flux partition boiling model for pool boiling," Applied Thermal Engineering, vol. 163, p. 114358, 2019, doi: 10.1016/j.applthermaleng.2019.114358.
[36] S. Jung and H. Kim, "Effects of surface orientation on wall heat flux partitioning during nucleate pool boiling of saturated water at atmospheric pressure," in International Topical Meeting on Nuclear Reactor Thermal Hydraulics 2015, NURETH 2015, 2015, vol. 1, pp. 545-558.
[37] W. Tong, S. Fan, and F. Duan, "Pool boiling heat transfer in dielectric fluids for electronic cooling," in ICTEA: International Conference on Thermal Engineering, Muscat, Oman, February 26 - 28, 2017, vol. 2017.
[38] M. S. El-Genk and H. Bostanci, "Saturation boiling of HFE-7100 from a copper surface, simulating a microelectronic chip," International Journal of Heat and Mass Transfer, vol. 46, no. 10, pp. 1841-1854, 2003, doi: 10.1016/S0017-9310(02)00489-1.
[39] B. Markal, B. Kul, M. Avci, and R. Varol, "Effect of gradually expanding flow passages on flow boiling of micro pin fin heat sinks," International Journal of Heat and Mass Transfer, vol. 197, p. 123355, 2022, doi: 10.1016/j.ijheatmasstransfer.2022.123355.
[40] M. H. Rausch, L. Kretschmer, S. Will, A. Leipertz, and A. P. Fröba, "Density, surface tension, and kinematic viscosity of hydrofluoroethers HFE-7000, HFE-7100, HFE-7200, HFE-7300, and HFE-7500," Journal of Chemical & Engineering Data, vol. 60, no. 12, pp. 3759-3765, 2015, doi: 10.1021/acs.jced.5b00691.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91300-
dc.description.abstract本研究於尺寸為 67 mm × 67 mm 之加熱表面上,使用光化學金屬蝕刻方式製作出兩種鰭片布局方式:一致型及漸擴型,並搭配兩種鰭片形狀:圓柱狀及魚鱗狀,形成共四種鰭片陣列設計之加熱表面,探討其對於常壓飽和狀態下之HFE-7100池沸騰熱傳效能的影響。
由實驗結果可知,使用漸擴型之鰭片設計於高熱通量時可有效提升沸騰熱傳性能,這是因為漸擴流道能有效降低氣泡往上排除之流阻。漸擴型魚鱗鰭片陣列於熱通量 14 W cm-2 至熱通量 21 W cm-2 時,沸騰熱傳係數相較於一致型魚鱗鰭片陣列提升 9.8% 至 16.5%;漸擴型圓柱鰭片陣列於熱通量 17 W cm-2 至熱通量 20 W cm-2 時,沸騰熱傳係數相較於一致型圓柱鰭片陣列提升 11.5% 至 15.3%。
此外,與光滑表面比較,使用任一種鰭片陣列表面,皆具有提升沸騰熱傳性能表現之效果,這是因為鰭片陣列設計能夠有效增加表面上形成之氣泡數量。鰭片陣列表面於熱通量 0.9 W cm-2 至 2 W cm-2 時之沸騰熱傳係數增強效果最明顯,相較於光滑表面提升約 51.1% 至 72.4%。其中在熱通量 2 W cm-2 時,鰭片陣列表面之壁面過熱度相較於光滑表面下降約 34.9% 至 36.9%。在熱通量 3 W cm-2 至 6 W cm-2 之範圍內,鰭片陣列表面的氣泡移除頻率相較於光滑表面改善 4.5% 至 66.0%,使沸騰熱傳係數於此區間中有 31.8% 至 54.0% 之增強效果。鰭片陣列表面之臨界熱通量相對光滑表面能夠提升約 17.6% 至 23.5%。
zh_TW
dc.description.abstractThis study focuses on the pool boiling of HFE-7100 for a vertical surface with various designs of pin-fin arrays at atmospheric pressure. Two types of designs, diverging and uniform, and two pin-fin shapes, cylindrical and fish scale, are implemented so that four variations are etched by photochemical method onto the heated surfaces.
The experimental results show that the diverging design can effectively improve the heat transfer at high heat flux because the diverging arrangement of pin-fins reduces the flow resistance for bubble removal. For the fish scale array, the heat transfer coefficient of the diverging design is 9.8% to 16.5% more than that of the uniform design for a heat flux between 14 W cm-2 and 21 W cm-2. For the cylindrical array, the heat transfer coefficient of the diverging design is 11.5% to 15.3% more than that of the uniform design when heat flux varies from 17 W cm-2 to 20 W cm-2.
Comparing to smooth surface, heat transfer enhancement is found by utilizing the pin-fin arrays. This is attributed to the increase in the number of nucleation sites on the pin-fin arrays. For heat flux varies between 0.9 W cm-2 and 2 W cm-2 , the heat transfer coefficient is increased by approximately 51.1% to 72.4%. Moreover, the critical heat flux of pin-finned surface is 17.6% to 23.5% higher than that of the smooth surface.
In addition, the bubble removal frequency of pin-fin array surface is 4.5% to 66.0% higher, resulting in 31.8% to 54.0% increase of the boiling heat transfer coefficient for heat flux varying from 3 W cm-2 to 6 W cm-2.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-12-20T16:23:09Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-12-20T16:23:09Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iv
Abstract v
目錄 vii
符號索引 xi
表目錄 xiv
圖目錄 xv
第一章 導論 1
1.1 前言 1
1.2 文獻回顧 3
1.2.1 加熱表面傾角之影響 3
1.2.2 加熱表面尺寸之影響 5
1.2.3 表面處理之影響 6
1.3 研究目的 7
第二章 實驗架構與不確定性分析 8
2.1 實驗裝置 8
2.1.1 實驗樣品與加熱模組 8
2.1.2 實驗箱體 11
2.1.3 溫度資料擷取系統 12
2.1.4 影像擷取系統 12
2.1.5 冷卻系統 13
2.2 實驗量測流程 13
2.3 實驗數據分析 14
2.3.1 池沸騰熱傳性能分析 14
2.3.2 氣泡影像量化分析 18
2.4 不確定性分析 19
2.4.1 壁面溫度及壁面過熱度之不確定性 21
2.4.2 卡式電熱管輸入加熱功率之不確定性 21
2.4.3 加熱塊表面積之不確定性 22
2.4.4 空氣性質之不確定性 23
2.4.5 對流熱損失率之不確定性 24
2.4.6 傳入工作流體熱通量之不確定性 26
2.4.7 沸騰熱傳係數之不確定性 27
2.4.8 每一像素對應實際長度及面積之不確定性 27
2.4.9 平均氣泡直徑之不確定性 30
2.4.10 平均氣泡體積之不確定性 30
2.4.11 單位深度之氣泡移除頻率之不確定性 30
2.4.12 鰭片高度之不確定性 31
第三章 結果與討論 32
3.1 光滑表面 (smooth) 32
3.1.1 池沸騰熱傳性能 32
3.1.2 核沸騰氣泡行為 33
3.2 一致型圓柱鰭片陣列 (uniform cylinder) 35
3.2.1 池沸騰熱傳性能 35
3.2.2 核沸騰氣泡行為 37
3.3 一致型魚鱗鰭片陣列 (uniform fish scale) 38
3.3.1 池沸騰熱傳性能 38
3.3.2 核沸騰氣泡行為 39
3.4 漸擴型圓柱鰭片陣列 (diverging cylinder) 41
3.4.1 池沸騰熱傳性能 41
3.4.2 核沸騰氣泡行為 42
3.5 漸擴型魚鱗鰭片陣列 (diverging fish scale) 43
3.5.1 池沸騰熱傳性能 43
3.5.2 核沸騰氣泡行為 45
3.6 不同鰭片陣列設計之比較 46
3.6.1 池沸騰熱傳性能之比較 46
3.6.2 核沸騰氣泡行為之比較 49
第四章 結論與建議 51
4.1 結論 51
4.2 建議 52
參考文獻 54
附錄 58
-
dc.language.isozh_TW-
dc.subjectHFE-7100zh_TW
dc.subject二相浸沒式冷卻zh_TW
dc.subject漸擴型流道zh_TW
dc.subject鰭片陣列zh_TW
dc.subject垂直zh_TW
dc.subjectHFE-7100zh_TW
dc.subject池沸騰zh_TW
dc.subject二相浸沒式冷卻zh_TW
dc.subject漸擴型流道zh_TW
dc.subject鰭片陣列zh_TW
dc.subject垂直zh_TW
dc.subject池沸騰zh_TW
dc.subjecttwo-phase immersion coolingen
dc.subjectpool boilingen
dc.subjectHFE-7100en
dc.subjectverticalen
dc.subjectpin-fin arrayen
dc.subjectdiverging flow passageen
dc.subjecttwo-phase immersion coolingen
dc.subjectpool boilingen
dc.subjectHFE-7100en
dc.subjectverticalen
dc.subjectpin-fin arrayen
dc.subjectdiverging flow passageen
dc.title應用漸擴型鰭片陣列於飽和狀態HFE-7100的池沸騰熱傳改善zh_TW
dc.titleEnhanced saturated pool boiling in HFE-7100 by diverging pin-fin-arrayen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃振康;李明蒼zh_TW
dc.contributor.oralexamcommitteeChen-Kang Huang;Ming-Tsang Leeen
dc.subject.keyword池沸騰,HFE-7100,垂直,鰭片陣列,漸擴型流道,二相浸沒式冷卻,zh_TW
dc.subject.keywordpool boiling,HFE-7100,vertical,pin-fin array,diverging flow passage,two-phase immersion cooling,en
dc.relation.page111-
dc.identifier.doi10.6342/NTU202304250-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-09-23-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
8.13 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved