Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91232
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭修偉zh_TW
dc.contributor.advisorHsiu-Wei Chengen
dc.contributor.author傅晨哲zh_TW
dc.contributor.authorMax Vincent Fultonen
dc.date.accessioned2023-12-12T16:19:37Z-
dc.date.available2023-12-13-
dc.date.copyright2023-12-12-
dc.date.issued2023-
dc.date.submitted2023-10-25-
dc.identifier.citation[1] R. Armstrong. Diagnostic criteria for distinguishing between the dissolution-precipitation and the solid state mechanisms of passivation. Corrosion Science, 11(10):693–697, 1971.

[2] D. Aronov, M. Molotskii, and G. Rosenman. Electron-induced wettability modification. Physical Review B, 76(3):035437, 2007.

[3] S. Berry, J. Kedzierski, and B. Abedian. Irreversible electrowetting on thin fluoropolymer films. Langmuir, 23(24):12429–12435, 2007.

[4] J. Cabana, L. Monconduit, D. Larcher, and M. R. Palacin. Beyond intercalation-based li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Advanced materials, 22(35):E170–E192, 2010.

[5] L. Castaner, V. Di Virgilio, and S. Bermejo. Charge-coupled transient model for electrowetting. Langmuir, 26(20):16178–16185, 2010.

[6] L. Chen and E. Bonaccurso. Electrowetting—from statics to dynamics. Advances in colloid and interface science, 210:2–12, 2014.

[7] H.-W. Cheng, J.-N. Dienemann, P. Stock, C. Merola, Y.-J. Chen, and M. Valtiner. The effect of water and confinement on self-assembly of imidazolium based ionic liquids at mica interfaces. Scientific reports, 6(1):1–9, 2016.

[8] F. Endres. Ionic liquids: solvents for the electrodeposition of metals and semiconductors. ChemPhysChem, 3(2):144–154, 2002.

[9] D. Ensling, M. Stjerndahl, A. Nytén, T. Gustafsson, and J. O. Thomas. A comparative xps surface study of li 2 fesio 4/c cycled with litfsi-and lipf 6-based electrolytes. Journal of Materials Chemistry, 19(1):82–88, 2009.

[10] C. S. Fadley. X-ray photoelectron spectroscopy: Progress and perspectives. Journal of Electron Spectroscopy and Related Phenomena, 178:2–32, 2010.

[11] S. L. Goes, M. N. Mayer, J. E. Nutting, L. E. Hoober-Burkhardt, S. S. Stahl, and M. Rafiee. Deriving the turnover frequency of aminoxyl-catalyzed alcohol oxidation by chronoamperometry: an introduction to organic electrocatalysis. Journal of chemical education, 98(2):600–606, 2020.

[12] G. Inzelt, A. Lewenstam, and F. Scholz. Handbook of reference electrodes, volume 541. Springer, 2013.

[13] N. A. Kaskhedikar and J. Maier. Lithium storage in carbon nanostructures. Advanced Materials, 21(25-26):2664–2680, 2009.

[14] A. Kraytsberg and Y. Ein-Eli. A critical review-promises and barriers of conversion electrodes for li-ion batteries. Journal of Solid State Electrochemistry, 21:1907–1923, 2017.

[15] Y. Liang, C.-Z. Zhao, H. Yuan, Y. Chen, W. Zhang, J.-Q. Huang, D. Yu, Y. Liu, M.-M. Titirici, Y.-L. Chueh, et al. A review of rechargeable batteries for portable electronic devices. InfoMat, 1(1):6–32, 2019.

[16] J.-L. Lin, G.-B. Lee, Y.-H. Chang, and K.-Y. Lien. Model description of contact angles in electrowetting on dielectric layers. Langmuir, 22(1):484–489, 2006.

[17] Z. Liu, T. Cui, G. Li, and F. Endres. Interfacial nanostructure and asymmetric electrowetting of ionic liquids. Langmuir, 33(38):9539–9547, 2017.

[18] G. A. Mabbott. An introduction to cyclic voltammetry. Journal of Chemical education, 60(9):697, 1983.

[19] R. Matviiv, M. Y. Rudysh, V. Y. Stadnyk, A. Fedorchuk, P. Shchepanskyi, R. Brezvin, and O. Khyzhun. Structure, refractive and electronic properties of k2so4: Cu2+ (3%) crystals. Current Applied Physics, 21:80–88, 2021.

[20] F. Mugele. Fundamental challenges in electrowetting: from equilibrium shapes to contact angle saturation and drop dynamics. Soft Matter, 5(18):3377–3384, 2009.

[21] F. Mugele and J.-C. Baret. Electrowetting: from basics to applications. Journal of physics: condensed matter, 17(28):R705, 2005.

[22] S. Narayanan, J. S. Gibson, J. Aspinall, R. S. Weatherup, and M. Pasta. In situ and operando characterisation of li metal–solid electrolyte interfaces. Current Opinion in Solid State and Materials Science, 26(2):100978, 2022.

[23] N. Nitta, F. Wu, J. T. Lee, and G. Yushin. Li-ion battery materials: present and future. Materials today, 18(5):252–264, 2015.

[24] M. Noel and V. Suryanarayanan. Role of carbon host lattices in li-ion intercalation/ de-intercalation processes. Journal of power sources, 111(2):193–209, 2002.

[25] M. R. Palacin. Recent advances in rechargeable battery materials: a chemist's perspective. Chemical Society Reviews, 38(9):2565–2575, 2009.

[26] R. Raccichini, M. Amores, and G. Hinds. Critical review of the use of reference electrodes in li-ion batteries: a diagnostic perspective. Batteries, 5(1):12, 2019.

[27] R. Rajagopalan, Y. Tang, X. Ji, C. Jia, and H. Wang. Advancements and challenges in potassium ion batteries: a comprehensive review. Advanced Functional Materials, 30(12):1909486, 2020.

[28] P. Ruetschi. Review on the lead—acid battery science and technology. Journal of Power Sources, 2(1):3–120, 1977.

[29] A. Shukla, S. Venugopalan, and B. Hariprakash. Nickel-based rechargeable batteries. Journal of Power Sources, 100(1-2):125–148, 2001.

[30] V. Shutthanandan, M. Nandasiri, J. Zheng, M. H. Engelhard, W. Xu, S. Thevuthasan, and V. Murugesan. Applications of xps in the characterization of battery materials. Journal of Electron Spectroscopy and Related Phenomena, 231:2–10, 2019.

[31] F. A. Stevie and C. L. Donley. Introduction to x-ray photoelectron spectroscopy. Journal of Vacuum Science & Technology A, 38(6), 2020.

[32] D. t Mannetje, C. Murade, D. Van Den Ende, and F. Mugele. Electrically assisted drop sliding on inclined planes. Applied physics letters, 98(1), 2011.

[33] Z.-i. Takehara. Dissolution and precipitation reactions of lead sulfate in positive and negative electrodes in lead acid battery. Journal of power sources, 85(1):29–37, 2000.

[34] P.-J. Tsais and L. Chan. Nickel-based batteries: Materials and chemistry. Electricity transmission, distribution and storage systems, pages 309–397, 2013.

[35] Q. Wang, L. Jiang, Y. Yu, and J. Sun. Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy, 55:93–114, 2019.

[36] Y. Wang and W.-H. Zhong. Development of electrolytes towards achieving safe and high-performance energy-storage devices: a review. ChemElectroChem, 2(1):22–36, 2015.

[37] M. Winter, B. Barnett, and K. Xu. Before li ion batteries. Chemical reviews, 118(23):11433–11456, 2018.

[38] Q. Yang, Z. Zhang, X.-G. Sun, Y.-S. Hu, H. Xing, and S. Dai. Ionic liquids and derived materials for lithium and sodium batteries. Chemical Society Reviews, 47(6):2020–2064, 2018.

[39] X. Zhan, J. Zhang, M. Liu, J. Lu, Q. Zhang, and F. Chen. Advanced polymer electrolyte with enhanced electrochemical performance for lithium-ion batteries: effect of nitrile-functionalized ionic liquid. ACS Applied Energy Materials, 2(3):1685–1694, 2019.

[40] X. Zheng, C. Bommier, W. Luo, L. Jiang, Y. Hao, and Y. Huang. Sodium metal anodes for room-temperature sodium-ion batteries: Applications, challenges and solutions. Energy Storage Materials, 16:6–23, 2019.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91232-
dc.description.abstract鋰電池在現今不只要求要高效能,更重要的是安全。離子液體以熱穩定性佳,因此在最近十年提升了許多研究興趣。除了選擇更好的電解液,固態電解質介面層的生成也是離電池安全的關鍵之一,由於可以避免鋰金屬滲入電極而短路。因此,可以藉由電擴散來理解表面之間的作用力。當今鋰電池,鈉和鉀電池的討論也日益上升因此我們選用 LiTFSI, NaTFSI, KTFSI 並以 EmimTFSI 當作溶劑來配置。藉由這些離子液體在一個真空的腔體內進行電化學,最後利用光學顯微鏡同步看到電擴散的現象。電擴散的能力會因為鹼金族離子而增強,前提是未加到飽和濃度。我們利用化學分析電子能譜去釐清經由電擴散後表面的離子的分布,利用陰陽離子的比例發現 KTFSI 的液珠邊緣富含陰離子,相較於 EmimTFSI, LiTFSI, NaTFSI 的液珠邊緣富含陽離子。最後固態電解質介面層可以利用化學分析電子能譜中的氮、硫以及深層頗析來說明其組成方式。我們的實驗可以幫助了解藉由 EmimTFSI, LiTFSI, NaTFSI 和 KTFSI 之間的電擴散差異及生成的固態電解質介面層。zh_TW
dc.description.abstractNowadays, Li-ion battery aims for not only high performance but also safety. Therefore, ionic liquids due to its thermal stability has raise interest in the past decade. Furthermore, the formation of SEI is crucial for the safety and prevents short circuit from lithium dendrite. Hence, the interaction between electrode and IL can be analyze with electrowetting. Due to the increase interest of Na-ion and K-ion battery, we select LiTFSI, NaTFSI, KTFSI with EmimTFSI as solvent to conduct electrochemical experiment in a vacuum chamber, therefore, observing the electrowetting in-situ with the optical microscope. The electrowetting ability will increase by adding alkali ion before critical concentration. We use XPS to determine the distribution of the interface after electrowetting with the ratio of cation/anion, and KTFSI has more anion on the electrowetting edge, where EmimTFSI, LiTFSI, NaTFSI have more cation. At last, we find out the SEI formation by compare the XPS signal of N, S and depth profile. Our work helps the understanding of electrowetting and the formation of SEI for EmimTFSI, LiTFSI, NaTFSI and KTFSI.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-12-12T16:19:37Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-12-12T16:19:37Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements i
摘要 iii
Abstract v
Contents vii
List of Figures xi
List of Tables xv
Denotation xvii
Chapter 1 Introduction 1
1.1 Energy, Charge Transfer and Battery . . . . . 1
1.1.1 Energy storage and release . . . . . . . 2
1.1.2 Charge transfer as the key of energy efficiency . . . . 5
1.1.3 Electrodes and Electrolytes . . . . . . . 8
1.2 Electrowetting at Charged Interface . . . . . . . . 10
1.2.1 Wetting mechanism and surface energy . . . . . . . . 10
1.2.2 Electromechanical interface processes . . . . . . . . . 11
1.3 Solid Electrolyte Interphase (SEI) . . . . . . . . . 12
1.3.1 The material features of SEI . . . . . . . . . . 13
1.3.2 Correlation of SEI to device efficiency and safety . . . . 13
1.4 The Current Challenges . . . . . 14
1.5 The Highlight of this Work . . . . . . 16
Chapter 2 Experimental Section 17
2.1 Materials and Chemicals . . . . . 17
2.2 Electrochemical Environment Controlled Chamber Design . . . 18
2.3 Sample Preparation . . . . . 20
2.3.1 Printed electrode design . . . . . . . 20
2.3.2 Printed electrode preparation . . . . . . 20
2.3.3 Printed electrodes preparation with ILs on Top . . . 22
2.4 Electrochemistry Experiment with ILs . . . . . 22
2.4.1 Cyclic Voltammetry . . . . . 22
2.4.2 Chronoamperometry . . . 24
2.5 X-ray Photoelectron Spectroscopy . . . . . 25
2.5.1 Principle of XPS . . . . . . . . . 25
2.5.2 The components of XPS instrument . . . . . 26
2.5.3 Spectrum . . . . . . . . 27
2.5.4 Fitting analysis for spectrum . . . . . 27
2.5.5 Mapping . . . . . . . . 28
2.5.6 Depth Profile . . . . . . 29
Chapter 3 Results and Discussion 30
3.1 The Stability of Different Combination of Electrodes . . . . 30
3.1.1 The importance of potential stability of RE . . . 31
3.1.2 The potential window for WE with different substrate . . . 33
3.2 The Macroscopic View of Electrowetting . . . . 34
3.2.1 The quantification of electrowetting by diffusivity and the potential dependence of diffusivity . . . . . . . 35
3.2.2 The comparison of the potential dependence of diffusivity between different cation . . . . . . . 36
3.3 The Microscopic View of Electrowetting . . . . . 38
3.3.1 The interface between Au and ILs . . . . . . . . . . 39
3.3.2 The ratio of cation and anion from the bulk reservoir to the electrowetting edge . . . . . . 40
3.3.3 The Composition of SEI . . . . . . . . . 43
Chapter 4 Conclusion 48
References 51
-
dc.language.isoen-
dc.title利用化學分析電子能譜及自製真空系統來探討LiTFSI, NaTFSI, KTFSI 三種離子液體電擴散及固態電解質介面層zh_TW
dc.titleThe study of electrowetting and SEI of LiTFSI, NaTFSI, KTFSI by X-ray photoelectron spectroscopy and home-made vacuum systemen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳俊顯;林煒淳;李介仁zh_TW
dc.contributor.oralexamcommitteeChun-Hsien Chen;Wei-Chun Lin;Jie-Ren Lien
dc.subject.keyword電擴散,固態電解質介面層,化學分析電子能譜,真空,離子液體,zh_TW
dc.subject.keywordElectrowetting,SEI,XPS,Vacuum,Ionic liquids,en
dc.relation.page55-
dc.identifier.doi10.6342/NTU202304366-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-10-25-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
14.9 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved