請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91251完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊志忠 | zh_TW |
| dc.contributor.advisor | Chih-Chung Yang | en |
| dc.contributor.author | 馮璽宇 | zh_TW |
| dc.contributor.author | Hsi-Yu Feng | en |
| dc.date.accessioned | 2023-12-12T16:24:31Z | - |
| dc.date.available | 2023-12-13 | - |
| dc.date.copyright | 2023-12-12 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-10-06 | - |
| dc.identifier.citation | References:
1. E. M. Purcell, H. C. Torrey, and R. V. Pound, “Resonance absorption by nuclear magnetic moments in a solid,” Phys. Rev. 69, 37-38 (1946). 2. D. Chen, H. Xiao, and J. Han, “Nanopores in GaN by electrochemical anodization in hydrofluoric acid formation and mechanism,” J. Appl. Phys. 112(6), 064303 (2012). 3. P. H. Griffin and R. A. Oliver, “Porous nitride semiconductors reviewed,” J. Phys. D: Appl. Phys, 53(38), 383002 (2020). 4. M. J. Schwab, D. Chen, J. Han, and L. D. Pfefferle, “Aligned mesopore arrays in GaN by anodic etching and photoelectrochemical surface etching,” J. Phys. Chem. C, 117(33), 16890-16895 (2013). 5. M. J. Schwab, J. Han, and L. D. Pfefferle, “Neutral anodic etching of GaN for vertical or crystallographic alignment,” Appl. Phys. Lett. 106(24), 241603 (2015). 6. W. J. Tseng, D. H. van Dorp, R. R. Lieten, P. M. Vereecken, and G. Borghs, “Anodic etching of n-GaN epilayer into porous GaN and its photoelectrochemical properties,” J. Phys. Chem. C 118(51), 29492-29498 (2014). 7. C. H. Chen, S. Y. Kuo, H. Y. Feng, Z. H. Li, S. Yang, S. H. Wu, H. Y. Hsieh, Y. S. Lin, Y. C. Lee, W. C. Chen, P. H. Wu, J. C. Chen, Y. Y. Huang, Y. J. Lu, Y. Kuo, C. F. Lin, and C. C. Yang, “Photon color conversion enhancement of colloidal quantum dots inserted into a subsurface laterally-extended GaN nano-porous structure in an InGaN/GaN quantum-well template,” Opt. Express 31(4), 6327-6341 (2023). 8. S. Yang, H. Y. Feng, Y. S. Lin, W. C. Chen, Y. Kuo, and C. C. Yang, “Effects of surface plasmon coupling on the color conversion from an InGaN/GaN quantum-well structure into colloidal quantum dots inserted into a nearby porous structure,” Nanomaterials 13(2), 328 (2023). 9. S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, M. D. B. Charlton, D. V. Talapin, H. W. Huang, and C. H. Lin, “Increased color-conversion efficiency in hybrid light-emitting diodes utilizing non-radiative energy transfer,” Adv. Mater. 22(5), 602-606 (2010). 10. C. Krishman, M. Brossard, K.-Y. Lee, J.-K. Huang, C.-H. Lin, H.-C. Kuo, M. D. B. Charlton, and P. G. Lagoudakis, “Hybrid photonic crystal light-emitting diode renders 123% color conversion effective quantum yield,” Optica 3(5), 503-509 (2016 ). 11. Z. Zhuang, X. Guo, B. Liu, F. Hu, Y. Li, T. Tao, J. Dai, T. Zhi, Z. Xie, P. Chen, D. Chen, H. Ge, X. Wang, M. Xiao, Y. Shi, Y. Zheng, and R. Zhang, “High color rendering index hybrid III-nitride/nanocrystals white light-emitting diodes,” Adv. Funct. Mater. 26(1), 36-43 (2016). 12. M. Athanasiou, P. Papagiorgis, A. Manoli, C. Bernasconi, N. Poyiatzis, P.-M. Coulon, P. Shields, M. I. Bodnarchuk, M. V. Kovalenko, T. Wang, and G. Itskos, “InGaN nanohole arrays coated by lead halide perovskite nanocrystals for solid-state lighting,” ACS Appl. Nano Mater. 3(3), 2167-2175 (2020). 13. R. Wan, G. Li, X. Gao, Z. Liu, J. Li, X. Yi, N. Chi, and L. Wang, “Nanohole array structured GaN-based white LEDs with improved modulation bandwidth via plasmon resonance and non-radiative energy transfer,” Photon. Res. 9(7), 1213-1217 (2021). 14. Z. Du , D. Li, W. Guo, F. Xiong, P. Tang, X. Zhou, Y. Zhang, T. Guo, Q. Yan, and J. Sun, “Quantum dot color conversion efficiency enhancement in micro-light-emitting diodes by non-radiative energy transfer,” IEEE Electron Dev. Lett. 42(8), 1184-1187 (2021). 15. Y. Y. Huang, Z. H. Li, Y. C. Lai, J. C. Chen, S. H. Wu, S. Yang, Y. Kuo, C. C. Yang, T. C. Hsu, and C. L. Lee, “Nanoscale-cavity enhancement of color conversion with colloidal quantum dots embedded in the surface nano-holes of a blue-emitting light-emitting diode,” Opt. Express 30(17), 31322-31335 (2022). 16. T. Förster, “Energy transport and fluorescence,” Naturwissenschaften 33, 166-175 (1946). 17. S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, M. D. B. Charlton, D. V. Talapin, H. W. Huang, and C. H. Lin, “Increased color-conversion efficiency in hybrid light-emitting diodes utilizing non-radiative energy transfer,” Adv. Mater. 22(5), 602-606 (2010). 18. H. V. Demira, S. Nizamoglub, T. Erdemb, E. Mutluguna, N. Gaponikc, and A. Eychmuller, “Quantum dot integrated LEDs using photonic and excitonic color conversion,” Nano Today 6(6), 632-647 (2011). 19. F. Zhang, J. Liu, G. You, C. Zhang, S. E. Mohney, M. J. Park, J. S. Kwak, Y. Wang, D. D. Koleske, and J. Xu, “Nonradiative energy transfer between colloidal quantum dot-phosphors and nanopillar nitride LEDs,” Opt. Express 20(S2), A333-A339 (2012). 20. C. C. Ni, S. Y. Kuo, Z. H. Li, S. H. Wu, R. N. Wu, C. Y. Chen, and C. C. Yang, “Förster resonance energy transfer in surface plasmon coupled color conversion processes of colloidal quantum dots,” Opt. Express 29(3), 4067-4081 (2021). 21. Y. P. Chen, C. C. Ni, R. N. Wu, S. Y. Kuo, Y. C. Su, Y. Y. Huang, J. W. Chen, Y. C. Hsu, S. H. Wu, C. Y. Chen, P. H. Wu, Y. W. Kiang, and C. C. Yang, “Combined effects of surface plasmon coupling and Förster resonance energy transfer on the light color conversion behaviors of colloidal quantum dots on an InGaN/GaN quantum-well nanodisk structure,” Nanotechnology 32(13), 135206 (2021). 22. S. Yang, Y. C. Lai, H. Y. Feng, Y. C. Lee, Z. H. Li, S. H. Wu, Y. S. Lin, H. Y. Hsieh, C. J. Chu, W. C. Chen, Y. Kuo, and C. C. Yang, “Enhanced color conversion of quantum dots located in the hot spot of surface plasmon coupling,” IEEE Photon. Technol. Lett. 35(5), 273-276 (2023). 23. Y. Kuo, S. Y. Ting, C. H. Liao, J. J. Huang, C. Y. Chen, C. Hsieh, Y. C. Lu, C. Y. Chen, K. C. Shen, C. F. Lu, D. M. Yeh, J. Y. Wang, W. H. Chuang, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupling with radiating dipole for enhancing the emission efficiency of a light-emitting diode,” Opt. Express 19(14), A914-A929 (2011). 24. Y. Kuo, W. Y. Chang, C. H. Lin, C. C. Yang, and Y. W. Kiang, “Evaluating the blue-shift behaviors of the surface plasmon coupling of an embedded light emitter with a surface Ag nanoparticle by adding a dielectric interlayer or coating,” Opt. Express 23(24), 30709-30720 (2015). 25. C. J. Cai, Y. T. Wang, C. C. Ni, R. N. Wu, C. Y. Chen, Y. W. Kiang, and C. C. Yang, “Emission behaviors of colloidal quantum dots linked onto synthesized metal nanoparticles,” Nanotechnology 31(9), 095201 (2020) 26. Y. T. Wang, C. W. Liu, P. Y. Chen, R. N. Wu, C. C. Ni, C. J. Cai, Y. W. Kiang, and C. C. Yang, “Color conversion efficiency enhancement of colloidal quantum dot through its linkage with synthesized metal nanoparticle on a blue light-emitting diode,” Opt. Lett. 44(23), 5691-5694 (2019). 27. W. Y. Chang, Y. Kuo, Y. W. Kiang, and C. C. Yang, “Simulation study on light color conversion enhancement through surface plasmon coupling,” Opt. Express 27(12), A629-A642 (2019). 28. C. H. Lin, H. C. Chiang, Y. T. Wang, Y. F. Yao, C. C. Chen, W. F. Tse, R. N. Wu, W. Y. Chang, Y. Kuo, Y. W. Kiang, and C. C. Yang, “Efficiency enhancement of light color conversion through surface plasmon coupling,” Opt. Express 26(18), 23629-23640 (2018). 29. C. Y. Chen, C. C. Ni, R. N. Wu, S. Y. Kuo, C. H. Li, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupling effects on the Förster resonance energy transfer from quantum dot into rhodamine 6G,” Nanotechnology 32(29), 295202 (2021). 30. W. J. Hsu, K. T. Chen, W. C. Huang, C. J. Wu, J. J. Dai, S. H. Chen, and C. F. Lin, “InGaN light emitting diodes with a nanopipe layer formed from the GaN epitaxial layer.” Opt. Express 24(11), 11601-11610 (2016). 31. Y. Li, C. Wang, Y. Zhang, P. Hu, S. Zhang, M. Du, X. Su, Q. Li, and F. Yun, “Analysis of TM/TE mode enhancement and droop reduction by a nanoporous n-AlGaN underlayer in a 290 nm UV-LED,” Photon. Res. 8(6), 806-811 (2020). 32. C. B. Soh, C. B. Tay, R. J. N. Tan, A. P. Vajpeyi, I. P. Seetoh, K. K. Ansah-Antwi, and S. J. Chua, “Nanopore morphology in porous GaN template and its effect on the LEDs emission,” J. Phys. D: Appl. Phys. 46(36), 365102 (2013). 33. C. Wurm, H. Collins, N, Hatui, W. Li, S. Pasayat, R. Hamwey, K. Sun, I. Sayed, K. Khan, E. Ahmadi, S. Keller, and U. Mishra, “Demonstration of device-quality 60% relaxed In0.2Ga0.8N on porous GaN pseudo-substrates grown by PAMBE,” J. Appl. Phys. 131(1), 015701 (2022). 34. S. S. Pasayat, C. Gupta, M. S. Wong, R. Ley, M. J. Gordon, S. P. DenBaars, S. Nakamura, S. Keller, and U. Mishra, “Demonstration of ultra-small (<10 μm) 632 nm red InGaN micro-LEDs with useful on-wafer external quantum efficiency (>0.2%) for mini-displays,” Appl. Phys. Express 14(1), 011004 (2021). 35. S. Huang, Y. Zhang, B. Leung, G. Yuan, G. Wang, H. Jiang, Y. Fan, Q. Sun, J. Wang, K. Xu, and J. Han, “Mechanical properties of nanoporous GaN and its application for separation and transfer of GaN thin films,” ACS Appl. Mater. Interfaces 5(21), 11074-11079 (2013). 36. Y. Zhang, Q. Sun, B. Leung, J. Simon, M. L. Lee, and J. Han, “The fabrication of large-area, free-standing GaN by a novel nanoetching process,” Nanotechnology 22(4), 045603 (2011). 37. J. H. Kang, M. Ebaid, J. K. Lee, T. Jeong, and S. W. Ryu, “Fabrication of vertical light emitting diode based on thermal deformation of nanoporous GaN and removable mechanical supporter,” ACS Appl. Mater. Interfaces 6(11), 8683-8687 (2014). 38. C. Zhang, S. H. Park, D. Chen, D. W. Lin, W. Xiong, H. C. Kuo, C. F. Lin, H. Cao, and J. Han, “Mesoporous GaN for photonic engineering highly reflective GaN mirrors as an example,” ACS Photon. 2(7), 980-986 (2015). 39. C. F. Lin, Y. T. Zhang, C. J. Wang, Y. Y. Chen, G. Y. Shiu, Y. Ke, and J. Han, “InGaN resonant microcavity with n+-porous-GaN/p+-GaN tunneling junction,” IEEE Electron Dev. Lett. 42(11), 1631-1633 (2021). 40. A. Najar, M. Gerland, and M. Jouiad, “Porosity-induced relaxation of strains in GaN layers studied by means of microindentation and optical spectroscopy,” J. Appl. Phys. 111(9), 093513 (2012). 41. S. S. Pasayat, N. Hatui, W. Li, C. Gupta, S. Nakamura, S. P. Denbaars, S. Keller, and U. Mishra, “Method of growing elastically relaxed crack-free AlGaN on GaN as substrates for ultra-wide bandgap devices using porous GaN,” Appl. Phys. Lett. 117(6), 062102 (2020). 42. S. S. Pasayat, C. Gupta, M. S. Wong, Y. Wang, S. Nakamura, S. P. Denbaars, S. Keller, and U. Mishra, “Growth of strain-relaxed InGaN on micrometersized patterned compliant GaN pseudo-substrates,” Appl. Phys. Lett. 116(11), 111101 (2020). 43. J. H. Kang, B. Li, T. Zhao, M. Ali Johar, C. C. Lin, Y. H. Fang, W. H. Kuo, K. L. Liang, S. Hu, S. W. Ryu, and J. Han, “RGB arrays for micro-light-emitting diode applications using nanoporous GaN embedded with quantum dots,” ACS Appl. Mater. Interfaces 12(27), 30890-30895 (2020). 44. R. Anderson, D. Cohen, H. Zhang, E. Trageser, N. Palmquist, S. Nakamura, and S. DenBaars, “Nano-porous GaN cladding and scattering loss in edge emitting laser diodes,” Opt. Express 30(2), 2759-2767 (2022). 45. Y. Ke, C. J. Wang, G. Y. Shiu, Y. Y. Chen, Y. S. Lin, H. Chen, J. Han, and C. F. Lin, “Polarization properties of InGaN vertical-cavity surface-emitting laser with pipe distributed Bragg reflector,” IEEE Transact. Electron Dev. 69(1), 201-204 (2022). 46. R. T. Elafandy, J. H. Kang, C. Mi, T. K. Kim, J. S. Kwak, and J. Han, “Study and application of birefringent nanoporous GaN in the polarization control of blue vertical-cavity surface-emitting lasers,” ACS Photon. 8(4), 1041-1047 (2021). 47. C. A. J. Lin, R. A. Sperling, J. K. Li, T. A. Yang, P. Y. Li, M. Zanella, W. H. Chang, and W. J. Parak, “Design of an amphiphilic polymer for nanoparticle coating and functionalization,” Small 4(3), 334-341 (2008). 48. P. Ghenuche, M. Mivelle, J. de Torres, S. B. Moparthi, H. Rigneault, N. F. V. Hulst, M. F. G. Parajó, and J. Wenger, “Matching nanoantenna field confinement to FRET distances enhances Förster energy transfer rates,” Nano Lett. 15(9), 6193-6201 (2015). 49. Y. Kuo, Y. J. Lu, C. Y. Shih, and C. C. Yang, “Simulation study on the enhancement of resonance energy transfer through surface plasmon coupling in a GaN porous structure,” Opt. Express 29(26), 43182-43192 (2021). 50. Y. C. Lai, S. Yang, H. Y. Feng, Y. C. Lee, Z. H. Li, S. H. Wu, Y. S. Lin, H. Y. Hsieh, C J. Chu, W. C. Chen, Y. Y. Huang, Y. Kuo, and C. C. Yang, “Surface plasmon coupling effects on the photon color conversion behaviors of colloidal quantum dots in a GaN nanoscale hole with a nearby quantum-well structure,” Opt. Express 31(10), 16010-16024 (2023). 51. Y. Kuo and C. C. Yang, “Theoretical/numerical studies of the nanoscale-cavity effects on dipole emission, Förster resonance energy transfer and surface plasmon coupling,” to appear in Plasmonics | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91251 | - |
| dc.description.abstract | 我們設計氮化鎵磊晶結構和長條形台階陣列,經由電化學蝕刻可在整片樣品上製成次表面定向的孔洞結構。在去除氮化鎵覆蓋層後,我們可獲得台狀上具有固定延伸方向的表面週期性溝槽,這就實現了不必使用任何奈米微影製程,卻可得到週期小於100奈米的深度光柵。我們利用滴塗方法可將膠體量子點和化學合成的銀奈米顆粒塞入溝槽內,以此來展現其隨偏振變化的光學特性。基於穿透、連續光致發螢光和時間分辨光致發螢光測量,我們研究隨偏振變化的表面電漿子共振及耦合、福斯特共振能量轉移和量子點發光行為。當激發偏振垂直於溝槽方向時,量子點發光和表面電漿子耦合增強,然而福斯特共振能量轉移效率降低。當激發偏振垂直於溝槽方向時,整體光色轉換效率較高。 | zh_TW |
| dc.description.abstract | Subsurface oriented pores in a GaN layer are first formed through an electrochemical etching process by carefully designing the epitaxial structure and the geometry of a stripe mesa array. The, after removing a GaN capping layer, surface oriented trenches of a fixed extension direction on the mesas are implemented to achieve a deep grating of sub-100 nm in period without using any nano-lithography process. By drop-casting colloidal quantum dots (QDs) and chemically synthesized Ag nanoparticles (NPs) onto the surface of such a sample, they can settle into the trenches for showing their polarization-dependent optical properties. Polarization-dependent surface plasmon (SP) resonance and coupling, Förster resonance energy transfer (FRET), and QD emission are studied based on the measurements of transmission, continuous photoluminescence (PL) and time-resolved PL spectroscopies. When the excitation polarization is perpendicular to the trench orientation, QD emission and SP coupling are stronger. However, the FRET efficiency is lower. The overall color conversion efficiency is higher when the excitation polarization is perpendicular to the trench orientation. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-12-12T16:24:31Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-12-12T16:24:31Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 摘要 iii Abstract iv Content: v List of Figure: vii List of Table xi Chapter 1 Introduction 1 1.1 Nanoscale-cavity effects 1 1.2 Subsurface GaN porous structures 3 1.3 Behaviors of quantum dot emission and Förster resonance energy transfer in a subsurface GaN porous structure 4 1.4 Research motivations 6 1.5 These structure 6 Chapter 2 Sample Structures, Fabrication Procedures, and Measurement Methods 12 2.1 Epitaxial structure 12 2.2 Fabrications of mesa and porous structures 12 2.3 Sample designations and structures 15 2.4 Optical measurements 17 Chapter 3 Polarization Dependent Optical Measurement Results 37 3.1 Polarization dependent localized surface plasmon resonance 37 3.2 Polarization dependent time-resolved photoluminescence of quantum dots 38 3.3 Polarization dependent continuous photoluminescence measurement 42 Chapter 4 Discussions 64 4.1 Polarization dependent surface plasmon resonance 64 4.2 Polarization dependent quantum dot emission behaviors 64 4.3 Accuracy of optical measurement 65 Chapter 5 Conclusions 66 References: 67 | - |
| dc.language.iso | en | - |
| dc.subject | 奈米光柵 | zh_TW |
| dc.subject | 表面電漿子耦合 | zh_TW |
| dc.subject | 福斯特共振能量轉移 | zh_TW |
| dc.subject | 量子點 | zh_TW |
| dc.subject | 奈米光柵 | zh_TW |
| dc.subject | 氮化鎵 | zh_TW |
| dc.subject | 表面電漿子耦合 | zh_TW |
| dc.subject | 福斯特共振能量轉移 | zh_TW |
| dc.subject | 量子點 | zh_TW |
| dc.subject | 氮化鎵 | zh_TW |
| dc.subject | GaN Nano-grating Structures | en |
| dc.subject | Polarization-dependent Behaviors | en |
| dc.subject | Quantum-dot Emission | en |
| dc.subject | Förster Resonance Energy Transfer | en |
| dc.subject | Surface Plasmon Coupling | en |
| dc.subject | GaN Nano-grating Structures | en |
| dc.subject | Polarization-dependent Behaviors | en |
| dc.subject | Quantum-dot Emission | en |
| dc.subject | Förster Resonance Energy Transfer | en |
| dc.subject | Surface Plasmon Coupling | en |
| dc.title | 免用微影技術製作的氮化鎵奈米光柵結構內量子點發光、福斯特共振能量轉移與表面電漿子耦合隨偏振變化的行為 | zh_TW |
| dc.title | Polarization-dependent Behaviors of Quantum-dot Emission, Förster Resonance Energy Transfer, Surface Plasmon Coupling in Lithography-free GaN Nano-grating Structures | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃建璋;吳育任;林建中;廖哲浩 | zh_TW |
| dc.contributor.oralexamcommittee | Jian-Jang Huang;Yuh-Renn Wu;Chien-chung Lin;Che-Hao Liao | en |
| dc.subject.keyword | 氮化鎵,奈米光柵,量子點,福斯特共振能量轉移,表面電漿子耦合, | zh_TW |
| dc.subject.keyword | Polarization-dependent Behaviors,Quantum-dot Emission,Förster Resonance Energy Transfer,Surface Plasmon Coupling,GaN Nano-grating Structures, | en |
| dc.relation.page | 71 | - |
| dc.identifier.doi | 10.6342/NTU202304307 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-10-11 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| dc.date.embargo-lift | 2023-12-31 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf | 4.8 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
