Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91261
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊志忠zh_TW
dc.contributor.advisorChih-Chung Yangen
dc.contributor.author朱浚瑞zh_TW
dc.contributor.authorChun-Jui Chuen
dc.date.accessioned2023-12-20T16:11:56Z-
dc.date.available2023-12-21-
dc.date.copyright2023-12-20-
dc.date.issued2023-
dc.date.submitted2023-10-11-
dc.identifier.citationE. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. 22, 3076 (2010).
H. C. Yoon, H. Kang, S. Lee, J. H. Oh, H. Yang, and Y. R. Do, “Study of perovskite QD down-converted LEDs and six-color white LEDs for future displays with excellent color performance,” ACS Appl. Mater. Interfaces 8, 18189 (2016).
J. H. Oh, K. H. Lee, H. C. Yoon, H. Yang, and Y. R. Do, “Color-by-blue display using blue quantum dot light-emitting diodes and green/red color converting phosphors,” Opt. Express 22, A511 (2014).
H. V. Han, H. Y. Lin, C. C. Lin, W. C. Chong, J. R. Li, K. J. Chen, P. Yu, T. M. Chen, H. M. Chen, K. M. Lau, and H. C. Kuo, “Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology,” Opt. Express 23, 32504 (2015).
S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, M. D. B. Charlton, D. V. Talapin, H. W. Huang, and C. H. Lin, “Increased color-conversion efficiency in hybrid light-emitting diodes utilizing non-radiative energy transfer,” Adv. Mater. 22, 602 (2010).
J. Yu, L. Wang, D. Yang, Z. Hao, Y. Luo, C. Sun, Y. Han, B. Xiong, J. Wang, and H. Li, “Improving the internal quantum efficiency of green InGaN quantum dots through coupled InGaN/GaN quantum well and quantum dot structure,” Appl. Phys. Express 8, 094001 (2015).
H. V. Demira, S. Nizamoglub, T. Erdemb, E. Mutluguna, N. Gaponikc, and A Eychmuller, “Quantum dot integrated LEDs using photonic and excitonic color conversion,” Nano Today 6, 632 (2011).
T. Förster, “Energy transport and fluorescence,” Naturwissenschaften 33, 166-175 (1946).
L. Stryer, “Fluorescence energy transfer as a spectroscopic ruler,” Annu. Rev. Biochem. 47, 819 (1978).
M. Achermann, M. A. Petruska, A. Kos, D. L. Smith, D. D. Koleske, and V. I. Klimov, “Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well,” Nature 429, 642 (2004).
J. Yu, L. Wang, D. Yang, Z. Hao, Y. Luo, C. Sun, Y. Han, B. Xiong, J. Wang, and H. Li, “Improving the internal quantum efficiency of green InGaN quantum dots through coupled InGaN/GaN quantum well and quantum dot structure,” Appl. Phys. Express 8, 094001 (2015).
U. Kaiser, D. Jimenez de Aberasturi, M. Vazquez-Gonzalez, C. Carrillo-Carrion, T. Niebling, J. W. Parak, and W. Heimbrodt, “Determining the exact number of dye molecules attached to colloidal CdSe/ZnS quantum dots in Förster resonant energy transfer assemblies,” J. Appl. Phys. 117, 024701 (2015).
A. C. Kuriakose, V. P. N. Nampoori, and S. Thomas, “Energy transfer kinetics in basic fuchsin dye sensitized CdS quantum dots,” Mater. Chem. Phys. 242, 122560 (2020).
K. Boeneman, D. E. Prasuhn, J. B. Blanco-Canosa, P. E. Dawson, J. S. Melinger, M. Ancona, M. H. Stewart, K. Susumu, A. Huston, and I. L. Medintz, “Self-assembled quantum dot-sensitized multivalent DNA photonic wires,” J. Am. Chem. Soc. 132, 18177 (2010).
S. Mandal, M. G. Iglesias, M. Ince, T. Torres, and N. V. Tkachenko, “Photoinduced energy transfer in ZnCdSeS quantum dot phthalocyanines hybrids,” ACS Omega 3, 10048 (2018).
J. H. Kang, B. Li, T. Zhao, M. Ali Johar, C. C. Lin, Y. H. Fang, W. H. Kuo, K. L. Liang, S. Hu, S. W. Ryu, and J. Han, “RGB arrays for micro-light-emitting diode applications using nanoporous GaN embedded with quantum dots,” ACS Appl. Mater. Interfaces 12, 30890-30895 (2020).
R. W. Sabnis, “Color filter technology for liquid crystal displays,” Displays 20(3), 119-129. (1999)
C. T. Chen, K. H. Wu, C. F. Lu, and F. Shieh, “An inkjet printed stripe-type color filter of liquid crystal display,” J. Micromech. Microeng. 20(5), 055004. (2010).
K. Park, Y. Lee, J. Lee, and C. J. Han, “Quantum Dot Color Filter and Micro LED,” In: Micro Light Emitting Diode: Fabrication and Devices Springer Singapore 19-32. (2021).
J. Bae, S. Lee, J. Ahn, J. H. Kim, M. Wajahat, W. S. Chang, S. Y. Yoon, J. T. Kim, S. K. Seol, and J. Pyo, “3D-printed quantum dot nanopixels,” ACS Nano 14(9), 10993-11001 (2020).
J. Yang, M. K. Choi, U. J. Yang, S. Y. Kim, Y. S. Kim, J. H. Kim, D. H. Kim, and T. Hyeon, “Toward full-color electroluminescent quantum dot displays,” Nano Lett. 21(1), 26-33 (2020).
Y. Li, J. Tao, Q. Wang, Y. Zhao, Y. Sun, P. Li, J. Lv, Y. Qin, W. Wang, Q. Zeng and J. Liang, “Microfluidics-based quantum dot color conversion layers for full-color micro-LED display,” Appl. Phys. Lett. 118(17), 173501 (2021).
J. Zhao, L. Chen, D. Li, Z. Shi, P. Liu, Z. Yao, H. Yang, T. Zou, B. Zhao, X. Zhang, H. Zhou, Y. Yang, W. Cao, X. Yan, S. Zhang, and X. W. Sun, “Large-area patterning of full-color quantum dot arrays beyond 1000 pixels per inch by selective electrophoretic deposition,” Nat. Commun. 12(1), 1-8 (2021).
D. Chen, H. Xiao, and J. Han, “Nanopores in GaN by electrochemical anodization in hydrofluoric acid formation and mechanism,” J. Appl. Phys. 112, 064303 (2012).
P. H. Griffin and R. A. Oliver, “Porous nitride semiconductors reviewed,” J. Phys. D: Appl. Phys. 53, 383002 (2020).
M. J. Schwab, D. Chen, J. Han, and L. D. Pfefferle, “Aligned mesopore arrays in GaN by anodic etching and photoelectrochemical surface etching,” J. Phys. Chem. C 117, 16890-16895 (2013).
M. J. Schwab, J. Han, and L. D. Pfefferle, “Neutral anodic etching of GaN for vertical or crystallographic alignment,” Appl. Phys. Lett. 106, 241603 (2015).
W. J. Tseng, D. H. van Dorp, R. R. Lieten, P. M. Vereecken, and G. Borghs, Anodic etching of n-GaN epilayer into porous GaN and its photoelectrochemical properties,” J. Phys. Chem. C 118, 29492-29498 (2014).
R. Radzali, N. Zainal, F. K. Yam, and Z. Hassan, “Characteristics of porous GaN prepared by KOH photoelectrochemical etching,” Mater. Res. Innovations 18, S6-412-416 (2014).
W. J. Hsu, K. T. Chen, W. C. Huang, C. J. Wu, J. J. Dai, S. H. Chen, and C. F. Lin, “InGaN light emitting diodes with a nanopipe layer formed from the GaN epitaxial layer,” Opt. Express 24, 11601-11610 (2016).
Y. Li, C. Wang, Y. Zhang, P. Hu, S. Zhang, M. Du, X. Su, Q. Li, and F. Yun, “Analysis of TM/TE mode enhancement and droop reduction by a nanoporous n-AlGaN underlayer in a 290 nm UV-LED,” Photon. Res. 8, 806-811 (2020).
C. B. Soh, C. B. Tay, R. J. N. Tan, A. P. Vajpeyi, I. P. Seetoh, K. K. Ansah-Antwi, and S. J. Chua, “Nanopore morphology in porous GaN template and its effect on the LEDs emission,” J. Phys. D: Appl. Phys. 46, 365102 (2013).
S. Huang, Y. Zhang, B. Leung, G. Yuan, G. Wang, H. Jiang, Y. Fan, Q. Sun, J. Wang, K. Xu, and J. Han, “Mechanical properties of nanoporous GaN and its application for separation and transfer of GaN thin films,” ACS Appl. Mater. Interfaces 5, 11074-11079 (2013).
Y. Zhang, Q. Sun, B. Leung, J. Simon, M. L. Lee, and J. Han, “The fabrication of large-area, free-standing GaN by a novel nanoetching process,” Nanotechnology 22, 045603 (2011).
J. H. Kang, M. Ebaid, J. K. Lee, T. Jeong, and S. W. Ryu, “Fabrication of vertical light emitting diode based on thermal deformation of nanoporous GaN and removable mechanical supporter,” ACS Appl. Mater. Interfaces 6, 8683-8687 (2014).
H. Yang, X. Xi, Z. Yu, H. Cao, J. Li, S. Lin, Z. Ma, and L. Zhao, “Light modulation and water splitting enhancement using a composite porous GaN structure,” ACS Appl. Mater. Interfaces 10, 5492-5497 (2018).
K. Maeda and K. Domen, “Photocatalytic water splitting: Recent progress and future challenges,” J. Phys. Chem. Lett. 1, 2655-2661 (2010).
C. Zhang, S. H. Park, D. Chen, D. W. Lin, W. Xiong, H. C. Kuo, C. F. Lin, H. Cao, and J. Han, “Mesoporous GaN for photonic engineering highly reflective GaN mirrors as an example,” ACS Photon. 2, 980-986 (2015).
M. Zhang, Y. Liu, J. Wang, and J. Tang, “Photodeposition of palladium nanoparticles on a porous gallium nitride electrode for nonenzymatic electrochemical sensing of glucose,” Microchimica Acta 186, DOI: 10.1007/s00604-018-3172-0 (2019).
A. Najar, M. Gerland, and M. Jouiad, “Porosity-induced relaxation of strains in GaN layers studied by means of microindentation and optical spectroscopy,” J. Appl. Phys. 111, 093513 (2012).
Zong-Han Li, Patterning Color-conversion Colloidal Quantum Dot Distribution among Display Pixels Based on an Electrochemical Etching Technique, MS thesis, National Taiwan University, September 2022.
C. A. J. Lin, R. A. Sperling, J. K. Li, T. A. Yang, P. Y. Li, M. Zanella, W. H. Chang, and W. J. Parak, “Design of an amphiphilic polymer for nanoparticle coating and functionalization,” Small 4(3), 334-341 (2008).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91261-
dc.description.abstract我們展示了一種將膠體量子點混入電解質溶液來產生電化學蝕刻以製造平台陣列濾光片的技術,該技術可應用於彩色顯示。我們進行了一系列實驗獲得可行的電化學蝕刻條件和優化的長晶結構。當電化學蝕刻高導電性的氮化鎵時,混合的量子點可與電解質溶液一起流入平台區域下的蝕刻孔洞中。使用具有厚氮化鎵覆蓋層的長晶結構,我們可在電化學蝕刻中施加高達 17 伏特的高電壓,在單色樣品中的平台上產生明亮的量子點發光效果,同時不會造成表面損壞。在製造雙色樣品的過程中,在塞入第二種顏色的量子點的第二次電化學蝕刻中,量子點交互影響導致不同顏色的兩個區域之間的顏色對比度下降。儘管利用光阻覆蓋可以降低量子點相互影響,但固化光阻所需的高溫會嚴重破壞量子發光。zh_TW
dc.description.abstractA technique to fabricate mesa array color filters for potential application to color display based on an upgraded electrochemical etching (ECE) process by mixing colloidal quantum dots (QDs) with electrolyte is proposed and demonstrated. A series of experiments are undertaken to achieve feasible ECE conditions and optimized epitaxial structures. The mixed QDs can flow with the electrolyte into the etched pores under the designated mesa regions when the ECE process etches the high-conductivity layers of the GaN epitaxial structures. By using an epitaxial structure with a thick GaN capping layer (500 nm), a high applied voltage in ECE up to 17 V is used for fabricating bright QD emission at mesas in a single-color sample while no surface damage is observed. In the efforts of fabricating a two-color sample, the QD cross-insertion behavior during the second ECE process for inserting the QDs of the second color leads to a degraded color contrast between the two panels of different colors. Although a photoresist coverage may minimize the QD cross-insertion behavior, the elevated temperatures required for solidifying the photoresist severely damage the QDs and quench their emission.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-12-20T16:11:56Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-12-20T16:11:56Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
中文摘要 iii
Abstract: iv
Contents: v
List of Figure: vii
Chapter 1 Introduction 1
1.1 Color conversion of colloidal quantum dots for display application 1
1.2 Fabrication technique of color-filter array for display application 2
1.3 GaN porous structures 2
1.4 Patterning color-conversion colloidal quantum dot distribution among display pixels based on an electrochemical etching technique 3
1.5 Research motivations 5
1.6 Thesis structure 5
Chapter 2 Sample Structures and Fabrication Procedures 11
2.1 Epitaxial structure for porous-structure fabrication 11
2.2 Sample fabrication procedures 12
2.3 Colloidal quantum dots and choice of electrolyte 13
2.4 Electrochemical etching 14
2.5 Optical measurement 15
Chapter 3 Single-color Mesa-array Samples 27
3.1 Results obtained by varying the applied voltage in electrochemical etching 27
3.2 Samples fabricated with a high applied voltage 29
3.3 Quantum dot distribution in a porous structure 30
Chapter 4 Efforts of Fabricating Two-color Array Filters 73
4.1 Two-color array filters fabricated with different applied voltages 73
4.2 Effect of photolithograph on quantum dot emission 75
Chapter 5 Conclusions 119
References: 120
-
dc.language.isoen-
dc.subject氮化鎵zh_TW
dc.subject量子點zh_TW
dc.subject孔洞結構zh_TW
dc.subject電化學蝕刻zh_TW
dc.subject量子點zh_TW
dc.subject氮化鎵zh_TW
dc.subject孔洞結構zh_TW
dc.subject電化學蝕刻zh_TW
dc.subjectGaNen
dc.subjectGaNen
dc.subjectECEen
dc.subjectporous structureen
dc.subjectporous structureen
dc.subjectECEen
dc.title利用電化學蝕刻將膠體量子點塞入氮化鎵平台陣列次表面孔隙結構供顯示彩色濾光片應用zh_TW
dc.titleInserting Colloidal Quantum Dots into GaN Mesa-array Subsurface Porous Structures through Electrochemical Etching for Display Color Filter Applicationen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳育任;陳奕君;林建中;廖哲浩zh_TW
dc.contributor.oralexamcommitteeYuh-Renn Wu;I-Chun Cheng;Chien-Chung Lin;Zhe-Hao Liaoen
dc.subject.keyword量子點,氮化鎵,孔洞結構,電化學蝕刻,zh_TW
dc.subject.keywordGaN,ECE,porous structure,en
dc.relation.page123-
dc.identifier.doi10.6342/NTU202304263-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-10-12-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf8.41 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved