Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91264
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊志忠zh_TW
dc.contributor.advisorChih-Chung Yangen
dc.contributor.author林育聖zh_TW
dc.contributor.authorYu-Sheng Linen
dc.date.accessioned2023-12-20T16:12:50Z-
dc.date.available2023-12-21-
dc.date.copyright2023-12-20-
dc.date.issued2023-
dc.date.submitted2023-10-07-
dc.identifier.citationChen, D.; Xiao, H.; Han, J. Nanopores in GaN by electrochemical anodization in hydrofluoric acid formation and mechanism. J. Appl. Phys. 2012, 112, 064303.
Griffin, P.H.; Oliver, R.A. Porous nitride semiconductors reviewed. J. Phys. D: Appl. Phys. 2020, 53, 383002.
Schwab, M.J.; Chen, D.; Han, J.; Pfefferle, L.D. Aligned mesopore arrays in GaN by anodic etching and photoelectrochemical surface etching. J. Phys. Chem. C 2013, 117, 16890-16895.
Schwab, M.J.; Han, J.; Pfefferle, L.D. Neutral anodic etching of GaN for vertical or crystallographic alignment. Appl. Phys. Lett. 2015, 106, 241603.
Tseng, W.J.; van Dorp, D.H.; Lieten, R.R.; Vereecken, P.M.; Borghs, G. Anodic etching of n-GaN epilayer into porous GaN and its photoelectrochemical properties. J. Phys. Chem. C 2014, 118, 29492-29498.
Radzali, R.; Zainal, N.; Yam, F.K.; Hassan, Z. Characteristics of porous GaN prepared by KOH photoelectrochemical etching. Mater. Res. Innovations 2014, 18, S6-412-416.
Hsu, W.J.; Chen, K.T.; Huang, W.C.; Wu, C.J.; Dai, J.J.; Chen, S.H.; Lin, C.F. InGaN light emitting diodes with a nanopipe layer formed from the GaN epitaxial layer. Opt. Express 2016, 24, 11601-11610.
Li, Y.; Wang, C.; Zhang, Y.; Hu, P.; Zhang, S.; Du, M.; Su, X.; Li, Q.; Yun, F. Analysis of TM/TE mode enhancement and droop reduction by a nanoporous n-AlGaN underlayer in a 290 nm UV-LED. Photon. Res. 2020, 8, 806-811.
Soh, C.B.; Tay, C.B.; Tan, R.J.N.; Vajpeyi, A.P.; Seetoh, I.P.; Ansah-Antwi, K.K.; Chua, S.J. Nanopore morphology in porous GaN template and its effect on the LEDs emission. J. Phys. D: Appl. Phys. 2013, 46, 365102.
Wurm, C.; Collins, H.; Hatui, N.; Li, W.; Pasayat, S.; Hamwey, R.; Sun, K.; Sayed, I.; Khan, K.; Ahmadi, E.; Keller, S.; Mishra, U. Demonstration of device-quality 60% relaxed In0.2Ga0.8N on porous GaN pseudo-substrates grown by PAMBE. J. Appl. Phys. 2022, 131, 015701.
Pasayat, S.S.; Gupta, C.; Wong, M.S.; Ley, R.; Gordon, M.J.; DenBaars, S.P.; Nakamura, S.; Keller, S.; Mishra, U. Demonstration of ultra-small (<10 μm) 632 nm red InGaN micro-LEDs with useful on-wafer external quantum efficiency (>0.2%) for mini-displays. Appl. Phys. Express 2021, 14, 011004.
Huang, S.; Zhang, Y.; Leung, B.; Yuan, G.; Wang, G.; Jiang, H.; Fan, Y.; Sun, Q.; Wang, J.; Xu, K.; Han, J. Mechanical properties of nanoporous GaN and its application for separation and transfer of GaN thin films. ACS Appl. Mater. Interfaces 2013, 5, 11074-11079.
Zhang, Y.; Sun, Q.; Leung, B.; Simon, J.; Lee, M.L.; Han, J. The fabrication of large-area, free-standing GaN by a novel nanoetching process. Nanotechnology 2011, 22, 045603.
Kang, J.H.; Ebaid, M.; Lee, J.K.; Jeong, T.; Ryu, S.W. Fabrication of vertical light emitting diode based on thermal deformation of nanoporous GaN and removable mechanical supporter. ACS Appl. Mater. Interfaces 2014, 6, 8683-8687.
Yang, H.; Xi, X.; Yu, Z.; Cao, H.; Li, J.; Lin, S.; Ma, Z.; Zhao, L. Light modulation and water splitting enhancement using a composite porous GaN structure. ACS Appl. Mater. Interfaces 2018, 10, 5492-5497.
Maeda K.; Domen, K. Photocatalytic water splitting: Recent progress and future challenges. J. Phys. Chem. Lett. 2010, 1, 2655-2661.
Zhang, C.; Park, S.H.; Chen, D.; Lin, D.W.; Xiong, W.; Kuo, H.C.; Lin, C.F.; Cao, H.; Han, J. Mesoporous GaN for photonic engineering highly reflective GaN mirrors as an example. ACS Photon. 2015, 2, 980-986.
Lin, C.F.; Zhang, Y.T.; Wang, C.J.; Chen, Y.Y.; Shiu, G.Y.; Ke, Y.; Han, J. InGaN resonant microcavity with n+-porous-GaN/p+-GaN tunneling junction. IEEE Electron Dev. Lett. 2021, 42, 1631-1633.
Zhang, M.; Liu, Y.; Wang, J.; Tang, J. Photodeposition of palladium nanoparticles on a porous gallium nitride electrode for nonenzymatic electrochemical sensing of glucose. Microchimica Acta 2019, 186, DOI: 10.1007/s00604-018-3172-0.
Najar, A.; Gerland, M.; Jouiad, M. Porosity-induced relaxation of strains in GaN layers studied by means of microindentation and optical spectroscopy. J. Appl. Phys. 2012, 111, 093513.
Anderson, R.; Cohen, D.; Zhang, H.; Trageser, E.; Palmquist, N.; Nakamura, S.; DenBaars, S. Nano-porous GaN cladding and scattering loss in edge emitting laser diodes. Opt. Express 2022, 30, 2759-2767.
Ke, Y.; Wang, C.J.; Shiu, G.Y.; Chen, Y.Y.; Lin, Y.S.; Chen, H.; Han, J.; Lin, C.F. Polarization properties of InGaN vertical-cavity surface-emitting laser with pipe distributed Bragg reflector. IEEE Transact. Electron Dev. 2022, 69, 201-204.
Elafandy, R.T.; Kang, J.H.; Mi, C.; Kim, T.K.; Kwak, J.S.; Han, J. Study and application of birefringent nanoporous GaN in the polarization control of blue vertical-cavity surface-emitting lasers. ACS Photon. 2021, 8, 1041-1047.
Huang, C.F.; Tang, T.Y.; Huang, J.J.; Shiao, W.Y.; Yang, C.C.; Hsu, C.W.; Chen, L.C. Prestrained effect on the emission properties of InGaN/GaN quantum-well structures. Appl. Phys. Lett. 2006, 89, 051913.
Lee, S.R.; Koleske, D.D.; Cross, K.C.; Floro, J.A.; Waldrip, K.E.; Wise, A.T.; Mahajan, S. In situ measurements of the critical thickness for strain relaxation in AlGaN/GaN heterostructures. Appl. Phys. Lett. 2004, 85, 6164-6166.
Pasayat, S.S.; Hatui, N.; Li, W.; Gupta, C.; Nakamura, S.; Denbaars, S.P.; Keller, S.; Mishra, U.K. Method of growing elastically relaxed crack-free AlGaN on GaN as substrates for ultra-wide bandgap devices using porous GaN. Appl. Phys. Lett. 2020, 117, 062102.
Pasayat, S.S.; Gupta, C.; Wong, M.S.; Wang, Y.; Nakamura, S.; Denbaars, S.P.; Keller, S.; Mishra, U.K. Growth of strain-relaxed InGaN on micrometersized patterned compliant GaN pseudo-substrates. Appl. Phys. Lett. 2020, 116, 111101.
Williams, D.B.; Carter, C.B. Transmission Electron Microscopy: A Textbook for Material Science, 2nd ed., Springer 2009.
Hsieh, H.Y.; Liou, P.W.; Yang, S.; Chen, W.C.; Liang, L.P.; Lee, Y.C.; Yang, C.C. Behaviors of AlGaN strain relaxation on a GaN porous structure studied with d-spacing crystal lattice analysis. Nanomaterials 2023, 13, 1617.
Chen, C.Y.; Ni, C.C.; Wu, R.N.; Kuo, S.Y.; Li, C.H; Kiang, Y.W.; Yang, C.C. Surface plasmon coupling effects on the Förster resonance energy transfer from quantum dot into rhodamine 6G. Nanotechnology 2021, 32, 295202.
Su, X.; Li, Y.; Zhang, M.; Hu, P.; Tian, Z.; Guo, M.; Zhang, Y.; Yun, F. Performance improvement of ultraviolet-A multiple quantum wells using a vertical oriented nanoporous GaN underlayer. Nanotechnology 2020, 31, 445202.
Monaico, E.; Tiginyanu, I.; Ursaki, V. Porous semiconductor compounds. Semiconductor Science and Technology 2020, 35, 103001.
Vurgaftman, I.; Meyer, J.R.; Ram-Mohan, L. R. Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 2001, 89, 5815-5875.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91264-
dc.description.abstract我們利用磊晶技術依序成長重度矽摻雜的氮化鎵層與三週期氮化銦鎵/氮化鎵量子井樣結構,以此製作三種不同形狀與大小的平台結構並在重度矽摻雜的氮化鎵層中利用電化學蝕刻製作孔洞結構,由此使上層量子井所受到的壓縮應力得以釋放。藉由量測量子井發光的光譜、內部量子效率及時域衰減時間,探討不同應力釋放效果對量子井發光行為的影響。應力釋放造成量子井發光行為變化,包含發光波長藍移、內部量子效率增加及時域衰減時間變短。平台內的孔洞結構進一步釋放應力,使發光行為變化越大。雖然我們能觀察到在相對較大尺寸的平台內製作具有方向性的孔洞結構能造成應力釋放的各向異性,但對量子井發光的偏振行為影響不大。zh_TW
dc.description.abstractMesas of three different geometries and porous structures (PSs) in the mesas are fabricated on an epitaxial sample consisting of a three-period InGaN/GaN quantum well (QW) structure above a heavily Si-doped (n++-GaN) GaN layer such that the compressive strain in the QW structure is relaxed. The PSs are formed through an electrochemical etching (ECE) process. Through the measurements of QW emission spectrum, internal quantum efficiency (IQE), and photoluminescence (PL) decay time, we study the effects of various strain relaxation conditions on the QW emission behavior. A stronger strain relaxation condition results in the larger changes of QW emission behavior, including the blue shift of emission spectral peak, the increase of IQE, and the reduction of PL decay time. In a mesa with a PS, the strain relaxation is stronger than that in a solid mesa, leading to a larger change of QW emission behavior. Although the strain relaxation anisotropy can be clearly observed due to the oriented pore extension of a PS in a mesa of a relatively larger size, the polarization dependence of QW emission behavior is weak.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-12-20T16:12:50Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-12-20T16:12:50Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
摘要 iii
Abstract: iv
Contents: v
List of Figure: vii
List of Table: xvi
Chapter 1 Introduction 1
1.1 Subsurface GaN porous structures 1
1.2 Subsurface GaN porous structures as effective strain dampers 1
1.3 Strain relaxation in an overgrown AlGaN layer on a subsurface GaN porous structure 3
1.4 Research motivations 4
1.5 Thesis structure 5
Chapter 2 Sample Structures and Research Methods 11
2.1 Sample structures 11
2.2 Electrochemical etching 12
2.3 Optical measurements 13
Chapter 3 Optical Behaviors and Strain Relaxation Results of 300-micron Square Mesas with Porous Structures 20
3.1 Porous structures 20
3.2 Optical properties 23
3.3 Strain relaxation effects 24
Chapter 4 Optical Behaviors and Strain Relaxation Results of 100-micron Circular Mesas with Porous Structures 49
4.1 Porous structures 49
4.2 Optical properties 50
4.3 Strain relaxation effects 51
Chapter 5 Optical Behaviors and Strain Relaxation Results of 300-micron Stripe Mesas with Porous Structures 71
5.1 Porous structures 71
5.2 Optical properties 72
5.3 Strain relaxation effects 73
Chapter 6 Conclusions 94
References: 95
-
dc.language.isoen-
dc.subject孔洞結構zh_TW
dc.subject氮化鎵zh_TW
dc.subject氮化鎵zh_TW
dc.subject孔洞結構zh_TW
dc.subjectporous structureen
dc.subjectGaNen
dc.subjectporous structureen
dc.subjectGaNen
dc.title表面下氮化鎵孔隙結構造成的應力釋放對上層量子井發光行為之影響zh_TW
dc.titleStrain Relaxation Effects Caused by Subsurface GaN Porous Structures on the Emission Behaviors of Overgrown Quantum Wellsen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳奕君;林建中;廖哲浩;吳育任zh_TW
dc.contributor.oralexamcommitteeI-Chun Cheng;Chien-Chung Lin;Zhe-Hao Liao;Yuh-Renn Wuen
dc.subject.keyword氮化鎵,孔洞結構,zh_TW
dc.subject.keywordGaN,porous structure,en
dc.relation.page97-
dc.identifier.doi10.6342/NTU202304187-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-10-11-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
dc.date.embargo-lift2028-08-20-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  未授權公開取用
7.25 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved