請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91273完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭光宇 | zh_TW |
| dc.contributor.advisor | Guang-Yu Guo | en |
| dc.contributor.author | 廖久慶 | zh_TW |
| dc.contributor.author | Jiou-Cing Liao | en |
| dc.date.accessioned | 2023-12-20T16:15:27Z | - |
| dc.date.available | 2023-12-21 | - |
| dc.date.copyright | 2023-12-20 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-23 | - |
| dc.identifier.citation | [1] T. Endo, Y. Doi, M. Wakeshima, and Y. Hinatsu, Inorganic chemistry 49, 10809 (2010).
[2] H. Murakawa, Y. Onose, S. Miyahara, N. Furukawa, and Y. Tokura, Physical review letters 105, 137202 (2010). [3] H. Murakawa, Y. Onose, S. Miyahara, N. Furukawa, and Y. Tokura, Physical Review B 85, 174106 (2012). [4] H. Yi, Y. Choi, S. Lee, and S.-W. Cheong, Applied Physics Letters 92, 212904 (2008). [5] I. Kézsmárki, D. Szaller, S. Bordács, V. Kocsis, Y. Tokunaga, Y. Taguchi, H. Murakawa, Y. Tokura, H. Engelkamp, T. Rõõm, and U. Nagel, Nature communications 5, 3203 (2014). [6] I. Kézsmárki, N. Kida, H. Murakawa, S. Bordács, Y. Onose, and Y. Tokura, Physical review letters 106, 057403 (2011). [7] G. Petrakovski, L. Bezmaternykh, I. Gudim, O. Bayukov, A. Vorotynov, A. Bovina, R. Szymczak, M. Baran, and C. Ritter, Physics of the Solid State 48, 1906 (2006). [8] A. Zheludev, S. Maslov, G. Shirane, Y. Sasago, N. Koide, and K. Uchinokura, Physical review letters 78, 4857 (1997). [9] K. J. Buschow, Handbook of magnetic materials (Elsevier, 2003) pp. 229–422. [10] V. Antonov, B. Harmon, and A. Yaresko, Electronic structure and magneto-optical properties of solids (Springer Science & Business Media, 2004). [11] L. Aplet and J. W. Carson, Applied Optics 3, 544 (1964). [12] M. Mansuripur, The physical principles of magneto-optical recording (Cambridge University Press, 1998). [13] J. P. Castera and T. Suzuki, The Optics Encyclopedia: Basic Foundations and Practical Applications , 133 (2007). [14] P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, Physical Review Letters 7, 118 (1961) [15] R. W. Boyd, Nonlinear optics (Academic press, 2020). [16] S. Toyoda, N. Abe, S. Kimura, Y. Matsuda, T. Nomura, A. Ikeda, S. Takeyama, and T. Arima, Physical review letters 115, 267207 (2015). [17] Y. Tokura and N. Nagaosa, Nature communications 9, 3740 (2018). [18] V. Pavlov, R. Pisarev, A. Kirilyuk, and T. Rasing, Physical review letters 78, 2004 (1997). [19] R. Pisarev, I. Sänger, G. Petrakovskii, and M. Fiebig, Physical review letters 93, 037204 (2004). [20] S. Toyoda, M. Fiebig, T.-h. Arima, Y. Tokura, and N. Ogawa, Science Advances 7, eabe2793 (2021). [21] M. Fiebig, V. V. Pavlov, and R. V. Pisarev, JOSA B 22, 96 (2005). [22] S. Toyoda, J. C. Liao, G. Y. Guo, Y. Tokunaga, T.-h. Arima, Y. Tokura, and N. Ogawa, Physical Review Materials 7, 024403 (2023). [23] M. Fiebig, D. Fröhlich, B. Krichevtsov, and R. V. Pisarev, Physical Review Letters 73, 2127 (1994). [24] Z. Sun, Y. Yi, T. Song, G. Clark, B. Huang, Y. Shan, S. Wu, D. Huang, C. Gao, Z. Chen, et al., Nature 572, 497 (2019). [25] J. E. Sipe and A. I. Shkrebtii, Physical Review B 61, 5337 (2000). [26] J. Ahn, G. Y. Guo, and N. Nagaosa, Physical Review X 10, 041041 (2020). [27] T. Morimoto and N. Nagaosa, Science advances 2, e1501524 (2016). [28] F. De Juan, A. G. Grushin, T. Morimoto, and J. E. Moore, Nature communications 8, 15995 (2017). [29] Y. Zhang, T. Holder, H. Ishizuka, F. de Juan, N. Nagaosa, C. Felser, and B. Yan, Nature communications 10, 3783 (2019). [30] V. K. Gudelli and G. Y. Guo, Chinese Journal of Physics 68, 896 (2020). [31] V. Fock, Zeitschrift für Physik 61, 126 (1930). [32] P. Hohenberg and W. Kohn, Physical review 136, B864 (1964). [33] E. Engel and R. M. Dreizler, Theoretical and mathematical physics , 11 (2011). [34] W. Kohn and L. J. Sham, Physical review 140, A1133 (1965). [35] J. P. Perdew and A. Zunger, Physical Review B 23, 5048 (1981). [36] J. P. Perdew and Y. Wang, Physical review B 45, 13244 (1992). [37] J. P. Perdew, K. Burke, and M. Ernzerhof, Physical review letters 77, 3865 (1996). [38] S. Dudarev, L.-M. Peng, S. Savrasov, and J.-M. Zuo, Physical Review B 61, 2506 (2000). [39] S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. Humphreys, and A. P. Sutton, Physical Review B 57, 1505 (1998). [40] P. E. Blöchl, Physical review B 50, 17953 (1994). [41] X. Wang, J. R. Yates, I. Souza, and D. Vanderbilt, Physical Review B 74, 195118 (2006). [42] N. Marzari and D. Vanderbilt, Physical review B 56, 12847 (1997). [43] I. Souza, N. Marzari, and D. Vanderbilt, Physical Review B 65, 035109 (2001). [44] N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D. Vanderbilt, Reviews of Modern Physics 84, 1419 (2012). [45] C. Wang, X. Liu, L. Kang, B.-L. Gu, Y. Xu, and W. Duan, Physical Review B 96, 115147 (2017). [46] J. Ibañez Azpiroz, S. S. Tsirkin, and I. Souza, Physical Review B 97, 245143 (2018). [47] A. A. Mostofi, J. R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, Computer physics communications 178, 685 (2008). [48] C.-p. S. Wang and J. Callaway, Physical Review B 9, 4897 (1974). [49] W. Feng, G. Y. Guo, J. Zhou, Y. Yao, and Q. Niu, Physical Review B 92, 144426 (2015). [50] C. Aversa and J. E. Sipe, Physical Review B 52, 14636 (1995). [51] S. N. Rashkeev, W. R. Lambrecht, and B. Segall, Physical Review B 57, 3905 (1998). [52] F. Nastos and J. Sipe, Physical Review B 82, 235204 (2010). [53] G. Kresse and J. Hafner, Physical review B 47, 558 (1993). [54] G. Kresse and J. Furthmüller, Physical review B 54, 11169 (1996). [55] O. Jepson and O. Anderson, Solid State Communications 9, 1763 (1971). [56] S. V. Gallego, J. Etxebarria, L. Elcoro, E. S. Tasci, and J. M. Perez-Mato, Acta Crystallographica Section A: Foundations and Advances 75, 438 (2019). [57] G. Y. Guo and H. Ebert, Physical Review B 50, 10377 (1994). [58] G. Y. Guo and H. Ebert, Physical Review B 51, 12633 (1995). [59] V. Kumar Gudelli and G.-Y. Guo, New Journal of Physics 21, 053012 (2019). [60] P. Ravindran, A. Delin, P. James, B. Johansson, J. Wills, R. Ahuja, and O. Eriksson, Physical Review B 59, 15680 (1999). [61] H. Chen, M. Ye, N. Zou, B.-L. Gu, Y. Xu, and W. Duan, Physical Review B 105, 075123 (2022). [62] G. Guo and H. Ebert, Journal of magnetism and magnetic materials 156, 173 (1996). [63] P. Van Engen, K. Buschow, R. Jongebreur, and M. Erman, Applied Physics Letters 42, 202 (1983). [64] R. Lang, A. Winter, H. Pascher, H. Krenn, X. Liu, and J. Furdyna, Physical Review B 72, 024430 (2005). [65] S. Tomita, T. Kato, S. Tsunashima, S. Iwata, M. Fujii, and S. review letters 96, 167402 (2006). [66] G. Di and S. Uchiyama, Physical Review B 53, 3327 (1996). [67] B. Vertruyen, R. Cloots, J. Abell, T. Jackson, R. Da Silva, E. Popova, and N. Keller, Physical Review B 78, 094429 (2008). [68] W. K. Li and G. Y. Guo, Physical Review B 103, 014439 (2021). [69] W. Song, R. Fei, L. Zhu, and L. Yang, Physical Review B 102, 045411 (2020). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91273 | - |
| dc.description.abstract | 在固體中,有趣且有用的物理現象基於對稱性。新的亞鐵磁性結構銪黃長石型氧化物Eu2MnSi2O7半導體破壞了空間反演(P)、時間反轉(T)和PT對稱性,因此產生了磁光效應,以及由光產生的體光伏效應(BPVE)和二次諧波生成(SHG)等二階非線性光學效應。
在本論文中,我們基於密度泛函理論和廣義梯度近似加上局部庫倫排斥方案,對於線性光學效應、體光伏效應(BPVE)和二次諧波生成的光學和磁光學性質進行了詳細的理論研究。我們發現,磁光克爾旋轉角在光子能量~3.24 eV和~4.02 eV處達到顯著峰值3.73°和-3.83°,並且磁光法拉第旋轉角在光子能量區域(~3.4 eV到~3.9 eV),(~5.4 eV到~5.5 eV)和(~6.4 eV到~6.8 eV)到達近乎50°/μm。 對於二階非線性光學部分,我們發現,相比其他三種BPVE電流,圓偏振光注入電流在光子能量~5.7 eV處達到相對較大的顯著峰值~250 (μA/V^2)。 對於二次諧波生成,由於材料中的大磁矩,計算顯示了i型和c型電偶極SHG (ED-SHG)值有相同尺度。在特定實驗設置下,兩種ED-SHG類型的干涉也顯示出巨大的SHG強度變化,並且在SHG光子能量區域2.62 eV到2.7 eV中,此計算提供了在最近的一項實驗中探索藉由改變磁場方向,SHG和MSHG的強烈干涉效應的有力證據。 | zh_TW |
| dc.description.abstract | In a solid, the interesting and useful physical phenomenon is based on the symmetry. The new europium melilite-type oxide Eu2MnSi2O7 semiconductor with ferrimagnetic structure breaks the spatial inversion (P), time-reversal (T) and PT symmetries, thus leading to the MO effect and the second order optical effects such as bulk photovoltaic effect (BPVE) and second harnomic generation (SHG) generated by light.
In this thesis, we present a detailed theoretical study of the optical and magneto-optical properties for linear optical effects as well as bulk photovoltaic effect (BPVE) and second harnomic generation for second-order nonlinear optical effect, based on the density functional theory with the generalized gradient approximation plus onsite Coulomb repulsion scheme. We find that the MO Kerr rotation angles reach the significant peaks 3.73° and -3.83° at photon energy ~3.24 eV and ~4.02 eV, respectively, and also the MO Faraday rotation angles display near 50°/μm) at the photon energy region (~3.4 eV to ~3.9 eV), (~5.4 eV to ~5.5 eV) and (~6.4 eV to ~6.8 eV). For the second order nonlinear part, we find that the circular injection current reaches the relative larger significant peak of ~250 (μA/V^2) at photon energy ~5.7 eV compared with others three type of BPVE current. For the second harmonic generation, the calculations display the same scale of both i-type and c-type electric-dipole SHG (ED-SHG) due to the large magnetic moments. The strong SHG intensity difference by the interference between the two type ED-SHG also is shown at the SHG photon energy region 2.62 eV to 2.7 eV with the specific experimental setup, which is the strong evidence in the recent experiment for exploring the strong SHG interference between crystal structure-induced SHG and magnetization-induced SHG (MSHG) by switching magnetic filed in the ferrimagnetic Eu2MnSi2O7. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-12-20T16:15:27Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-12-20T16:15:27Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 iii Abstract v Contents vii List of Figures ix List of Tables xiii Chapter 1 Introduction 1 1.1 Ferrimagnetic Semiconductor Eu2MnSi2O7 1 1.2 Magneto Optical Effect 2 1.3 Second Order Nonlinear Optical Properties of Eu2MnSi2O7 3 Chapter 2 Theoretical Background 7 2.1 Density Functional Theory 7 2.2 Electron Exchange Correlation 9 2.3 Density Functional Theory plus On-site Coulomb Interaction Method 10 2.4 Maximally-Localized Wannier Functions and Wannier Interpolation 12 2.5 Linear Optical Responses 15 2.6 Second Order Nonlinear Optical Responses 16 2.6.1 Second Harmonic Generation 16 2.6.2 Bulk Photovoltaic Effect 17 2.6.3 Symmetry Condition of Second Order Nonlinear Optical Responses 18 Chapter 3 Known Properties of Eu2MnSi2O7 and Computational Method 19 3.1 Crystal Structure and Magnetism of Eu2MnSi2O7 19 3.2 Computational Method and Details 19 Chapter 4 Results and Discussion 25 4.1 Magnetic Moments and Electronic Structure of Eu2MnSi2O7 25 4.1.1 Magnetic Moments 25 4.1.2 Electronic Structure 26 4.2 Magneto-Optical Kerr and Faraday Effects 32 4.2.1 Optical Conductivity and Joint Density of states 32 4.2.2 Magneto-Optical Kerr and Faraday Effects 36 4.3 Second Order Nonlinear Optical Responses 40 4.3.1 Bulk Photovoltaic Effect 40 4.3.2 Second-harmonic Generation 45 4.3.3 Interference of Second-harmonic Generation 53 Chapter 5 Conclusion 65 References 67 | - |
| dc.language.iso | en | - |
| dc.subject | 第一原理計算 | zh_TW |
| dc.subject | 二次諧波效應干涉 | zh_TW |
| dc.subject | 二次諧波效應 | zh_TW |
| dc.subject | 體光伏效應 | zh_TW |
| dc.subject | 非線性光學 | zh_TW |
| dc.subject | 磁光效應 | zh_TW |
| dc.subject | 第一原理計算 | zh_TW |
| dc.subject | 銪黃長石型氧化物 | zh_TW |
| dc.subject | 二次諧波效應干涉 | zh_TW |
| dc.subject | 二次諧波效應 | zh_TW |
| dc.subject | 體光伏效應 | zh_TW |
| dc.subject | 非線性光學 | zh_TW |
| dc.subject | 磁光效應 | zh_TW |
| dc.subject | 銪黃長石型氧化物 | zh_TW |
| dc.subject | Second-harmonic generation interference | en |
| dc.subject | Europium melilite Eu2MnSi2O7 | en |
| dc.subject | First-principles calculation | en |
| dc.subject | Magneto-optical effects | en |
| dc.subject | Nonlinear optics | en |
| dc.subject | Bulk photovoltaic effect | en |
| dc.subject | Second-harmonic generation | en |
| dc.subject | Second-harmonic generation interference | en |
| dc.subject | Europium melilite Eu2MnSi2O7 | en |
| dc.subject | First-principles calculation | en |
| dc.subject | Magneto-optical effects | en |
| dc.subject | Nonlinear optics | en |
| dc.subject | Bulk photovoltaic effect | en |
| dc.subject | Second-harmonic generation | en |
| dc.title | 第一原理計算研究亞鐵磁Eu2MnSi2O7之磁光效應及二階非線性光學性質 | zh_TW |
| dc.title | Ab Initio Studies of Magneto-optical Effects and Second Order Nonlinear Optical Effects in Ferrimagnetic Eu2MnSi2O7 | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 鄭舜仁;詹揚皓;李啟正;溫昱傑 | zh_TW |
| dc.contributor.oralexamcommittee | Shun-Jen Cheng;Yang-Hao Chan ;Chi-Cheng Lee;Yu-Chieh Wen | en |
| dc.subject.keyword | 銪黃長石型氧化物,第一原理計算,磁光效應,非線性光學,體光伏效應,二次諧波效應,二次諧波效應干涉, | zh_TW |
| dc.subject.keyword | Europium melilite Eu2MnSi2O7,First-principles calculation,Magneto-optical effects,Nonlinear optics,Bulk photovoltaic effect,Second-harmonic generation,Second-harmonic generation interference, | en |
| dc.relation.page | 72 | - |
| dc.identifier.doi | 10.6342/NTU202304178 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-24 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf | 5.85 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
