Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91290
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳俊顯zh_TW
dc.contributor.advisorChun-hsien Chenen
dc.contributor.author甯鼎軒zh_TW
dc.contributor.authorTing-Hsuan Ningen
dc.date.accessioned2023-12-20T16:20:21Z-
dc.date.available2023-12-21-
dc.date.copyright2023-12-20-
dc.date.issued2023-
dc.date.submitted2023-09-14-
dc.identifier.citation1. Bryce, M. R.; Petty, M. C. Electrically conductive Langmuir–Blodgett films of charge-transfer materials. Nature 1995, 374, 771-776.
2. Ratner, M. A brief history of molecular electronics. Nat. Nanotechnol. 2013, 8, 378-381.
3. Aviram, A.; Ratner, M. A. Molecular rectifiers. Chem. Phys. Lett. 1974, 29, 277-283.
4. Quek, S. Y.; Khoo, K. H. Predictive DFT-based approaches to charge and spin transport in single-molecule junctions and two-dimensional materials: Successes and challenges. Acc. Chem. Res. 2014, 47, 3250-3257.
5. Ko, C.-H.; Huang, M.-J.; Fu, M.-D.; Chen, C.-h. Superior contact for single-molecule conductance: Electronic coupling of thiolate and isothiocyanate on Pt, Pd, and Au. J. Am. Chem. Soc. 2010, 132, 756-764.
6. Li, D.-F.; Mao, J.-C.; Chen, D.-L.; Chen, F.; Ze-Wen, H.; Zhou, X.-Y.; Wang, Y.-H.; Zhou, X.-S.; Niu, Z.-J.; Maisonhaute, E. Single-molecule conductance with nitrile and amino contacts with Ag or Cu electrodes. Electrochim. Acta 2015, 174, 340-344.
7. Xie, Z.; Bâldea, I.; Frisbie, C. D. Energy level alignment in molecular tunnel junctions by transport and spectroscopy: Self-consistency for the case of alkyl thiols and dithiols on Ag, Au, and Pt electrodes. J. Am. Chem. Soc. 2019, 141, 18182-18192.
8. Huang, C.; Rudnev, A. V.; Hong, W.; Wandlowski, T. Break junction under electrochemical gating: testbed for single-molecule electronics. Chem. Soc. Rev. 2015, 44, 889-901.
9. Kaliginedi, V.; V. Rudnev, A.; Moreno-García, P.; Baghernejad, M.; Huang, C.; Hong, W.; Wandlowski, T. Promising anchoring groups for single-molecule conductance measurements. Phys. Chem. Chem. Phys. 2014, 16, 23529-23539.
10. Li, S.; Yu, H.; Chen, X.; Gewirth, A. A.; Moore, J. S.; Schroeder, C. M. Covalent Ag–C bonding contacts from unprotected terminal acetylenes for molecular junctions. Nano Lett. 2020, 20, 5490-5495.
11. O'Driscoll, L. J.; Bryce, M. R. A review of oligo(arylene ethynylene) derivatives in molecular junctions. Nanoscale 2021, 13, 10668-10711.
12. Ohto, T.; Inoue, T.; Stewart, H.; Numai, Y.; Aso, Y.; Ie, Y.; Yamada, R.; Tada, H. Effects of cis–trans conformation between thiophene rings on conductance of oligothiophenes. J. Phys. Chem. Lett. 2019, 10, 5292-5296.
13. Li, S.; Yu, H.; Li, J.; Angello, N.; Jira, E. R.; Li, B.; Burke, M. D.; Moore, J. S.; Schroeder, C. M. Transition between nonresonant and resonant charge transport in molecular junctions. Nano Lett. 2021, 21, 8340-8347.
14. Lambert, C. J. Basic concepts of quantum interference and electron transport in single-molecule electronics. Chem. Soc. Rev. 2015, 44, 875-888.
15. Solomon, G. C.; Andrews, D. Q.; Hansen, T.; Goldsmith, R. H.; Wasielewski, M. R.; Van Duyne, R. P.; Ratner, M. A. Understanding quantum interference in coherent molecular conduction. J. Chem. Phys. 2008, 129, 054701.
16. Jönsson, C. Electron diffraction at multiple slits. Am. J. Phys. 1974, 42, 4-11.
17. Cardamone, D. M.; Stafford, C. A.; Mazumdar, S. Controlling quantum transport through a single molecule. Nano Lett. 2006, 6, 2422-2426.
18. Ratner, M. A. Bridge-assisted electron transfer: effective electronic coupling. J. Phys. Chem. 1990, 94, 4877-4883.
19. Steane, A.; Szriftgiser, P.; Desbiolles, P.; Dalibard, J. Phase modulation of atomic de Broglie waves. Phys. Rev. Lett. 1995, 74, 4972-4975.
20. Liu, J.; Huang, X.; Wang, F.; Hong, W. Quantum interference effects in charge transport through single-molecule junctions: Detection, manipulation, and application. Acc. Chem. Res. 2019, 52, 151-160.
21. Melnikov, Y. A. Some applications of the Greens' function method in mechanics. Int. J. Solids Struct. 1977, 13, 1045-1058.
22. Huang, B.; Liu, X.; Yuan, Y.; Hong, Z.-W.; Zheng, J.-F.; Pei, L.-Q.; Shao, Y.; Li, J.-F.; Zhou, X.-S.; Chen, J.-Z.; et al. Controlling and observing sharp-valleyed quantum interference effect in single molecular junctions. J. Am. Chem. Soc. 2018, 140, 17685-17690.
23. Lambert, C. J.; Liu, S.-X. A magic ratio rule for beginners: A chemist's guide to quantum interference in molecules. Chem. Eur. J. 2018, 24, 4193-4201.
24. Tsuji, Y.; Yoshizawa, K. Frontier orbital perspective for quantum interference in alternant and nonalternant hydrocarbons. J. Phys. Chem. C 2017, 121, 9621-9626.
25. Yoshizawa, K.; Tada, T.; Staykov, A. Orbital views of the electron transport in molecular devices. J. Am. Chem. Soc. 2008, 130, 9406-9413.
26. Hsu, L.-Y.; Rabitz, H. Single-molecule phenyl-acetylene-macrocycle-based optoelectronic switch functioning as a quantum-interference-effect transistor. Phys. Rev. Lett. 2012, 109.
27. Arasu, N. P.; Vázquez, H. Origin of the electron transport properties of aromatic and antiaromatic single molecule circuits. ChemPhysChem 2021, 22, 864-869.
28. O'Driscoll, L. J.; Bryce, M. R. Extended curly arrow rules to rationalise and predict structural effects on quantum interference in molecular junctions. Nanoscale 2021, 13, 1103-1123.
29. O’Driscoll, L. J.; Sangtarash, S.; Xu, W.; Daaoub, A.; Hong, W.; Sadeghi, H.; Bryce, M. R. Heteroatom effects on quantum interference in molecular junctions: Modulating antiresonances by molecular design. J. Phys. Chem. C 2021, 125, 17385-17391.
30. Hansen, T.; Solomon, G. C.; Andrews, D. Q.; Ratner, M. A. Interfering pathways in benzene: An analytical treatment. J. Chem. Phys. 2009, 131, 194704.
31. Solomon, G. C.; Herrmann, C.; Hansen, T.; Mujica, V.; Ratner, M. A. Exploring local currents in molecular junctions. Nat. Chem. 2010, 2, 223-228.
32. Sengul, O.; Valli, A.; Stadler, R. Electrode effects on the observability of destructive quantum interference in single-molecule junctions. Nanoscale 2021, 13, 17011-17021.
33. Schmidt, M.; Wassy, D.; Hermann, M.; González, M. T.; Agräit, N.; Zotti, L. A.; Esser, B.; Leary, E. Single-molecule conductance of dibenzopentalenes: antiaromaticity and quantum interference. Chem. Commun. 2021, 57, 745-748.
34. Alqahtani, J.; Sadeghi, H.; Sangtarash, S.; Lambert, C. J. Breakdown of curly arrow rules in anthraquinone. Angew. Chem. Int. Ed. 2018, 57, 15065-15069.
35. Garner, M. H.; Solomon, G. C.; Strange, M. Tuning conductance in aromatic molecules: constructive and counteractive substituent effects. J. Phys. Chem. C 2016, 120, 9097-9103.
36. Zotti, L. A.; Leary, E. Taming quantum interference in single molecule junctions: induction and resonance are key. Phys. Chem. Chem. Phys. 2020, 22, 5638-5646.
37. Layer, G.; Reichelt, J.; Jahn, D.; Heinz, D. W. Structure and function of enzymes in heme biosynthesis. Protein Sci. 2010, 19, 1137-1161.
38. Willows, R. D.; Li, Y.; Scheer, H.; Chen, M. Structure of Chlorophyll f. Org. Lett. 2013, 15, 1588-1590.
39. Leeper, F. The biosynthesis of porphyrins, chlorophylls, and vitamin B 12. Nat. Prod. Rep. 1989, 6, 171-203.
40. Stone, A.; Fleischer, E. B. The molecular and crystal structure of porphyrin diacids. J. Am. Chem. Soc. 1968, 90, 2735-2748.
41. Liu, Z.-F.; Wei, S.; Yoon, H.; Adak, O.; Ponce, I.; Jiang, Y.; Jang, W.-D.; Campos, L. M.; Venkataraman, L.; Neaton, J. B. Control of single-molecule junction conductance of porphyrins via a transition-metal center. Nano Lett. 2014, 14, 5365-5370.
42. Nishiyama, A.; Fukuda, M.; Mori, S.; Furukawa, K.; Fliegl, H.; Furuta, H.; Shimizu, S. Rational synthesis of antiaromatic 5,15-Dioxaporphyrin and oxidation into β,β-linked dimers. Angew. Chem. Int. Ed. 2018, 57, 9728-9733.
43. Gehring, P.; Thijssen, J. M.; Van Der Zant, H. S. J. Single-molecule quantum-transport phenomena in break junctions. Nat. Rev. Phys. 2019, 1, 381-396.
44. Peeks, M. D.; Claridge, T. D. W.; Anderson, H. L. Aromatic and antiaromatic ring currents in a molecular nanoring. Nature 2017, 541, 200-203.
45. Schleyer, P. V. R. Introduction:  Aromaticity. Chem. Rev. 2001, 101, 1115-1118.
46. Breslow, R. Antiaromaticity. Acc. Chem. Res. 1973, 6, 393-398.
47. Mo, Y. The resonance energy of benzene: A revisit. J. Phys. Chem. A 2009, 113, 5163-5169.
48. Chen, W.; Li, H.; Widawsky, J. R.; Appayee, C.; Venkataraman, L.; Breslow, R. Aromaticity decreases single-molecule junction conductance. J. Am. Chem. Soc. 2014, 136, 918-920.
49. Fujii, S.; Marqués-González, S.; Shin, J.-Y.; Shinokubo, H.; Masuda, T.; Nishino, T.; Arasu, N. P.; Vázquez, H.; Kiguchi, M. Highly-conducting molecular circuits based on antiaromaticity. Nat. Commun. 2017, 8, 15984.
50. Borges, A.; Solomon, G. C. Effects of aromaticity and connectivity on the conductance of five-membered rings. J. Phys. Chem. C 2017, 121, 8272-8279.
51. Gantenbein, M.; Li, X.; Sangtarash, S.; Bai, J.; Olsen, G.; Alqorashi, A.; Hong, W.; Lambert, C. J.; Bryce, M. R. Exploring antiaromaticity in single-molecule junctions formed from biphenylene derivatives. Nanoscale 2019, 11, 20659-20666.
52. Schneebeli, S.; Kamenetska, M.; Foss, F.; Vazquez, H.; Skouta, R.; Hybertsen, M.; Venkataraman, L.; Breslow, R. The electrical properties of biphenylenes. Org. Lett. 2010, 12, 4114-4117.
53. Woodward, R. B. Totalsynthese des Chlorophylls. Angew. Chem. 1960, 72, 651-662.
54. Huang, L.; Chen, S. Z.; Zeng, Y. J.; Wu, D.; Li, B. L.; Feng, Y. X.; Fan, Z. Q.; Tang, L. M.; Chen, K. Q. Switchable spin filters in magnetic molecular junctions based on quantum interference. Adv. Electron. Mater. 2020, 6, 2000689.
55. Li, E. Y.; Marzari, N. Conductance switching and many-valued logic in porphyrin assemblies. J. Phys. Chem. Lett. 2013, 4, 3039-3044.
56. Nozaki, D.; Lokamani; Santana-Bonilla, A.; Dianat, A.; Gutierrez, R.; Cuniberti, G. Switchable negative differential resistance induced by quantum interference effects in porphyrin-based molecular junctions. J. Phys. Chem. Lett. 2015, 6, 3950-3955.
57. Stuyver, T.; Perrin, M.; Geerlings, P.; De Proft, F.; Alonso, M. Conductance switching in expanded porphyrins through aromaticity and topology changes. J. Am. Chem. Soc. 2018, 140, 1313-1326.
58. Zhang, B.; Zhang, S.; Long, M. Magnetothermoelectric properties of Al-Porphyrin sandwiched by graphene nanoribbon electrode based on quantum interference. Phys. E: Low-Dimens. 2022, 139, 115189.
59. Sugimura, H.; Nakajima, K.; Yamashita, K. I.; Ogawa, T. 20π Antiaromatic isophlorins without metallation or core modification. Eur. J. Org. Chem. 2022, 2022, e202200747.
60. Liu, C.; Shen, D.-M.; Chen, Q.-Y. Synthesis and reactions of 20 π-electron β-Tetrakis(trifluoromethyl)-meso-tetraphenylporphyrins. J. Am. Chem. Soc. 2007, 129, 5814-5815.
61. Matano, Y. Synthesis of aza-, oxa-, and thiaporphyrins and related compounds. Chem. Rev. 2017, 117, 3138-3191.
62. Sudoh, K.; Satoh, T.; Amaya, T.; Furukawa, K.; Minoura, M.; Nakano, H.; Matano, Y. Syntheses, properties, and catalytic activities of metal(II) complexes and free bases of redox-switchable 20π, 19π, and 18π 5,10,15,20-Tetraaryl-5,15-diazaporphyrinoids. Chem. Eur. J. 2017, 23, 16364-16373.
63. Broadhurst, M. J.; Grigg, R.; Johnson, A. W. Sulphur extrusion reactions applied to the synthesis of corroles and related systems. J. Chem. Soc., Perkin Trans. 1 1972, 1124.
64. Li, J.; Wu, Q.; Xu, W.; Wang, H.-C.; Zhang, H.; Chen, Y.; Tang, Y.; Hou, S.; Lambert Colin, J.; Hong, W. Room-temperature single-molecule conductance switch via confined coordination-induced spin-state manipulation. CCS Chem. 2021, 4, 1357-1365.
65. Wang, N.; Liu, H.; Zhao, J.; Cui, Y.; Xu, Z.; Ye, Y.; Kiguchi, M.; Murakoshi, K. Theoretical investigation on the electron transport path through the porphyrin molecules and chemisorption of CO. J. Phys. Chem. C 2009, 113, 7416-7423.
66. Kastlunger, G.; Stadler, R. Charge localization on a redox-active single-molecule junction and its influence on coherent electron transport. Phys. Rev. B 2013, 88, 035418.
67. Chen, H.; Hou, S.; Wu, Q.; Jiang, F.; Zhou, P.; Zhang, L.; Jiao, Y.; Song, B.; Guo, Q.-H.; Chen, X.-Y.; et al. Promotion and suppression of single-molecule conductance by quantum interference in macrocyclic circuits. Matter 2021, 4, 3662-3676.
68. Tang, C.; Huang, L.; Sangtarash, S.; Noori, M.; Sadeghi, H.; Xia, H.; Hong, W. Reversible switching between destructive and constructive quantum interference using atomically precise chemical gating of single-molecule junctions. J. Am. Chem. Soc. 2021, 143, 9385-9392.
69. Zhao, X.; Kastlunger, G.; Stadler, R. Quantum interference in coherent tunneling through branched molecular junctions containing ferrocene centers. Phys. Rev. B 2017, 96, 085421.
70. Murray, J. S.; Politzer, P. The electrostatic potential: an overview. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 1, 153-163.
71. Zhang, J.; Lu, T. Efficient evaluation of electrostatic potential with computerized optimized code. Phys. Chem. Chem. Phys. 2021, 23, 20323-20328.
72. Ribeiro, I. H. S.; Reis, D. T.; Pereira, D. H. A DFT-based analysis of adsorption of Cd2+, Cr3+, Cu2+, Hg2+, Pb2+, and Zn2+, on vanillin monomer: a study of the removal of metal ions from effluents. J. Mol. Model. 2019, 25, 267.
73. Santamaria, R.; Cocho, G.; Corona, L.; González, E. Molecular electrostatic potentials and Mulliken charge populations of DNA mini-sequences. Chem. Phys. 1998, 227, 317-329.
74. Yin, X.; Zang, Y.; Zhu, L.; Low, J. Z.; Liu, Z.-F.; Cui, J.; Neaton, J. B.; Venkataraman, L.; Campos, L. M. A reversible single-molecule switch based on activated antiaromaticity. Sci. Adv. 2017, 3, eaao2615.
75. Li, J.; Pudar, S.; Yu, H.; Li, S.; Moore, J. S.; Rodríguez-López, J.; Jackson, N. E.; Schroeder, C. M. Reversible switching of molecular conductance in viologens is controlled by the electrochemical environment. J. Phys. Chem. C 2021, 125, 21862-21872.
76. Pobelov, I. V.; Li, Z.; Wandlowski, T. Electrolyte gating in redox-active tunneling junctions: an electrochemical STM approach. J. Am. Chem. Soc. 2008, 130, 16045-16054.
77. Gaussian 16 Rev. D.01; Frisch, M. J. Trucks, G. W. Schlegel, H. B. Scuseria, G. E. Robb, M. A. Cheeseman, J. R. Scalmani, G. Barone, V. Petersson, G. A. Nakatsuji, H. Gaussian, Inc., Wallingford, CT, 2013.
78. Smidstrup, S.; Markussen, T.; Vancraeyveld, P.; Wellendorff, J.; Schneider, J.; Gunst, T.; Verstichel, B.; Stradi, D.; Khomyakov, P. A.; Vej-Hansen, U. G.; et al. QuantumATK: an integrated platform of electronic and atomic-scale modelling tools. J. Phys.: Condens. Matter 2020, 32, 015901.
79. Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864-B871.
80. Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133-A1138.
81. Brandbyge, M.; Mozos, J.-L.; Ordejón, P.; Taylor, J.; Stokbro, K. Density-functional method for nonequilibrium electron transport. Phys. Rev. B 2002, 65, 165401.
82. Krishnan, R.; Schlegel, H.; Pople, J. Derivative studies in configuration–interaction theory. J. Chem. Phys. 1980, 72, 4654-4655.
83. Møller, C.; Plesset, M. S. Note on an approximation treatment for many-electron systems. Phys. Rev. 1934, 46, 618-622.
84. Raghavachari, K.; Pople, J. A. Calculation of one-electron properties using limited configuration interaction techniques. Int. J. Quantum Chem. 1981, 20, 1067-1071.
85. Roothaan, C. C. J. New developments in molecular orbital theory. Rev. Mod. Phys. 1951, 23, 69-89.
86. Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244-13249.
87. Perdew, J. P.; Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 1981, 23, 5048-5079.
88. Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098-3100.
89. Langreth, D. C.; Mehl, M. J. Beyond the local-density approximation in calculations of ground-state electronic properties. Phys. Rev. B 1983, 28, 1809-1834.
90. Peverati, R.; Truhlar, D. G. M11-L: A local density functional that provides improved accuracy for electronic structure calculations in chemistry and physics. J. Phys. Chem. Lett. 2012, 3, 117-124.
91. Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. Climbing the density functional ladder: Nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett. 2003, 91.
92. Clark, T.; Chandrasekhar, J.; Spitznagel, G. N. W.; Schleyer, P. V. R. Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+G basis set for first-row elements, Li-F. J. Comput. Chem. 1983, 4, 294-301.
93. Hehre, W. J.; Stewart, R. F.; Pople, J. A. Self-consistent molecular orbital methods. XII. Further extensions of gaussian-type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 1969, 51, 2657-2664.
94. Binkley, J. S.; Pople, J. A.; Hehre, W. J. Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements. J. Am. Chem. Soc. 1980, 102, 939-947.
95. Hehre, W. J.; Ditchfield, R.; Pople, J. A. Self-consistent molecular orbital methods. XII. Further extensions of gaussian-type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 1972, 56, 2257-2261.
96. McLean, A. D.; Chandler, G. S. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18. J. Chem. Phys. 1980, 72, 5639-5648.
97. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648-5652.
98. Hay, P. J.; Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 1985, 82, 270-283.
99. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
100. Blum, V.; Gehrke, R.; Hanke, F.; Havu, P.; Havu, V.; Ren, X.; Reuter, K.; Scheffler, M. Ab initio molecular simulations with numeric atom-centered orbitals. Comput. Phys. Commun. 2009, 180, 2175-2196.
101. Smidstrup, S.; Stradi, D.; Wellendorff, J.; Khomyakov, P. A.; Vej-Hansen, U. G.; Lee, M.-E.; Ghosh, T.; Jónsson, E.; Jónsson, H.; Stokbro, K. First-principles Green's-function method for surface calculations: A pseudopotential localized basis set approach. Phys. Rev. B 2017, 96.
102. Montes, E.; Vázquez, H. Role of the binding motifs in the energy level alignment and conductance of amine-gold linked molecular junctions within DFT and DFT + Σ. Appl. Sci. 2021, 11, 802.
103. Frei, M.; Aradhya, S. V.; Koentopp, M.; Hybertsen, M. S.; Venkataraman, L. Mechanics and chemistry: Single molecule bond rupture forces correlate with molecular backbone structure. Nano Lett. 2011, 11, 1518-1523.
104. McNeely, J.; Miller, N.; Pan, X.; Lawson, B.; Kamenetska, M. Angstrom-scale ruler using single molecule conductance signatures. J. Phys. Chem. C 2020, 124, 13427-13433.
105. Zhang, G.; Musgrave, C. B. Comparison of DFT methods for molecular orbital eigenvalue calculations. J. Phys. Chem. A 2007, 111, 1554-1561.
106. Szekeres, Z.; Bogár, F.; Ladik, J. B3LYP, BLYP and PBE DFT band structures of the nucleotide base stacks. Int. J. Quantum Chem. 2005, 102, 422-426.
107. Fagas, G.; Greer, J. C. Tunnelling in alkanes anchored to gold electrodes via amine end groups. Nanotechnology 2007, 18, 424010.
108. Quek, S. Y.; Venkataraman, L.; Choi, H. J.; Louie, S. G.; Hybertsen, M. S.; Neaton, J. B. Amine-gold linked single-molecule circuits:  experiment and theory. Nano Lett. 2007, 7, 3477-3482.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91290-
dc.description.abstract量子干涉(quantum interference, QI)在單分子的電子傳輸領域中有建設性(constructive, CQI)與破壞性(distructive, DQI)兩種現象。5,15-二氧雜卟啉(5,15-dioxaporphyrin, DOP)是個反芳香性分子(antiaromatics),其meso位置被氧原子取代,在氧化還原前後皆具鉗合金屬的能力,並能維持芳香性分子的平面結構,比一般卟啉分子擁有更高的電化學操作耐受性。本研究以軌域對稱性法則(orbital symmetry rule)和延伸彎箭頭法則(extended curly arrow rules)預測三種DOP分子在反芳香性的20個π電子(簡稱20π)氧化成為芳香性的18個π電子(簡稱18π)時,發生的CQI和DQI現象。通過第一原理計算分析頭基接點對3,13-雙對胺基苯基DOP(3,13-bis(4-aminophenyl)DOP, 3,13-DOP)、3,17-雙對胺基苯基DOP (3,17-DOP)與10,20-雙對胺基苯基DOP (10,20-DOP)的量子干涉特性。我們發現DOP分子由20π氧化為18π時,因為分子軌域相位的加乘或抵消,使得3,17-DOP的電荷傳輸能譜由DQI轉變成CQI,而10,20-DOP的轉換則相反。3,13-DOP在兩種氧化態均呈現DQI特徵。模擬電化學電位控制下的改變工作電極電位(Ewk)獲得的I-Ewk圖顯示在DQI特徵附近,呈現四個數量級以上的電流開關比值。zh_TW
dc.description.abstractConstructive and destructive quantum interference (CQI and DQI) are especially featured in the charge transport of single-molecule junctions. 5,15-dioxaporphyrin (DOP) is a meso-oxygen-substituted counterpart of highly π-conjugated porphyrin which can maintain planar structure and ability to chelate nickel ion during redox reactions. In this study, we utilized orbital symmetry rule to predict the CQI and DQI features of the DOP when it was oxidized from 20π-electron neutral specie to 18π-electron dication. Through first-principles calculation, the switches between DQI and CQI caused by altering contact-positions of anchoring groups on 3,13-bis(4-aminophenyl)DOP (3,13-DOP), 3,17-bis(4-aminophenyl)DOP (3,17-DOP) and 10,20-bis(4-aminophenyl)DOP (10,20-DOP) were analyzed. When the 20π-electron 3,17-DOP was oxidized to the 18π-electron state, the QI patterns in the transmission spectra would turn from DQI to CQI by the addition and the offset of the phases of certain molecular orbitals, and vice versa for 10,20-DOP. 3,13-DOP feature DQI at both oxidation state. Calculated electrochemical gating I-Ewk curves result in up to 4 orders of current on/off ratio near the DQI pattern.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-12-20T16:20:21Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-12-20T16:20:21Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vii
表目錄 x
第1章 緒論 1
1.1 分子電子學的傳輸機制與基本模型 1
1.2 量子干涉原理與預測方法 3
1.2.1 軌域對稱性法則 5
1.2.2 延伸彎箭頭法則 7
1.2.3 量子干涉與量子傳輸途徑關係 10
1.3 本研究探討之5,15-二氧雜卟啉分子 12
1.3.1 芳香性與反芳香性 14
1.3.2 卟啉類化合物的光譜與氧化還原性質 17
1.3.3 具異原子卟啉的氧化態穩定性 19
1.3.4 頭基與卟啉接點對電子傳輸之影響 20
1.4 非電中性分子之電性計算 22
1.4.1 單分子靜電勢模擬 22
1.4.2 非電中性分子的電子傳輸模擬 24
1.4.3 相反離子的種類選擇 26
1.5 研究動機 27
第2章 研究方法 28
2.1 計算原理 28
2.1.1 哈特里−福克方法 28
2.1.2 密度泛函理論 29
2.1.3 非平衡格林函數−密度泛函方法 29
2.1.4 泛函 29
2.1.5 基底函數 30
2.2 計算軟體與條件 30
2.2.1 Gaussian 09之計算條件設定 30
2.2.2 QuantumATK之計算條件設定 30
2.3 模型建構 31
2.3.1 電極設計 31
2.3.2 分子設計 32
2.3.3 模擬電化學環境下的相反離子設定 32
2.3.4 電極−分子−電極系統 33
第3章 結果與討論 34
3.1 DOP的氧化還原特性與分子軌域能階 34
3.1.1 相反離子與DOP之相對位置討論 36
3.2 DOP的量子干涉特徵預測 38
3.2.1 軌域對稱性法則對DOP之量子干涉預測 38
3.2.2 延伸彎箭頭法則對DOP之量子干涉預測 41
3.2.3 頭基接點與量子干涉的關係 44
3.3 DOP分子接點衍生物與相反離子之相對位置關係 45
3.3.1 DOP分子接點衍生物的能階 45
3.3.2 DOP分子接點衍生物的靜電勢模擬 48
3.3.3 相反離子與DOP分子接點衍生物之空間位置討論 49
3.3.4 相反離子使用與否及其種類之討論 52
3.4 DOP的電子傳輸性質 54
3.4.1 DOP分子接點衍生物於電極−分子−電極系統內之空間位置討論 54
3.4.2 DOP分子接點衍生物之電子傳輸能譜 56
3.4.3 DOP分子接點衍生物之分子軌域節點與軌域對稱性法則討論 61
3.5 DOP分子接點衍生物之電子傳輸途徑討論 62
3.5.1 DOP分子接點衍生物之量子干涉特徵與延伸彎箭頭法則討論 67
3.6 電位控制下之分子導電值討論 68
3.6.1 費米能量處的傳輸值比較與定偏壓不同電位下之I-Ewk圖 69
第4章 結論 71
參考資料 72
-
dc.language.isozh_TW-
dc.subject分子電性zh_TW
dc.subject量子干涉zh_TW
dc.subject二氧雜卟啉zh_TW
dc.subject卟啉zh_TW
dc.subject分子電性zh_TW
dc.subject第一原理計算zh_TW
dc.subject量子干涉zh_TW
dc.subject二氧雜卟啉zh_TW
dc.subject卟啉zh_TW
dc.subject第一原理計算zh_TW
dc.subjectQuantum Interferenceen
dc.subjectFirst-principles Calculationen
dc.subjectMolecular Electronicsen
dc.subjectPorphyrinen
dc.subjectQuantum Interferenceen
dc.subjectFirst-principles Calculationen
dc.subjectMolecular Electronicsen
dc.subjectPorphyrinen
dc.title5,15-二氧雜卟啉之頭基接點影響單分子電性的量子干涉模擬zh_TW
dc.titleComputational Study on Electron Transport for Single-Molecule Junctions of 5,15-Dioxaporphyrin: Peripheral Substituent Position-dependent Quantum Interferenceen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳以文;許良彥zh_TW
dc.contributor.oralexamcommitteeI-Wen Chen;Liang-Yan Hsuen
dc.subject.keyword第一原理計算,分子電性,卟啉,二氧雜卟啉,量子干涉,zh_TW
dc.subject.keywordFirst-principles Calculation,Molecular Electronics,Porphyrin,Quantum Interference,en
dc.relation.page77-
dc.identifier.doi10.6342/NTU202304220-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-09-14-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
6.81 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved