Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91274Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 劉緒宗 | zh_TW |
| dc.contributor.advisor | Shiuh-Tzung Liu | en |
| dc.contributor.author | 林煜惟 | zh_TW |
| dc.contributor.author | Yu-Wei Lin | en |
| dc.date.accessioned | 2023-12-20T16:15:45Z | - |
| dc.date.available | 2023-12-21 | - |
| dc.date.copyright | 2023-12-20 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-09-01 | - |
| dc.identifier.citation | 1.Chen, X.; Thøgersen, M. K.; Yang, L. J. Am. Chem. Soc. 2021, 143, 934-944.
2.Thangaraj, M.; Bhojgude, S. S.; Bisht, R. H. J. Org. Chem. 2014, 79, 4757-4762. 3.Liu, N.; Song, W.; Schienebeck, C. M. Tetrahedron 2014, 70, 9281-9305. 4.Dewar, M. Structure of Colchicine. Nature 1945, 155, 141–142. 5.Dastan, A.; Kilic, H.; Saracoglu, N. Beilstein . J. Org. Chem. 2018, 14, 1120–1180. 6.Nakamura, A.; Kubo, K.; Ikeda, Y. Bull. Chem. Soc. Jpn. 1994, 67, 2803-2807. 7.Shirke, R. P.; Ramasastry, S. J. Org. Chem. 2015, 80, 4893-4903. 8.Hamada, N.; Yamaguchi, A. ; Hiroaki,O. Org. Lett. 2018, 20, 4401-4405. 9.Zhou, L.; Sun, M.; Zhou, F.; Deng, G. Org. Lett. 2021, 23, 7150-7155. 10.Keshipour, S.; Shojaei, S.; Shaabani, A. Cellulose 2013, 20, 973-980. 11.Li, H.; Zhu, R.-Y.; Shi, W.-J. Org. Lett. 2012, 14, 4850-4853. 12.Márquez, I. R.; Fuentes, N.; Cruz, C. M. Chem. Sci. 2017, 8, 1068-1074. 13.Gupta, V.; Rao, V. B.; Das, T. J. Org. Chem. 2016, 81, 5663-5669. 14.Bashary, R.; Khatik, G. L.,. Bioorg. Chem. 2019, 82, 156-162. 15.Jabeen, S.; Khera, R. A.; Iqbal, J.;. J. Mol. Struct. 2020, 1206, 127753. 16.Pronin, S. V.; Reiher, C. A.; Shenvi, R. A. Nature 2013, 501, 195-199. 17.Chiang, A.-C.; Liu, Y.-H.; Peng, S.-M.; Liu, S.-T. Org. Lett. 2022, 24, 7649-7653. 18.Xiong, R.; Bornhof, A. B.; Arkhypchuk, A. I. Chem. Eur. J. 2017, 23, 4089-4095. 19.Entz, E. D.; Russell, J. E.; Hooker, L. V. J. Am. Chem. Soc. 2020, 142, 15454-15463. 20.Barrios-Landeros, F.; Carrow, B. P.; Hartwig, J. F. J. Am. Chem. Soc. 2009, 131, 8141-8154. 21.Jang, J. H.; Ahn, S.; Park, S. E. Org. Lett. 2020, 22, 1280-1285. 22.Liu, Z.; Derosa, J.; Engle, K. M., J. Am. Chem. Soc. 2016, 138, 13076-13081. 23.Wan, J.-C.; Huang, J.-M.; Jhan, Y.-H.; Hsieh. Org. Lett. 2013, 15, 2742-2745. 24.Nadri, S.; Azadi, E.; Ataei, A. J. Organomet. Chem. 2011, 696, 2966-2970. 25.Li, X.; Han, J. W.; Wong, H. N. Asian J. Org. Chem. 2016, 5, 74-81. 26.Hassan, J.; Hathroubi, C.; Gozzi, C. Tetrahedron 2001, 57, 7845-7855. 27.Díaz, M. S.; Freile, M. L.; Gutiérrez, M. I. Photochem. Photobiol. Sci. 2009, 8, 970-974. 28.Koch, J. D.; Gronki, J.; Hanson, R. K. J. Quant. Spectrosc. Ra. 2008, 109, 2037-2044. 29.Lakshmidevi, V.; Parvathi, P.; Venkataraman, A. Madridge. J. Anal. Sci. Instrum. 2017, 2, 21-24. 30.Anderson, R. S.; Nagirimadugu, N. V.; Abelt, C. J. ACS. Omega. 2019, 4, 14067-14073. 31.Khattab, I. S.; Bandarkar, F.; Fakhree, M. A. A.; Jouyban, A. Korean J. Chem. Eng. 2012, 29, 812-817. 32.Yan, W.; Long, G.; Yang, X. New J. Chem. 2014, 38, 6088-6094. 33.Th. Förster.; K. Kasper, Z. Phys. Chem. (Munich). 1954, 1, 275. 34.Hong, Y.; Lam, J. W.; Tang, B. Z. Chem. Commun. 2009, 29, 4332-4353. 35.Bricks, J. L.; Slominskii, Y. L.; Panas, I. D.; Demchenko, A. P. Methods Appl. Fluoresc. 2017, 6, 12001. 36.Nigam, S.; Rutan, S. Appl. Spectrosc. 2001, 55, 362A-370A. 37.Yamaguchi, H.; Higashi, M.; Muraoka, T. J Mol Spectrosc 1992, 48, 839-841. 38.Xiong, R.; Bornhof, A. B.; Arkhypchuk, A. Chem. Eur. J. 2017, 23, 4089-4095. 39.Matsumoto, S.; Qu, S.; Kobayashi, T. Heterocycles 2010, 80, 645. 40.Milian Medina, B.; Anthony, J. E.; Gierschner, J. ChemPhysChem 2008, 9, 1519-1523. 41.Neumann, J. J.; Rakshit, S.; Dröge, T. Chem. Eur. J. 2011, 17, 7298-7303. 42.Dwight, T. A.; Rue, N. R.; Charyk, D. Org. Lett. 2007, 9, 3137-3139. 43.Li, H.; Zhu, R.-Y.; Shi, W.-J. Org. Lett. 2012, 14, 4850-4853. 44.Fujimoto, S.; Matsumoto, K.; Shindo, M. Adv. Synth. Catal. 2016, 358, 3057-3061. 45.Gandeepan, P.; Hung, C.-H.; Cheng, C.-H. Chem. Commun. 2012, 48, 9379-9381. 46.Wang, X.-Y.; Yao, X.; Müllen, K. Sci. China Chem. 2019, 62, 1099-1144. 47.Navale, T. S.; Thakur, K.; Rathore, R. Org. Lett. 2011, 13, 1634-1637. 48.Trosien, S.; Böttger, P.; Waldvogel, S. R. Org. Lett. 2014, 16, 402-405. 49.Dohi, T.; Ito, M.; Morimoto, K.; Iwata, M.; Kita, Y. Angew. Chem. Int. Ed. 2008, 120, 1321-1324. 50.Gupta, V.; Rao, V. B.; Das, T.; Vanka, K. J. Org. Chem. 2016, 81, 5663-5669. 51.Su, B.; Li, L.; Hu, Y. Adv. Synth. Catal. 2012, 354, 383-387. 52.Kishore, D. R.; Shekhar, C.; Satyanarayana, G. J. Org. Chem. 2021, 86, 8706-8725. 53.Seema Dhiman ; S. S. V. Ramasastry. Org. Biomol. Chem. 2013, 11, 8030. 54.Ji, K. G.; Shen, Y. W.; Shu, X. Z. Adv. Synth. Catal. 2008, 350, 1275-1280. 55.Man, L.; Ying, W.; Yunhe, X. Chinese J. Org. Chem. 2021, 41, 3073. 56.Deng, R.; Huang, Y.; Ma, X.; Li, G. J. Am. Chem. Soc. 2014, 136, 4472-4475. 57.Peng, J.; Chen, T.; Chen, C. J. Org. Chem. 2011, 76, 9507-9513. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91274 | - |
| dc.description.abstract | 䓬酮是環庚三烯酮的結構,常存在於天然物、藥物,同時也是作為進行高階環加成反應的合成原料。本篇論文探討在䓬酮環上具有芳香環融合化合物的合成。選擇2’-溴取代苯甲醯呋喃與2’’-溴取代苯甲醯呋喃化合物4作為起始物,利用鄰位上修飾溴取代基,藉由鈀金屬催化促使分子內進行合環反應而得到七圓環的架構,其中若最終產物上含有其他溴原子存在則會被鈀金屬進一步進行脫溴反應。合成出的多芳香環呋喃䓬酮5在紫外光的照射下會放出螢光,因此藉由紫外-可見光吸收光譜與螢光放光光譜來量測此類型衍生物的光學性質。
另外嘗試用金屬催化劑或路易斯酸等進行分子內脫氫耦合反應或朔爾類型反應建構䓬酮的七環架構。因此合成2-苯甲醯呋喃化合物6與7d,然而經過系列反應測試,並沒有得到預期的產物。化合物6經NaBH4還原反應可生成對應醇化合物,在路易斯酸的催化下意外獲得二聚物,並成功養出晶體鑑定結構。 | zh_TW |
| dc.description.abstract | Furotropone is a structure derived from tropone. Tropone is commonly found in natural substances and drugs, and it also serves as a synthetic raw material for conducting high-order cycloaddition reactions. 2'-bromobenzoylfuran and 2''-bromobenzoylfuran 4 were chosen as starting materials. By modifying the bromo substituent at the ortho position and utilizing palladium metal catalyst, an intramolecular cyclization reaction was induced, resulting in the formation of a seven-membered ring structure. If the final product contains additional bromine atom, they are further subjected to debromination by palladium catalyst. The synthesized polycyclic aromatic compound 5 exhibits fluorescence upon irradiation with ultraviolet light. Therefore, the optical properties of such derivatives were measured using ultraviolet-visible absorption spectroscopy and fluorescence emission spectroscopy.
Furthermore, we attempted to construct seven-membered ring structure of tropone through intramolecular dehydrogenative coupling or Scholl-type reactions with the use of metal catalysts or Lewis acids. Therefore, 2-benzoylfuran derivatives 6 and 7d were synthesized and subjected to the investigation. However, the expected products were not obtained after a series of screening. Compound 6 underwent reduction with NaBH4 to yield the corresponding alcohol, which proceeded a dimerization pathway under Lewis acid conditions. The molecular structure of this dimerized produced was confirmed by crystallographic analysis. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-12-20T16:15:45Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-12-20T16:15:45Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements I
摘要 II Abstract III 流程目錄 VII 圖目錄 VIII 表目錄 IX 第一章 緒論 1 1-1 多取代䓬酮與其衍生物 1 1-2 文獻探討 1 1-2-1 呋喃䓬酮分子內環化反應 1 1-2-2 藉由金屬催化劑促使芳香環碳碳鍵生成 3 1-2-3 藉由朔爾類型反應條件下促使芳香環碳-碳鍵生成 5 1-3 研究動機 7 第二章 結果與討論 8 2-1 第一部分: 2’-溴苯甲醯呋喃4aa的合成 8 2-2 2’-溴苯甲醯呋喃4ab-4ag的合成 12 2-3 第二部分-製備2”-溴取代苯甲醯呋喃4fa 13 2-4 2”-溴苯甲醯呋喃4ba-4ga的合成 15 2-4 合成2-苯甲醯呋喃 6與7d 17 2-5 2’-溴苯甲醯呋喃4aa之環化反應條件測試 18 2-6 不同取代基2’-溴苯甲醯呋喃與2’’-溴苯甲醯呋喃環化反應探討 21 2-7 呋喃䓬酮脫溴反應探討 23 2-8 2-苯甲醯呋喃與呋喃䓬酮光譜性質比較 26 2-9 5ad溶於不同溶劑紫外-可見光光譜之光物理性質探討 27 2-10 5ad溶於不同溶劑螢光放光光譜之光物理性質探討 28 2-11 5ad作為螢光化學感測器測試與AIE效應探討 29 2-12 呋喃䓬酮紫外-可見光光譜之光物理性質探討 34 2-13 取代基位置與電子效應對HOMO-LUMO能階影響探討 36 2-13 呋喃䓬酮螢光放光光譜之光物理性質探討 41 2-14藉由分子內脫氫耦合環化反應測試 42 2-15藉由朔爾反應 (Scholl reaction) 條件進行環化反應測試 43 2-16藉由路易斯酸促使形成碳陽離子進行環化反應測試 45 2-17生成呋喃䓬酮可能的反應機制 50 第三章 結論 51 第四章 實驗步驟 52 4-1 一般實驗 52 4-2 物理測量 52 4-3實驗步驟 53 4-3-1 合成2,2-二溴苯乙烯衍生物 53 4-3-2合成1,4,3-烯炔醇衍生物 54 4-3-3合成烷酸烯炔酯衍生物 54 4-3-4合成2-甲基乙醯呋喃衍生物 55 4-3-5合成2-苯甲醯呋喃衍生物 55 4-3-6合成呋喃䓬酮衍生物 55 4-3-7合成2-苯甲醯呋喃6 56 4-3-8合成2-苯甲醯呋喃7d 56 4-3-9 2-苯甲醯呋喃6之還原反應 56 4-3-10合成呋喃䓬酮衍生物 57 4-4光譜數據與物理性質 58 第四章 參考資料 87 附錄一、NMR光譜 90 附錄二、螢光生命期圖譜 148 附錄三、DFT理論計算HOMO、LUMO分子軌域 153 附錄四、AIE效應之螢光放光光譜 155 附錄五、量子產率圖譜 160 附錄六、X-ray晶體結構 171 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 呋喃䓬酮 | zh_TW |
| dc.subject | 䓬酮 | zh_TW |
| dc.subject | AIE效應 | zh_TW |
| dc.subject | 䓬酮 | zh_TW |
| dc.subject | 呋喃䓬酮 | zh_TW |
| dc.subject | AIE效應 | zh_TW |
| dc.subject | AIE effect | en |
| dc.subject | furotropone | en |
| dc.subject | tropone | en |
| dc.subject | AIE effect | en |
| dc.subject | furotropone | en |
| dc.subject | tropone | en |
| dc.title | 鈀催化2-苯甲醯呋喃之環化合成䓬酮衍生物 | zh_TW |
| dc.title | Palladium-Catalyzed Cyclization of 2-Benzoylfurans Leading to Furotropone Derivatives | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 詹益慈;張智煒 | zh_TW |
| dc.contributor.oralexamcommittee | Yi-Tsu Chan;Chih-Wei Chang | en |
| dc.subject.keyword | 呋喃䓬酮,䓬酮,AIE效應, | zh_TW |
| dc.subject.keyword | furotropone,tropone,AIE effect, | en |
| dc.relation.page | 176 | - |
| dc.identifier.doi | 10.6342/NTU202304200 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-09-04 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 化學系 | - |
| Appears in Collections: | 化學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-112-1.pdf Restricted Access | 13.1 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
