請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91287
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃建璋 | zh_TW |
dc.contributor.advisor | Jian-Jang Huang | en |
dc.contributor.author | 黃家均 | zh_TW |
dc.contributor.author | Chia-Chun Huang | en |
dc.date.accessioned | 2023-12-20T16:19:30Z | - |
dc.date.available | 2023-12-21 | - |
dc.date.copyright | 2023-12-20 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-30 | - |
dc.identifier.citation | [1] H. Peng et al., "Aharonov–Bohm interference in topological insulator nanoribbons," Nature Materials, vol. 9, no. 3, pp. 225-229, 2010/03/01 2010, doi: 10.1038/nmat2609.
[2] J. Chen et al., "Gate-Voltage Control of Chemical Potential and Weak Antilocalization in ${\mathrm{Bi}}_{2}{\mathrm{Se}}_{3}$," Physical Review Letters, vol. 105, no. 17, p. 176602, 10/19/ 2010, doi: 10.1103/PhysRevLett.105.176602. [3] H.-T. He et al., "Impurity Effect on Weak Antilocalization in the Topological Insulator ${\mathrm{Bi}}_{2}{\mathrm{Te}}_{3}$," Physical Review Letters, vol. 106, no. 16, p. 166805, 04/21/ 2011, doi: 10.1103/PhysRevLett.106.166805. [4] J. G. Checkelsky, Y. S. Hor, R. J. Cava, and N. P. Ong, "Bulk band gap and surface state conduction observed in voltage-tuned crystals of the topological insulator Bi2Se3," Phys Rev Lett, vol. 106, no. 19, p. 196801, May 13 2011, doi: 10.1103/PhysRevLett.106.196801. [5] D.-X. Qu, Y. S. Hor, J. Xiong, R. J. Cava, and N. P. Ong, "Quantum Oscillations and Hall Anomaly of Surface States in the Topological Insulator Bi<sub>2</sub>Te<sub>3</sub>," Science, vol. 329, no. 5993, pp. 821-824, 2010, doi: doi:10.1126/science.1189792. [6] Z. Ren, A. A. Taskin, S. Sasaki, K. Segawa, and Y. Ando, "Large bulk resistivity and surface quantum oscillations in the topological insulator ${\text{Bi}}_{2}{\text{Te}}_{2}\text{Se}$," Physical Review B, vol. 82, no. 24, p. 241306, 12/09/ 2010, doi: 10.1103/PhysRevB.82.241306. [7] W. Richter and C. R. Becker, "A Raman and far-infrared investigation of phonons in the rhombohedral V2–VI3 compounds Bi2Te3, Bi2Se3, Sb2Te3 and Bi2(Te1−xSex)3 (0 <x < 1), (Bi1−ySby)2Te3 (0 <y < 1)," Physica Status Solidi (b), vol. 84, no. 2, pp. 619-628, 1977, doi: 10.1002/pssb.2220840226. [8] Y. L. Chen et al., "Experimental realization of a three-dimensional topological insulator, Bi2Te3," (in eng), Science, vol. 325, no. 5937, pp. 178-81, Jul 10 2009, doi: 10.1126/science.1173034. [9] H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, "Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface," Nature Physics, vol. 5, no. 6, pp. 438-442, 2009/06/01 2009, doi: 10.1038/nphys1270. [10] N. S. Patil, A. M. Sargar, S. R. Mane, and P. N. Bhosale, "Growth mechanism and characterisation of chemically grown Sb doped Bi2Se3 thin films," Applied Surface Science, vol. 254, no. 16, pp. 5261-5265, 2008/06/15/ 2008, doi: https://doi.org/10.1016/j.apsusc.2008.02.084. [11] P. H. Le, C.-N. Liao, C. W. Luo, J.-Y. Lin, and J. Leu, "Thermoelectric properties of bismuth-selenide films with controlled morphology and texture grown using pulsed laser deposition," Applied Surface Science, vol. 285, pp. 657-663, 2013/11/15/ 2013, doi: https://doi.org/10.1016/j.apsusc.2013.08.107. [12] R. Gracia-Abad, S. Sangiao, C. Bigi, S. Kumar Chaluvadi, P. Orgiani, and J. M. De Teresa, "Omnipresence of Weak Antilocalization (WAL) in Bi(2)Se(3) Thin Films: A Review on Its Origin," Nanomaterials (Basel), vol. 11, no. 5, Apr 22 2021, doi: 10.3390/nano11051077. [13] C.-Z. Chang et al., "GROWTH OF QUANTUM WELL FILMS OF TOPOLOGICAL INSULATOR Bi2Se3 ON INSULATING SUBSTRATE," SPIN, vol. 01, no. 01, pp. 21-25, 2011/06/01 2011, doi: 10.1142/S2010324711000033. [14] P. Tabor, C. Keenan, D. Lederman, and S. Urazhdin, "Growth of the topological insulator Bi2Se3 on Al2O3 by molecular beam epitaxy," 03/01 2011. [15] S. Huang et al., "Fracture Behavior of Single-Crystal Sapphire in Different Crystal Orientations," Crystals, vol. 11, no. 8, p. 930, 2021. [Online]. Available: https://www.mdpi.com/2073-4352/11/8/930. [16] A. Ambrosi, Z. Sofer, J. Luxa, and M. Pumera, "Exfoliation of Layered Topological Insulators Bi2Se3 and Bi2Te3 via Electrochemistry," ACS Nano, vol. 10, no. 12, pp. 11442-11448, 2016/12/27 2016, doi: 10.1021/acsnano.6b07096. [17] N. H. Tu et al., "Large-Area and Transferred High-Quality Three-Dimensional Topological Insulator Bi2–xSbxTe3–ySey Ultrathin Film by Catalyst-Free Physical Vapor Deposition," Nano Letters, vol. 17, no. 4, pp. 2354-2360, 2017/04/12 2017, doi: 10.1021/acs.nanolett.6b05260. [18] L. D. Alegria et al., "Structural and Electrical Characterization of Bi2Se3 Nanostructures Grown by Metal–Organic Chemical Vapor Deposition," Nano Letters, vol. 12, no. 9, pp. 4711-4714, 2012/09/12 2012, doi: 10.1021/nl302108r. [19] X. Chen, X. C. Ma, K. He, J. F. Jia, and Q. K. Xue, "Molecular beam epitaxial growth of topological insulators," Adv Mater, vol. 23, no. 9, pp. 1162-5, Mar 4 2011, doi: 10.1002/adma.201003855. [20] S. Roy, S. Manna, C. Mitra, and B. Pal, "Photothermal Control of Helicity-Dependent Current in Epitaxial Sb2Te2Se Topological Insulator Thin-Films at Ambient Temperature," ACS Applied Materials & Interfaces, vol. 14, no. 7, pp. 9909-9916, 2022/02/23 2022, doi: 10.1021/acsami.1c24461. [21] M. Liu, F. Y. Liu, B. Y. Man, D. Bi, and X. Y. Xu, "Multi-layered nanostructure Bi2Se3 grown by chemical vapor deposition in selenium-rich atmosphere," Applied Surface Science, vol. 317, pp. 257-261, 2014/10/30/ 2014, doi: https://doi.org/10.1016/j.apsusc.2014.08.103. [22] S. E. Harrison, S. Li, Y. Huo, B. Zhou, Y. L. Chen, and J. S. Harris, "Two-step growth of high quality Bi2Te3 thin films on Al2O3 (0001) by molecular beam epitaxy," Applied Physics Letters, vol. 102, no. 17, 2013, doi: 10.1063/1.4803717. [23] K. Ueda, Y. Hadate, K. Suzuki, and H. Asano, "Fabrication of high-quality epitaxial Bi1-xSbx films by two-step growth using molecular beam epitaxy," Thin Solid Films, vol. 713, p. 138361, 2020/11/01/ 2020, doi: https://doi.org/10.1016/j.tsf.2020.138361. [24] Z. J. Yue, X. L. Wang, and S. X. Dou, "Angular-dependences of giant in-plane and interlayer magnetoresistances in Bi2Te3 bulk single crystals," Applied Physics Letters, vol. 101, no. 15, 2012, doi: 10.1063/1.4756941. [25] S. Barua, K. P. Rajeev, and A. K. Gupta, "Evidence for topological surface states in metallic single crystals of Bi2Te3," Journal of Physics: Condensed Matter, vol. 27, no. 1, p. 015601, 2014/12/03 2015, doi: 10.1088/0953-8984/27/1/015601. [26] H. T. He et al., "Disorder-induced linear magnetoresistance in (221) topological insulator Bi2Se3 films," Applied Physics Letters, vol. 103, no. 3, 2013, doi: 10.1063/1.4816078. [27] W. J. Wang, K. H. Gao, Q. L. Li, and Z.-Q. Li, "Disorder-dominated linear magnetoresistance in topological insulator Bi2Se3 thin films," Applied Physics Letters, vol. 111, no. 23, 2017, doi: 10.1063/1.5000880. [28] B. A. Assaf, T. Cardinal, P. Wei, F. Katmis, J. S. Moodera, and D. Heiman, "Linear magnetoresistance in topological insulator thin films: Quantum phase coherence effects at high temperatures," Applied Physics Letters, vol. 102, no. 1, 2013, doi: 10.1063/1.4773207. [29] J. G. Checkelsky, Y. S. Hor, M. H. Liu, D. X. Qu, R. J. Cava, and N. P. Ong, "Quantum Interference in Macroscopic Crystals of Nonmetallic ${\mathrm{Bi}}_{2}{\mathrm{Se}}_{3}$," Physical Review Letters, vol. 103, no. 24, p. 246601, 12/11/ 2009, doi: 10.1103/PhysRevLett.103.246601. [30] A. A. Taskin, S. Sasaki, K. Segawa, and Y. Ando, "Manifestation of Topological Protection in Transport Properties of Epitaxial ${\mathrm{Bi}}_{2}{\mathrm{Se}}_{3}$ Thin Films," Physical Review Letters, vol. 109, no. 6, p. 066803, 08/09/ 2012, doi: 10.1103/PhysRevLett.109.066803. [31] L. Bao et al., "Weak Anti-localization and Quantum Oscillations of Surface States in Topological Insulator Bi2Se2Te," Scientific Reports, vol. 2, no. 1, p. 726, 2012/10/11 2012, doi: 10.1038/srep00726. [32] S. Hikami, A. I. Larkin, and Y. Nagaoka, "Spin-Orbit Interaction and Magnetoresistance in the Two Dimensional Random System," Progress of Theoretical Physics, vol. 63, no. 2, pp. 707-710, 1980, doi: 10.1143/PTP.63.707. [33] H. SHARMA and Y. C. SHARMA, "EXPERIMENTAL INVESTIGATION OF ELECTRICAL PROPERTIES OF BISMUTH SELENIDE THIN FILMS," Chalcogenide Letters, vol. 17, pp. 173 - 177, 2020. [34] G. F. Harrington and J. Santiso, "Back-to-Basics tutorial: X-ray diffraction of thin films," Journal of Electroceramics, vol. 47, no. 4, pp. 141-163, 2021/12/01 2021, doi: 10.1007/s10832-021-00263-6. [35] D. Regonini, "Anodised TiO2 Nanotubes: Synthesis, Growth Mechanism and Thermal Stability," 2008. [36] K. Akhtar, S. A. Khan, S. B. Khan, and A. M. Asiri, "Scanning Electron Microscopy: Principle and Applications in Nanomaterials Characterization," in Handbook of Materials Characterization, 2018, ch. Chapter 4, pp. 113-145. [37] H. Xiao, Introduction to Semiconductor Technology (Photolithography). SPIE, 2012. [38] A. Bashir, T. I. Awan, A. Tehseen, M. B. Tahir, and M. Ijaz, "Interfaces and surfaces," in Chemistry of Nanomaterials, 2020, pp. 51-87. [39] "National Cheng Kung University Core Facility Center machine equipment." https://ctrmost-cfc.ncku.edu.tw/p/404-1210-7410.php?Lang=zh-tw (accessed. [40] Y.-C. Lin et al., "A study on the epitaxial Bi2Se3 thin film grown by vapor phase epitaxy," AIP Advances, vol. 6, no. 6, 2016, doi: 10.1063/1.4954735. [41] X. Yang, X. Wang, and Z. Zhang, "Synthesis and optical properties of single-crystalline bismuth selenide nanorods via a convenient route," Journal of Crystal Growth, vol. 276, no. 3-4, pp. 566-570, 2005, doi: 10.1016/j.jcrysgro.2004.11.422. [42] P. H. Le, K. H. Wu, C. W. Luo, and J. Leu, "Growth and characterization of topological insulator Bi2Se3 thin films on SrTiO3 using pulsed laser deposition," Thin Solid Films, vol. 534, pp. 659-665, 2013/05/01/ 2013, doi: https://doi.org/10.1016/j.tsf.2013.01.104. [43] G. Zhang et al., "Quintuple-layer epitaxy of thin films of topological insulator Bi2Se3," Applied Physics Letters, vol. 95, no. 5, 2009, doi: 10.1063/1.3200237. [44] J. H. Jeon, W. J. Jang, J. K. Yoon, and S. J. Kahng, "Metal-supported high crystalline Bi(2)Se(3) quintuple layers," Nanotechnology, vol. 22, no. 46, p. 465602, Nov 18 2011, doi: 10.1088/0957-4484/22/46/465602. [45] V. Cimrová, S. Eom, V. Pokorná, Y. Kang, and D. Výprachtický, "Hybrid Layers of Donor-Acceptor Copolymers with Homogenous Silver Nanoparticle Coverage for Photonic Applications," Polymers, vol. 13, no. 3, p. 439, 2021. [Online]. Available: https://www.mdpi.com/2073-4360/13/3/439. [46] S. Tougaard, "Quantitative x-ray photoelectron spectroscopy: Simple algorithm to determine the amount of atoms in the outermost few nanometers," Journal of Vacuum Science & Technology A, vol. 21, no. 4, pp. 1081-1086, 2003, doi: 10.1116/1.1564040. [47] S. Tougaard, "Algorithm for automatic x-ray photoelectron spectroscopy data processing and x-ray photoelectron spectroscopy imaging," Journal of Vacuum Science & Technology A, vol. 23, no. 4, pp. 741-745, 2005, doi: 10.1116/1.1864053. [48] P. Hu, Y. Cao, D. Jia, and L. Wang, "Selective synthesis of Bi2Se3 nanostructures by solvothermal reaction," Materials Letters, vol. 64, no. 4, pp. 493-496, 2010/02/28/ 2010, doi: https://doi.org/10.1016/j.matlet.2009.11.013. [49] T. Uchiyama et al., "Semiconductor–metal transition in Bi2Se3 caused by impurity doping," Scientific Reports, vol. 13, no. 1, p. 537, 2023/01/11 2023, doi: 10.1038/s41598-023-27701-5. [50] M. Li, Z. Wang, L. Yang, X. P. A. Gao, and Z. Zhang, "From linear magnetoresistance to parabolic magnetoresistance in Cu and Cr-doped topological insulator Bi2Se3 films," Journal of Physics and Chemistry of Solids, vol. 128, pp. 331-336, 2019/05/01/ 2019, doi: https://doi.org/10.1016/j.jpcs.2017.07.003. [51] L. Xue et al., "First-principles study of native point defects in Bi2Se3," AIP Advances, vol. 3, no. 5, 2013, doi: 10.1063/1.4804439. [52] H. B. Zhang, H. L. Yu, D. H. Bao, S. W. Li, C. X. Wang, and G. W. Yang, "Weak localization bulk state in a topological insulator Bi2Te3film," Physical Review B, vol. 86, no. 7, 2012, doi: 10.1103/PhysRevB.86.075102. [53] S. Wiedmann et al., "Anisotropic and strong negative magnetoresistance in the three-dimensional topological insulator ${\mathrm{Bi}}_{2}{\mathrm{Se}}_{3}$," Physical Review B, vol. 94, no. 8, p. 081302, 08/10/ 2016, doi: 10.1103/PhysRevB.94.081302. [54] S. Sasmal, J. Mukherjee, D. Suri, and K. V. Raman, "In-depth analysis of anisotropic magnetoconductance in Bi2Se3 thin films with electron–electron interaction corrections," Journal of Physics: Condensed Matter, vol. 33, no. 46, p. 465601, 2021/09/02 2021, doi: 10.1088/1361-648X/ac1de0. [55] R. Sultana, G. Gurjar, S. Patnaik, and V. P. S. Awana, "Growth, Characterization and High-Field Magneto-Conductivity of Co0.1Bi2Se3 Topological Insulator," Journal of Superconductivity and Novel Magnetism, vol. 32, no. 4, pp. 769-777, 2019, doi: 10.1007/s10948-019-5006-7. [56] H. Tang, D. Liang, R. L. J. Qiu, and X. P. A. Gao, "Two-Dimensional Transport-Induced Linear Magneto-Resistance in Topological Insulator Bi2Se3 Nanoribbons," ACS Nano, vol. 5, no. 9, pp. 7510-7516, 2011/09/27 2011, doi: 10.1021/nn2024607. [57] G. Xu et al., "Weak Antilocalization Effect and Noncentrosymmetric Superconductivity in a Topologically Nontrivial Semimetal LuPdBi," Scientific Reports, vol. 4, no. 1, p. 5709, 2014/07/21 2014, doi: 10.1038/srep05709. [58] Y. Kumar, R. Sultana, P. Sharma, and V. P. S. Awana, "Modeling of magneto-conductivity of bismuth selenide: a topological insulator," SN Applied Sciences, vol. 3, no. 4, p. 413, 2021/03/04 2021, doi: 10.1007/s42452-021-04397-8. [59] E. Amaladass, D. T R, S. Sharma, C. Sundar, A. Bharathi, and A. Mani, "Magneto-transport behaviour of Bi2Se3-xTex: Role of disorder," 10/29 2015. [60] M. M. Parish and P. B. Littlewood, "Non-saturating magnetoresistance in heavily disordered semiconductors," (in English), Nature, Article vol. 426, no. 6963, pp. 162-165, 2003, doi: 10.1038/nature02073. [61] D. L. Mo, W. B. Wang, and Q. Cai, "Influence of Thickness on the Electrical Transport Properties of Exfoliated Bi2Te3 Ultrathin Films," Nanoscale Research Letters, vol. 11, no. 1, p. 354, 2016/08/02 2016, doi: 10.1186/s11671-016-1566-7. [62] A. Nivedan et al., "Magnetic field-dependent resistance crossover and anomalous magnetoresistance in topological insulator Bi2Te3," Journal of Physics: Condensed Matter, vol. 32, no. 42, p. 425002, 2020/07/23 2020, doi: 10.1088/1361-648X/aba06e. [63] K. Shrestha, M. Chou, D. Graf, H. D. Yang, B. Lorenz, and C. W. Chu, "Publisher's Note: Extremely large nonsaturating magnetoresistance and ultrahigh mobility due to topological surface states in the metallic ${\mathrm{Bi}}_{2}{\mathrm{Te}}_{3}$ topological insulator [Phys. Rev. B 95, 195113 (2017)]," Physical Review B, vol. 95, no. 23, p. 239901, 06/08/ 2017, doi: 10.1103/PhysRevB.95.239901. [64] R. Sultana, G. Gurjar, S. Patnaik, and V. P. S. Awana, "High-Field Magneto-Conductivity Analysis of Bi2Se3 Single Crystal," Journal of Superconductivity and Novel Magnetism, vol. 31, pp. 3075-3078, 2018. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91287 | - |
dc.description.abstract | 近年來,凝聚態物理學和材料科學領域對拓撲絕緣體表現出了極大的興趣,這是因為它們預測的獨特物理性質以及在自旋電子學和量子計算中的潛在應用。拓撲絕緣體是一類材料,其塊材(bulk)帶隙並呈現絕緣體特性,同時在表面存在導電的拓撲表面態,這些表面態由時間反演對稱性所保護。在這項研究中,我們選擇了三維拓樸絕緣體的硒化鉍(Bi2Se3)作為我們的靶材。我們比較了沉積在藍寶石(Al2O3)基板上的Bi2Se3薄膜,其中包含了一步驟爐管磊晶和兩步驟爐管磊晶的薄膜。我們的實驗結果證明,採用兩步驟溫度設定沉積的Bi2Se3薄膜表現出顯著較高的質量。我們對Bi2Se3薄膜進行了全面的分析,包括掃描電子顯微鏡(SEM)、X射線衍射(XRD)和X射線光電子能譜(XPS)。兩步驟溫度磊晶方法在薄膜特性方面取得了優化的結果。經過量測,薄膜厚度通常具有約0.7微米。材料分析揭示了Bi2Se3薄膜的化學鍵合和晶體結構與Bi2Se3單晶體相似。
隨後,我們利用物理特性測量系統(PPMS)對材料薄膜進行磁輸運實驗,探討了拓撲絕緣體的弱反局域效應等特性。通過比較這些薄膜的磁輸運行為,我們對它們對外部磁場的響應和輸運特性有了更深入的了解。我們分析了一步驟磊晶和兩步驟磊晶的薄膜,觀察到兩步驟磊晶的薄膜表現出更明顯的拓撲絕緣體特徵,表現出更顯著的WAL效應、更高的MR值和對外部磁場更大的敏感性。此外,我們觀察到不同的場景,從理想情況(表面貢獻占主導地位)到更現實的情況(大量貢獻占主導地位)。 通過將我們的研究結果與文獻中的數據進行比較,我們能夠揭示Bi2Se3的內在特性,並進一步證實兩步磊晶生長方法相比於一步磊晶過程可以得到質量更高的薄膜。 | zh_TW |
dc.description.abstract | In recent years, there has been significant interest in topological insulators (TIs) in the fields of condensed matter physics and materials science, driven by their predicted unique physical properties and potential applications in spintronics and quantum computation. TIs are a class of materials characterized by an insulating bulk bandgap and conducting topological surface states (TSS) protected by time-reversal symmetry. In this study, we selected bismuth selenide (Bi2Se3), a three-dimensional topological insulator, as our target material. We compared Bi2Se3 films deposited on sapphire (Al2O3) substrates using one-step furnace heating and two-step furnace heating methods. Our experimental results convincingly demonstrate that Bi2Se3 films deposited with the two-step temperature setting exhibit significantly higher quality.
We conducted a comprehensive analysis of the Bi2Se3 films, including scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The two-step temperature deposition process yielded optimized results in terms of film characteristics. Typically, the thin films had a thickness of approximately 0.7 micrometers. Material analysis revealed a strong correlation between the chemical bonding and crystal structure of the Bi2Se3 thin films, resembling those of a single crystal of Bi2Se3. Subsequently, we explored the characteristics of topological insulators, such as the weak antilocalization effect, by conducting magnetotransport experiments on thin films of the material using the Physical Properties Measurement System (PPMS). By comparing the magnetotransport behaviors of these films, we gained a deeper understanding of their response to external magnetic fields and transport properties. We analyzed both one-step and two-step epitaxially grown films and observed that the two-step epitaxial growth demonstrated more pronounced characteristics of a topological insulator, showing a more significant WAL effect, higher MR values, and greater sensitivity to external magnetic fields. Additionally, we observed different scenarios, ranging from the ideal case (with dominant surface contributions) to more realistic situations (where bulk contributions prevail). By comparing our findings with data reported in the literature, we were able to reveal the intrinsic properties of Bi2Se3 and further confirm that the two-step epitaxial growth method results in higher-quality and thin films with better topological characteristics compared to the one-step process. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-12-20T16:19:30Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-12-20T16:19:30Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 摘要 iii ABSTRACT iv CONTENTS vi LIST OF FIGURES viii Chapter 1. Introduction 1 1.1 Background and Overview 1 1.2 Motivation and Purpose 4 1.3 Thesis Outline 6 Chapter 2. Theory and Literature Review 8 2.1 Topological Insulators 8 2.2 Material Properties 10 2.2.1 Physical Properties of Bi2Se3 10 2.2.2 Physical Properties of Al2O3 12 2.3 Literature Review for Deposition Methods for Topological Material Thin Films 14 2.4 Literature Review for Magnetotransport of Topological Material 18 Chapter 3. Fabrication and Measurement 21 3.1 Bi2Se3 Thin Film Deposition 21 3.2 Measurement Process Flow 25 3.3 Methods of Material Analysis 27 3.3.1 X-ray Diffraction 27 3.3.2 X-ray Photoelectron Spectroscopy 29 3.3.3 Scanning Electron Microscope 31 3.3.4 Photolithography 33 3.3.5 Electron Beam Evaporation 35 3.3.6 Physical Property Measurement System 37 Chapter 4. Results and Discussion 39 4.1 Topological Thin Film Analysis 39 4.1.1 Scanning Electron Microscope Analysis 39 4.1.2 X-ray Photoelectron Spectroscopy Analysis 44 4.1.3 X-ray Diffraction Analysis 48 4.2 Magnetotransport of Topological Material 51 Chapter 5. Conclusion 61 Reference 63 | - |
dc.language.iso | en | - |
dc.title | 以兩步驟磊晶硒化鉍薄膜之磁運輸探討 | zh_TW |
dc.title | Investigating Magnetotransport Properties of Two-Step Epi-growing Bi2Se3 Thin Films | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 林恭如;吳育任;吳肇欣;吳孟奇 | zh_TW |
dc.contributor.oralexamcommittee | Gong-Ru Lin;Yuh-Renn Wu;Chao-Hsin Wu;Meng-Chyi Wu | en |
dc.subject.keyword | 硒化鉍,一步驟,兩步驟,表面質量分析 ,磁輸運,弱反局域化效應, | zh_TW |
dc.subject.keyword | Bi2Se3,one-step,two-step,surface quality analysis,magnetotransport,weak antilocalization effect, | en |
dc.relation.page | 68 | - |
dc.identifier.doi | 10.6342/NTU202304198 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-08-31 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 光電工程學研究所 | - |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-1.pdf | 2.86 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。