請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91257完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊志忠 | zh_TW |
| dc.contributor.advisor | Chih-Chung Yang | en |
| dc.contributor.author | 李岳錡 | zh_TW |
| dc.contributor.author | Yueh-Chi Lee | en |
| dc.date.accessioned | 2023-12-20T16:10:42Z | - |
| dc.date.available | 2023-12-21 | - |
| dc.date.copyright | 2023-12-20 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-10-12 | - |
| dc.identifier.citation | 1. E. M. Purcell, H. C. Torrey, and R. V. Pound, “Resonance absorption by nuclear magnetic moments in a solid,” Phys. Rev. 69, 37-38 (1946).
2. D. Chen, H. Xiao, and J. Han, “Nanopores in GaN by electrochemical anodization in hydrofluoric acid formation and mechanism,” J. Appl. Phys. 112(6), 064303 (2012). 3. P. H. Griffin and R. A. Oliver, “Porous nitride semiconductors reviewed,” J. Phys. D: Appl. Phys, 53(38), 383002 (2020). 4. M. J. Schwab, D. Chen, J. Han, and L. D. Pfefferle, “Aligned mesopore arrays in GaN by anodic etching and photoelectrochemical surface etching,” J. Phys. Chem. C, 117(33), 16890-16895 (2013). 5. M. J. Schwab, J. Han, and L. D. Pfefferle, “Neutral anodic etching of GaN for vertical or crystallographic alignment,” Appl. Phys. Lett. 106(24), 241603 (2015). 6. W. J. Tseng, D. H. van Dorp, R. R. Lieten, P. M. Vereecken, and G. Borghs, “Anodic etching of n-GaN epilayer into porous GaN and its photoelectrochemical properties,” J. Phys. Chem. C 118(51), 29492-29498 (2014). 7. C. H. Chen, S. Y. Kuo, H. Y. Feng, Z. H. Li, S. Yang, S. H. Wu, H. Y. Hsieh, Y. S. Lin, Y. C. Lee, W. C. Chen, P. H. Wu, J. C. Chen, Y. Y. Huang, Y. J. Lu, Y. Kuo, C. F. Lin, and C. C. Yang, “Photon color conversion enhancement of colloidal quantum dots inserted into a subsurface laterally-extended GaN nano-porous structure in an InGaN/GaN quantum-well template,” Opt. Express 31(4), 6327-6341 (2023). 8. S. Yang, H. Y. Feng, Y. S. Lin, W. C. Chen, Y. Kuo, and C. C. Yang, “Effects of surface plasmon coupling on the color conversion from an InGaN/GaN quantum-well structure into colloidal quantum dots inserted into a nearby porous structure,” Nanomaterials 13(2), 328 (2023). 9. S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, M. D. B. Charlton, D. V. Talapin, H. W. Huang, and C. H. Lin, “Increased color-conversion efficiency in hybrid light-emitting diodes utilizing non-radiative energy transfer,” Adv. Mater. 22(5), 602-606 (2010). 10. C. Krishman, M. Brossard, K.-Y. Lee, J.-K. Huang, C.-H. Lin, H.-C. Kuo, M. D. B. Charlton, and P. G. Lagoudakis, “Hybrid photonic crystal light-emitting diode renders 123% color conversion effective quantum yield,” Optica 3(5), 503-509 (2016 ). 11. Z. Zhuang, X. Guo, B. Liu, F. Hu, Y. Li, T. Tao, J. Dai, T. Zhi, Z. Xie, P. Chen, D. Chen, H. Ge, X. Wang, M. Xiao, Y. Shi, Y. Zheng, and R. Zhang, “High color rendering index hybrid III-nitride/nanocrystals white light-emitting diodes,” Adv. Funct. Mater. 26(1), 36-43 (2016). 12. M. Athanasiou, P. Papagiorgis, A. Manoli, C. Bernasconi, N. Poyiatzis, P.-M. Coulon, P. Shields, M. I. Bodnarchuk, M. V. Kovalenko, T. Wang, and G. Itskos, “InGaN nanohole arrays coated by lead halide perovskite nanocrystals for solid-state lighting,” ACS Appl. Nano Mater. 3(3), 2167-2175 (2020). 13. R. Wan, G. Li, X. Gao, Z. Liu, J. Li, X. Yi, N. Chi, and L. Wang, “Nanohole array structured GaN-based white LEDs with improved modulation bandwidth via plasmon resonance and non-radiative energy transfer,” Photon. Res. 9(7), 1213-1217 (2021). 14. Z. Du , D. Li, W. Guo, F. Xiong, P. Tang, X. Zhou, Y. Zhang, T. Guo, Q. Yan, and J. Sun, “Quantum dot color conversion efficiency enhancement in micro-light-emitting diodes by non-radiative energy transfer,” IEEE Electron Dev. Lett. 42(8), 1184-1187 (2021). 15. Y. Y. Huang, Z. H. Li, Y. C. Lai, J. C. Chen, S. H. Wu, S. Yang, Y. Kuo, C. C. Yang, T. C. Hsu, and C. L. Lee, “Nanoscale-cavity enhancement of color conversion with colloidal quantum dots embedded in the surface nano-holes of a blue-emitting light-emitting diode,” Opt. Express 30(17), 31322-31335 (2022). 16. T. Förster, “Energy transport and fluorescence,” Naturwissenschaften 33, 166-175 (1946). 17. S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, M. D. B. Charlton, D. V. Talapin, H. W. Huang, and C. H. Lin, “Increased color-conversion efficiency in hybrid light-emitting diodes utilizing non-radiative energy transfer,” Adv. Mater. 22(5), 602-606 (2010). 18. H. V. Demira, S. Nizamoglub, T. Erdemb, E. Mutluguna, N. Gaponikc, and A. Eychmuller, “Quantum dot integrated LEDs using photonic and excitonic color conversion,” Nano Today 6(6), 632-647 (2011). 19. F. Zhang, J. Liu, G. You, C. Zhang, S. E. Mohney, M. J. Park, J. S. Kwak, Y. Wang, D. D. Koleske, and J. Xu, “Nonradiative energy transfer between colloidal quantum dot-phosphors and nanopillar nitride LEDs,” Opt. Express 20(S2), A333-A339 (2012). 20. C. C. Ni, S. Y. Kuo, Z. H. Li, S. H. Wu, R. N. Wu, C. Y. Chen, and C. C. Yang, “Förster resonance energy transfer in surface plasmon coupled color conversion processes of colloidal quantum dots,” Opt. Express 29(3), 4067-4081 (2021). 21. Y. P. Chen, C. C. Ni, R. N. Wu, S. Y. Kuo, Y. C. Su, Y. Y. Huang, J. W. Chen, Y. C. Hsu, S. H. Wu, C. Y. Chen, P. H. Wu, Y. W. Kiang, and C. C. Yang, “Combined effects of surface plasmon coupling and Förster resonance energy transfer on the light color conversion behaviors of colloidal quantum dots on an InGaN/GaN quantum-well nanodisk structure,” Nanotechnology 32(13), 135206 (2021). 22. S. Yang, Y. C. Lai, H. Y. Feng, Y. C. Lee, Z. H. Li, S. H. Wu, Y. S. Lin, H. Y. Hsieh, C. J. Chu, W. C. Chen, Y. Kuo, and C. C. Yang, “Enhanced color conversion of quantum dots located in the hot spot of surface plasmon coupling,” IEEE Photon. Technol. Lett. 35(5), 273-276 (2023). 23. Y. Kuo, S. Y. Ting, C. H. Liao, J. J. Huang, C. Y. Chen, C. Hsieh, Y. C. Lu, C. Y. Chen, K. C. Shen, C. F. Lu, D. M. Yeh, J. Y. Wang, W. H. Chuang, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupling with radiating dipole for enhancing the emission efficiency of a light-emitting diode,” Opt. Express 19(14), A914-A929 (2011). 24. Y. Kuo, W. Y. Chang, C. H. Lin, C. C. Yang, and Y. W. Kiang, “Evaluating the blue-shift behaviors of the surface plasmon coupling of an embedded light emitter with a surface Ag nanoparticle by adding a dielectric interlayer or coating,” Opt. Express 23(24), 30709-30720 (2015). 25. C. J. Cai, Y. T. Wang, C. C. Ni, R. N. Wu, C. Y. Chen, Y. W. Kiang, and C. C. Yang, “Emission behaviors of colloidal quantum dots linked onto synthesized metal nanoparticles,” Nanotechnology 31(9), 095201 (2020) 26. Y. T. Wang, C. W. Liu, P. Y. Chen, R. N. Wu, C. C. Ni, C. J. Cai, Y. W. Kiang, and C. C. Yang, “Color conversion efficiency enhancement of colloidal quantum dot through its linkage with synthesized metal nanoparticle on a blue light-emitting diode,” Opt. Lett. 44(23), 5691-5694 (2019). 27. W. Y. Chang, Y. Kuo, Y. W. Kiang, and C. C. Yang, “Simulation study on light color conversion enhancement through surface plasmon coupling,” Opt. Express 27(12), A629-A642 (2019). 28. C. H. Lin, H. C. Chiang, Y. T. Wang, Y. F. Yao, C. C. Chen, W. F. Tse, R. N. Wu, W. Y. Chang, Y. Kuo, Y. W. Kiang, and C. C. Yang, “Efficiency enhancement of light color conversion through surface plasmon coupling,” Opt. Express 26(18), 23629-23640 (2018). 29. C. Y. Chen, C. C. Ni, R. N. Wu, S. Y. Kuo, C. H. Li, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupling effects on the Förster resonance energy transfer from quantum dot into rhodamine 6G,” Nanotechnology 32(29), 295202 (2021). 30. Y. C. Lai, S. Yang, H. Y. Feng, Y. C. Lee, Z. H. Li, S. H. Wu, Y. S. Lin, H. Y. Hsieh, C. J. Chu, W. C. Chen, Y. Y. Huang, Y. Kuo, and C. C. Yang, “Surface plasmon coupling effects on the photon color conversion behaviors of colloidal quantum dots in a GaN nanoscale hole with a nearby quantum-well structure,” Opt. Express 31(10), 16010-16024 (2023). 31. P. Ghenuche, M. Mivelle, J. de Torres, S. B. Moparthi, H. Rigneault, N. F. V. Hulst, M. F. G. Parajó, and J. Wenger, “Matching nanoantenna field confinement to FRET distances enhances Förster energy transfer rates,” Nano Lett. 15(9), 6193-6201 (2015). 32. H. Y. Tseng, W. F. Chen, C. K. Chu, W. Y. Chang, Y. Kuo, Y. W. Kiang, and C. C. Yang, “On-substrate fabrication of a bio-conjugated Au nanoring solution for photothermal therapy application,” Nanotechnology 24(6), 065102 (2013). 33. C. A. J. Lin, R. A. Sperling, J. K. Li, T. A. Yang, P. Y. Li, M. Zanella, W. H. Chang, and W. J. Parak, “Design of an amphiphilic polymer for nanoparticle coating and functionalization,” Small 4(3), 334-341 (2008). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91257 | - |
| dc.description.abstract | 本篇論文研究中,為了瞭解金屬奈米腔對塞入腔體內量子點與附近量子井發光行為的影響,我們製作了兩種奈米尺度的金屬腔體。首先,在氮化鎵奈米洞之底部與側壁鍍上金或銀就形成金屬奈米洞。另外,在氮化鎵奈米洞中只在侧壁上鍍上金屬就得到金屬奈米管。金屬奈米洞的形成係將金屬直接沉積至氮化鎵奈米洞上。金屬奈米管的形成則是使用二次濺鍍的技術,利用反應性離子蝕刻的三氟甲烷離子轟擊洞底的金屬原子,使其濺鍍到奈米洞側壁。由於銀的二次濺鍍技術不成熟,我們僅使用金來製作金屬奈米管樣品。由時間解析光激螢光光譜的量測結果顯示,在金及銀金屬奈米洞的樣品中,量子點的發光效率都增加。此外,從綠光量子點到紅光量子點之福斯特共振能量轉移的效率也提高,顯示金屬奈米腔的效應。在沒有量子井的金奈米管樣品中,儘管在管內量子點的發光沒有增強太多,但是從綠光量子點到紅光量子點之福斯特共振能量轉移效率顯著提高。而在具有量子井的金奈米管樣品中,與不帶有金側壁的相應樣品(仍具有量子井)相比,從量子井到量子點之福斯特共振能量轉移效率顯著提高,即使是在金吸收極強的量子井發光波段,仍然可以提高量子井到量子點的福斯特共振能量轉移效率。 | zh_TW |
| dc.description.abstract | Two types of metal nanoscale cavity are fabricated for studying the emission behaviors of the inserted colloidal quantum dots (QDs) and nearby quantum wells (QWs). In a metal nano-hole, the sidewall and bottom of a GaN nano-hole are covered by Ag or Au. In a metal nano-tube, only the sidewall of a GaN nano-hole is covered by metal. A metal nano-hole is formed by simply depositing metal onto a GaN nano-hole. A metal nano-tube is fabricated through the technique of secondary sputtering, in which the metal atoms at the hole bottom are bombarded by CHF3 ions in a reactive ion etching process for sputtering onto the nano-hole sidewall. Because the secondary sputtering of Ag is more difficult, only Au is used for fabricating the metal nano-tube samples. Time-resolved photoluminescence measurements show that the QD emission efficiency in either an Ag or an Au nano-hole sample is increased. Also, the efficiencies of the Förster resonance energy transfer (FRET) from green-emitting QD into red-emitting QD are increased, indicating the effective nanoscale-cavity effect. In an Au nano-tube sample without QW, although the QD emission is not much enhanced, the efficiencies of the FRET from green-emitting QD into red-emitting QD are significantly increased. In an Au nano-tube sample with QW, the efficiency of the FRET from QW into QD is enhanced, when compared with the corresponding sample (with QW) without Au sidewall layer. The FRET from QW into QD can still be enhanced even though Au absorption is strong at the QW emission wavelength. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-12-20T16:10:42Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-12-20T16:10:42Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 中文摘要 iii Abstract: iv Contents: v List of Figure: vii List of Table: xii Chapter 1 Introduction 1 1.1 Nanoscale-cavity effects 1 1.2 Theoretical/numerical study of nanoscale-cavity effect 3 1.3 Behaviors of quantum dot emission, Förster resonance energy transfer, and surface plasmon coupling in a surface nano-hole array [30] 5 1.4 Research motivations 8 1.5 Thesis structure 8 Chapter 2 Sample Structures, Fabrication Procedures, and Measurement Methods 16 2.1 Epitaxial structure and surface nano-hole fabrication 16 2.2 Fabrications of metal nano-hole and metal nano-tube 17 2.3 Fabrication of quantum dot solutions 18 2.4 Sample designations 19 2.5 Optical measurement methods 20 Chapter 3 Quantum Dot Emission Behaviors in Metal Nano-holes 30 3.1 Metal nano-hole structures 30 3.2 Quantum dot emission behaviors in metal nano-holes 30 Chapter 4 Quantum Dot Emission Behaviors in Metal Nano-tubes on GaN Templates 39 4.1 Structures of the metal nano-tubes on GaN templates 39 4.2 Quantum dot emission behaviors in the metal nano-tubes on GaN templates 39 Chapter 5 Quantum Well and Quantum Dot Emission Behaviors in Metal Nano-tubes on Quantum Well Templates 52 5.1 Structures of the metal nano-tubes on quantum well templates 52 5.2 Quantum well and quantum dot emission behaviors in the metal nano-tubes on quantum well templates 52 5.3 Effect of Au sidewall layer on the Förster resonance energy transfer from quantum well into quantum dot 55 Chapter 6 Conclusions 71 | - |
| dc.language.iso | en | - |
| dc.subject | 福斯特共振能量轉移 | zh_TW |
| dc.subject | 奈米腔效應 | zh_TW |
| dc.subject | 奈米腔效應 | zh_TW |
| dc.subject | 福斯特共振能量轉移 | zh_TW |
| dc.subject | nanoscale cavity | en |
| dc.subject | nanoscale cavity | en |
| dc.title | 金屬奈米腔效應對量子點發光與福斯特共振能量轉移行為的影響 | zh_TW |
| dc.title | Metal Nanoscale-cavity Effects on the Behaviors of Quantum-dot Emission and Förster Resonance Energy Transfer | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳育任;黃建璋;林建中;廖哲浩 | zh_TW |
| dc.contributor.oralexamcommittee | Yuh-Renn Wu;Jian-Jang Huang;Chien-Chung Lin;Zhe-Hao Liao | en |
| dc.subject.keyword | 奈米腔效應,福斯特共振能量轉移, | zh_TW |
| dc.subject.keyword | nanoscale cavity, | en |
| dc.relation.page | 75 | - |
| dc.identifier.doi | 10.6342/NTU202304310 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-10-12 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| dc.date.embargo-lift | 2028-10-06 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 未授權公開取用 | 4.44 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
