Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91259
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林淑怡zh_TW
dc.contributor.advisorShu-I Linen
dc.contributor.author林岱融zh_TW
dc.contributor.authorDai-Rong Linen
dc.date.accessioned2023-12-20T16:11:19Z-
dc.date.available2023-12-21-
dc.date.copyright2023-12-20-
dc.date.issued2023-
dc.date.submitted2023-10-09-
dc.identifier.citation丁妮倫、宋妤. 2005. PEG水分逆境處理對“奇雅”辣椒植株、果實生長及果實辣味成分之影響. 興大園藝 30: 51-64.
黃莉詠. 2019. 微型核糖核酸2111及169對圓葉菸草(Nicotiana benthamiana)在缺磷和乾旱逆境耐受性上所扮演的角色. 國立臺灣大學園藝暨景觀學系碩士論文. 台北.
顏佳怡、黃巧恩、高于鈞、喻雅庭、房樹生. 2015. 乾旱逆境下法國秋海棠形成氣孔簇以減少水分蒸散的機制. 科學教育月刊 381:50-60.
Anjum, S.A., M. Tanveer, U. Ashraf, S. Hussain, B. Shahzad, I. Khan, and L. Wang. 2016. Effect of progressive drought stress on growth, leaf gas exchange, and antioxidant production in two maize cultivars. Environ. Sci. Pollut. Res. Int. 23:17132-41.
Bai, B., H. Bian, Z. Zeng, N. Hou, B. Shi, J. Wang, M. Zhu, and N. Han. 2017. miR393-mediated auxin signaling regulation is involved in root elongation inhibition in response to toxic aluminum stress in barley. Plant Cell Physiol. 58:426-439.
Baxter, A., R. Mittler, and N. Suzuki. 2014. ROS as key players in plant stress signalling. J. Exp. Bot. 65:1229-1240.
Blum, A. 2017. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell Environ. 40:4-10.
Brodribb, T.J. and S.A.M. McAdam. 2017. Evolution of the stomatal regulation of plant water content. Plant Physiol. 174:639-649.
Chavarria, G. and d.H.P. Santos. 2012. Plant water relations: Absorption, transport and control mechanisms, p. 105-132. In: G. Montanaro (ed.). Advances in selected plant physiology aspects. InTech, Brazil.
Chaves, M.M., J. Flexas, and C. Pinheiro. 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann. Bot. 103:551-560.
Ding, D., L. Zhang, H. Wang, Z. Liu, Z. Zhang, and Y. Zheng. 2009. Differential expression of miRNAs in response to salt stress in maize roots. Ann. Bot. 103:29-38.
Du, Q., M. Zhao, W. Gao, S. Sun, and W.X. Li. 2017. microRNA/microRNA* complementarity is important for the regulation pattern of NFYA5 by miR169 under dehydration shock in Arabidopsis. Plant J. 91:22-33.
Ehleringer, J.R. and T.E. Cerling. 1995. Atmospheric CO2 and the ratio of intercellular to ambient CO2. Tree Physiol. 15:105-111.
Farooq, M., A. Wahid, N. Kobayashi, D. Fujita, and S.M.A. Basra. 2009. Plant drought stress: effects, mechanisms and management. Agron. Sustain. Dev. 29:185-212.
Ferdous, J., S.S. Hussain, and B.J. Shi. 2015. Role of microRNAs in plant drought tolerance. Plant Biotechnol. J. 13:293-305.
Fujita, Y., T. Yoshida, and K. Yamaguchi-Shinozaki. 2013. Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants. Physiol. Plant 147:15-27.
Garnier, E. and G. Laurent. 1994. Leaf anatomy, specific mass and water content in congeneric annual and perennial grass species. New Phytol. 128:725-736.
Hirayama, T. and K. Shinozaki. 2010. Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J. 61:1041-1052.
Hodges, D.M., J.M. DeLong, C.F. Forney, and R.K. Prange. 1999. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604-611.
Hou, B.Z., C.L. Li, Y.Y. Han, and Y.Y. Shen. 2018. Characterization of the hot pepper (Capsicum frutescens) fruit ripening regulated by ethylene and ABA. BMC Plant Biol. 18:162.
Ilyas, M., M. Nisar, N. Khan, A. Hazrat, A.H. Khan, K. Hayat, S. Fahad, A. Khan, and A. Ullah. 2020. Drought tolerance strategies in plants: A mechanistic approach. J. Plant Growth Regul. 40:926-944.
Jagadeeswaran, G., A. Saini, and R. Sunkar. 2009. Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis. Planta 229:1009-1014.
Jamil, M., T. Charnikhova, F. Verstappen, H. J. Bouwmeester. 2010. Carotenoid inhibitors reduce strigolactone production and striga hermonthica infection in rice. Arch. Biochem. Biophys. 504:123-131.
Jiao, Z., C. Lian, S. Han, M. Huang, C. Shen, Q. Li, M.-X. Niu, X. Yu, W. Yin, and X. Xia. 2021. PtmiR169o plays a positive role in regulating drought tolerance and growth by targeting the PtNF-YA6 gene in poplar. Environ. Exp. Bot. 189:104549.
Junglee, S., L. Urban, H. Sallanon, and F. Lopez-Lauri. 2014. Optimized Assay for hydrogen peroxide determination in plant tissue using potassium iodide. Am. J. Anal. Chem. 05:730-736.
Kay, S.H., R. B. Leidy, and D.W. Monks. 1996. Response of four vegetable crops to fluridone-treated Irrigation Water. Horttechnology 6:396-400.
Khraiwesh, B., J.K. Zhu, and J. Zhu. 2012. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim. Biophys. Acta. 1819:137-148.
Kim, J.S., J. Mizoi, T. Yoshida, Y. Fujita, J. Nakajima, T. Ohori, D. Todaka, K. Nakashima, T. Hirayama, K. Shinozaki, and K. Yamaguchi-Shinozaki. 2011. An ABRE promoter sequence is involved in osmotic stress-responsive expression of the DREB2A gene, which encodes a transcription factor regulating drought-inducible genes in Arabidopsis. Plant. Cell Physiol. 52:2136-2146.
Kim, T.H., M. Bohmer, H. Hu, N. Nishimura, and J.I. Schroeder. 2010. Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu. Rev. Plant Biol. 61:561-591.
Kutter, C., H. Schob, M. Stadler, F. Meins, Jr., and A. Si-Ammour. 2007. MicroRNA-mediated regulation of stomatal development in Arabidopsis. Plant Cell 19:2417-2429.
Leng, X., P. Wang, X. Zhu, X. Li, T. Zheng, L. Shangguan, and J. Fang. 2017. Ectopic expression of CSD1 and CSD2 targeting genes of miR398 in grapevine is associated with oxidative stress tolerance. Funct. Integr. Genomics 17:697-710.
Li, W.X., Y. Oono, J. Zhu, X.J. He, J.M. Wu, K. Iida, X.Y. Lu, X. Cui, H. Jin, and J.K. Zhu. 2008. The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell 20:2238-2251.
Li, Y., Y. Fu, L. Ji, C. Wu, and C. Zheng. 2010. Characterization and expression analysis of the Arabidopsis miR169 family. Plant Sci. 178:271-280.
Liu, H.H., X. Tian, Y.J. Li, C.A. Wu, and C.C. Zheng. 2008. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14:836-843.
Liu, S., Z. Lv, Y. Liu, L. Li, and L. Zhang. 2018. Network analysis of ABA-dependent and ABA-independent drought responsive genes in Arabidopsis thaliana. Genet. Mol. Biol. 41:624-637.
Luan, M., M. Xu, Y. Lu, L. Zhang, Y. Fan, and L. Wang. 2015. Expression of zma-miR169 miRNAs and their target ZmNF-YA genes in response to abiotic stress in maize leaves. Gene 555:178-185.
Mafakheri, A., A. Siosemardeh, B. Bahramnejad, P.C. Struik, Y. Sohrabi. 2010. Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. AJCS 4:580-585.
Martin, R.C., P.P. Liu, N.A. Goloviznina, and H. Nonogaki. 2010. microRNA, seeds, and Darwin?: diverse function of miRNA in seed biology and plant responses to stress. J. Exp. Bot. 61:2229-2234.
McAdam, S.A., T.J. Brodribb, and J.J. Ross. 2016. Shoot-derived abscisic acid promotes root growth. Plant Cell Environ. 39:652-659.
Michel, B.E. and M.R. Kaufmann. 1973. The osmotic potential of polyethylene glycol 6000. Plant Physiol. 51:914-916.
Millner, P.D. and D.G. Kitt. 1992. The Beltsville method for soilless production of vesicular-arbuscular mycorrhizal fungi. Mycorrhiza 2:9-15.
Mitsunori, S. and T. Koshiba. 2002. Complex regulation of ABA biosynthesis in plants. Trends Plant Sci. 7:41-48.
Mohammadkhani, N. and R. Heidari. 2008. Water stress induced by polyethylene glycol 6000 and sodium chloride in two maize cultivars. Pak. J. Biol. Sci. 11:92-97.
Murshed, R., F. Lopez-Lauri, and H. Sallanon. 2014. Effect of salt stress on tomato fruit antioxidant systems depends on fruit development stage. Physiol. Mol. Biol. Plants 20:15-29.
Navarro, L., P. Dunoyer, F. Jay, B. Arnold, N. Dharmasiri, M. Estelle, O. Voinnet, and J. D. G. Jones. 2006. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436-439.
Ni, Z., Z. Hu, Q. Jiang, and H. Zhang. 2013. GmNFYA3, a target gene of miR169, is a positive regulator of plant tolerance to drought stress. Plant. Mol. Biol. 82:113-129.
Onanuga, A.O., P.a. Jiang, and S. Adl. 2011. Effect of phytohormones, phosphorus and potassium on cotton varieties (Gossypium hirsutum) root growth and root activity grown in hydroponic nutrient solution. J. Agric. Sci. 4:93-110.
Pillitteri, L.J. and K.U. Torii. 2012. Mechanisms of stomatal development. Annu. Rev. Plant. Biol. 63:591-614.
Popova, L. 1996. Effect of fluridone on plant development, leaf anatomy and plastid ultrastructure of barley plants. Bulg. J. Plant Physiol. 22:3-12.
Raghavendra, A.S., V.K. Gonugunta, A. Christmann, and E. Grill. 2010. ABA perception and signalling. Trends. Plant Sci. 15:395-401.
Ramasamy, S., J. Ganesh Thiruvengadam Nandagopal, M. Balasubramanian, and S. Girija. 2022. Effect of abscisic acid and selenium foliar sprays on drought mitigation in tomato (Solanum lycopersicum L.). Mater. Today: Proc. 48:191-195.
Rao, S., S. Balyan, S. Jha, and S. Mathur. 2020. Novel insights into expansion and functional diversification of MIR169 family in tomato. Planta 251:55.
Shriram, V., V. Kumar, R.M. Devarumath, T.S. Khare, and S.H. Wani. 2016. MicroRNAs as potential targets for abiotic stress tolerance in plants. Front. Plant Sci. 7:817.
Singroha, G., P. Sharma, and R. Sunkur. 2021. Current status of microRNA-mediated regulation of drought stress responses in cereals. Physiol. Plant 172:1808-1821.
Suzuki, N. and R. Mittler. 2006. Reactive oxygen species and temperature stresses: A delicate balance between signaling and destruction. Physiol. Plant. 126:45-51.
Tan, Z.H., Z.X. Wu, A.C. Hughes, D. Schaefer, J. Zeng, G.Y. Lan, C. Yang, Z.L. Tao, B.Q. Chen, Y.H. Tian, L. Song, M.T. Jatoi, J.F. Zhao, and L.Y. Yang. 2017. On the ratio of intercellular to ambient CO2 (ci/ca) derived from ecosystem flux. Int. J. Biometeorol. 61:2059-2071.
Ullah, A., H. Manghwar, M. Shaban, A.H. Khan, A. Akbar, U. Ali, E. Ali, and S. Fahad. 2018. Phytohormones enhanced drought tolerance in plants: a coping strategy. Environ. Sci. Pollut. Res. Int. 25:33103-33118.
Verslues, P.E. and J.-K. Zhu. 2005. Before and beyond ABA upstream sensing and internal signals that determine ABA accumulation and response under abiotic stress. Biochem. Soc. Trans. 33:375-379.
Wang, J., Z. Zhou, Q. Tao, X. Chen, C. Shui, X. Ren, L. Yu, and M. Liang. 2022. Brassica napus miR169 regulates BnaNF-YA in salinity, drought and ABA responses. Environ. Exp. Bot. 199.
Wang, M., Q. Wang, and B. Zhang. 2013. Response of miRNAs and their targets to salt and drought stresses in cotton (Gossypium hirsutum L.). Gene 530:26-32.
Yang, F.L.F.M. 2010. Adaptive responses to progressive drought stress in two poplar species originating from different altitudes. Silva Fenn. 44:23-37.
Yao, T., J. Zhang, M. Xie, G. Yuan, T.J. Tschaplinski, W. Muchero, and J.G. Chen. 2020. Transcriptional regulation of drought response in Arabidopsis and woody plants. Front. Plant Sci. 11:572137.
Yoshioka, T., T. Endo, and S. Satoh. 1998. Restoration of seed germination at supraoptimal temperatures by fluridone, an inhibitor of abscisic acid biosynthesis. Plant Cell Physiol. 39:307-312.
Younis, A., M.I. Siddique, C.K. Kim, and K.B. Lim. 2014. RNA interference (RNAi) induced gene silencing: A promising approach of Hi-Tech plant breeding. Int. J. Bio.l Sci. 10:1150-8.
Yu, Y., Z. Ni, Y. Wang, H. Wan, Z. Hu, Q. Jiang, X. Sun, and H. Zhang. 2019. Overexpression of soybean miR169c confers increased drought stress sensitivity in transgenic Arabidopsis thaliana. Plant Sci. 285:68-78.
Zanetti, M.E., C. Ripodas, and A. Niebel. 2017. Plant NF-Y transcription factors: Key players in plant-microbe interactions, root development and adaptation to stress. Biochim. Biophys. Acta. Gene Regul. Mech. 1860:645-654.
Zhang, B. 2015. MicroRNA: a new target for improving plant tolerance to abiotic stress. J. Exp. Bot. 66:1749-1761.
Zhang, X., Z. Zou, P. Gong, J. Zhang, K. Ziaf, H. Li, F. Xiao, and Z. Ye. 2011. Over-expression of microRNA169 confers enhanced drought tolerance to tomato. Biotechnol. Lett. 33:403-409.
Zhao, B., R. Liang, L. Ge, W. Li, H. Xiao, H. Lin, K. Ruan, and Y. Jin. 2007. Identification of drought-induced microRNAs in rice. Biochem. Biophys. Res. Commun. 354:585-590.
Zhao, H., D. Wu, F. Kong, K. Lin, H. Zhang, and G. Li. 2016. The Arabidopsis thaliana Nuclear Factor Y Transcription Factors. Front. Plant Sci. 7:2045.
Zhao, M., H. Ding, J.K. Zhu, F. Zhang, and W.X. Li. 2011. Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis. New Phytol. 190:906-915.
Zhou, M., D. Li, Z. Li, Q. Hu, C. Yang, L. Zhu, and H. Luo. 2013. Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass. Plant Physiol. 161:1375-1391.
Zhu, J.K. 2002. Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53:247-273.
Zou, Z., X. Zou, S. Zhao, C. Xia, K. Qian, P. Wang, and C. Yin. 2018. Fluridone induces leaf bleaching by inhibiting pigment biosynthesis via downregulated transcription levels of pigment biosynthetic genes in rice (Oryza Sativa L.). J. Plant Growth Regul. 37:1385-1395.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91259-
dc.description.abstract近年已有多項研究表明微型核醣核酸(microRNA, miRNA)在植物對抗非生物性逆境中扮演重要角色,其中,miR169及其目標基因-核因子轉錄因子家族(Nuclear factor Y, NF-Y),與植株生長、發育、乾旱與缺氮逆境耐受性之調控有關。本實驗室先前研究觀察到大量表達圓葉菸草(Nicotiana benthamiana) miR169 (nbe-miR169)可使轉殖圓葉菸草(OE169)於乾旱後復水具有較好的恢復能力。本研究針對野生型(WT)及OE169圓葉菸草進行一系列的生理調查,並結合噴施ABA及ABA生合成抑制劑(Fluridone, FLU),單獨探討植株地上部及地下部之生理反應,欲釐清nbe-miR169背後之生理機制。結果顯示,地上部噴施ABA後,OE169於乾旱狀態下可維持較WT良好之外觀及地上部鮮重,同時可維持較低的氣孔相對開啟面積、過氧化氫(H2O2)及丙二醛(MDA)之氧化逆境指標;然而噴施FLU後,OE169於乾旱狀態下植株葉片明顯下垂,且OE1-1-2與OE3-5-3於乾旱狀態下MDA濃度皆顯著高於WT,並於復水後喪失原本良好的復水能力,進而推測nbe-miR169應受ABA介導,且當OE169之ABA生合成受抑制時,可能會提升對乾旱逆境的敏感程度。另外,WT無論於正常灌溉及乾旱狀態下,氣孔密度皆顯著高於OE169,且無論是否噴施ABA及FLU,OE169於乾旱狀態下與復水後之光合作用速率及Ci/Ca比值等,皆與WT無顯著差異,顯示大量表現nbe-miR169之轉殖株,可能是透過減少氣孔密度以增加乾旱耐受性,同時以不影響光合系統之狀態下來增加植株乾旱耐受性。最後,地下部相關調查結果顯示OE169之根系外觀、鮮重、根長、吸水量及根系活力指數皆與WT無顯著差異,推測nbe-miR169可能不是透過增加根系吸收水分的面積,或是增強根系的吸水能力與活力來提升乾旱耐受性。zh_TW
dc.description.abstractSeveral recent studies have shown that microRNAs (miRNAs) play important roles in plant’s response to abiotic stresses. Among them, miR169s and its target genes- Nuclear Factor Y (NF-Y), have been implicated in plant growth, development, drought, and nitrogen stress tolerance. Previous studies in our laboratory have observed that overexpression of Nicotiana benthamiana (tobacco) miR169 (nbe-miR169) in tobacco can make the transgenic tobacco (OE169) enhance recovery ability after drought stress. In this study, we conducted a series of physiological investigations on wild-type (WT) and OE169 tobacco to elucidate the physiological mechanisms underlying miR169-mediated responses. Specifically, we investigated the effects of foliar spray of ABA and ABA biosynthesis inhibitor (Fluridone, FLU) on the shoot and root responses of the plants under drought conditions. The results showed that after spraying ABA on the shoot, OE169 not only could maintain a better appearance, higher shoot fresh weight but also could maintain a lower stomatal relative area, hydrogen peroxide (H2O2) and malondialdehyde (MDA) concentration (both are oxidative stress indicators) than WT under drought stress. However, FLU application caused leaf wilting in OE169 under drought stress, and both lines of OE169 (OE1-1-2 and OE3-5-3) had significantly higher MDA concentrations than WT. Additionally, three OE169 lines lost their original recovery ability after rewatering, suggesting that the miR169 response is likely ABA-mediated. Furthermore, when ABA biosynthesis is inhibited in OE169, it may increase the sensitivity to drought stress. In addition, WT showed significantly higher stomatal density than OE169 under regular irrigation and drought conditions. Additionally, regardless of ABA and FLU application, the photosynthetic rate and Ci/Ca ratio of OE169 showed no significant differences compared to WT under drought stress and after rewatering. The above results imply that OE169 may enhance drought tolerance by reducing stomatal density without affecting the photosynthetic system. Finally, the investigation of the root system revealed no significant differences in root appearance, fresh weight, length, water uptake, and root activity index between OE169 and WT. It is speculated that nbe-miR169 may not enhance drought tolerance by increasing the root's water absorption surface area or by enhancing the root's water uptake capacity and activity.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-12-20T16:11:19Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-12-20T16:11:19Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 i
Abstract ii
內容目錄 iv
表目錄 vi
圖目錄 viii
前言 1
前人研究 3
一、植物抵抗乾旱逆境之策略與機制 3
二、微型核糖核酸(microRNA, miRNA)之生合成途徑及作用機制 4
三、調控植物miR169表現以影響植物耐旱性 6
四、氟啶酮(Fluridone)作為ABA生合成途徑之抑制劑 9
五、本實驗室已發表之相關研究 10
材料與方法 11
一、試驗材料與栽培管理 11
二、試驗流程與試驗設計 14
試驗一、噴施ABA及ABA生合成抑制劑對乾旱逆境下WT與OE169圓葉菸草生理之影響 14
試驗二、透過水耕模擬乾旱逆境調查WT與OE169圓葉菸草吸水能力之差異 16
試驗三、透過培養基模擬乾旱逆境之WT與OE169圓葉菸草苗期試驗 17
三、調查項目及分析方法 18
四、統計分析方法 24
結果 30
一、噴施ABA及ABA生合成抑制劑對乾旱逆境下WT與OE169圓葉菸草生理之影響 30
(一) 尋找適合噴施圓葉菸草之ABA濃度 30
(二) 尋找適合噴施圓葉菸草之ABA抑制劑(Fluridone, FLU)濃度 31
(三) 探討WT及OE169圓葉菸草於乾旱與恢復期間之生理影響 31
二、透過水耕模擬乾旱逆境調查WT與OE169圓葉菸草吸水能力之差異 37
(一) 第一次試驗 37
(二) 第二次試驗 38
三、透過培養基模擬乾旱逆境之WT與OE169圓葉菸草苗期試驗 40
討論 98
一、探討大量表現nbe-miR169之圓葉菸草轉殖株(OE169)地上部於乾旱逆境、復水後及噴施ABA與ABA合成抑制劑之生理影響 98
(一) 外觀及生理性狀 98
(二) 逆境指標 101
二、探討大量表現nbe-miR169之圓葉菸草轉殖株(OE169)地下部於乾旱逆境及復水後之生理影響 102
結論 105
參考文獻 106
附錄 114
-
dc.language.isozh_TW-
dc.title探討過表達nbe-miR169對圓葉菸草於乾旱逆境之生理影響zh_TW
dc.titleStudy on the physiological effects of nbe-miR169 overexpression in Nicotiana benthamiana under drought stressen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee許富鈞;陳荷明zh_TW
dc.contributor.oralexamcommitteeFu-Chiun Hsu;Ho-Ming Chenen
dc.subject.keyword微型核糖核酸,微型核糖核酸169,圓葉菸草,乾旱耐受性,氣孔,zh_TW
dc.subject.keywordmicroRNA (miRNA),miR169,Nicotiana benthamiana,drought tolerance,stoma,en
dc.relation.page114-
dc.identifier.doi10.6342/NTU202304313-
dc.rights.note未授權-
dc.date.accepted2023-10-12-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept園藝暨景觀學系-
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  目前未授權公開取用
6.51 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved