Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91198
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳信樹zh_TW
dc.contributor.advisorHsin-Shu Chenen
dc.contributor.author黃怡綺zh_TW
dc.contributor.authorYi-Chi Huangen
dc.date.accessioned2023-12-12T16:10:15Z-
dc.date.available2023-12-13-
dc.date.copyright2023-12-12-
dc.date.issued2023-
dc.date.submitted2023-11-30-
dc.identifier.citation[1] J. -J. Chen, P. -N. Shen and Y. -S. Hwang, "A High-Efficiency Positive Buck-Boost Converter With Mode-Select Circuit and Feed-Forward Techniques," in IEEE Transactions on Power Electronics, vol. 28, no. 9, pp. 4240-4247, Sept. 2013
[2] Raymond B. Ridley, "A New Small-Signal Model for Current-Mode Control ", 1999 Ridley Engineering, Inc.
[3] Y. -Y. Tsai, Y. -S. Tsai, C. -W. Tsai and C. -H. Tsai, "Digital Noninverting-Buck–Boost Converter With Enhanced Duty-Cycle-Overlap Control," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 1, pp. 41-45, Jan. 2017
[4]X. -E. Hong, J. -F. Wu and C. -L. Wei, "98.1%-Efficiency Hysteretic-Current-Mode Noninverting Buck–Boost DC-DC Converter With Smooth Mode Transition," in IEEE Transactions on Power Electronics, vol. 32, no. 3, pp. 2008-2017, March 2017.
[5] L. Liu, L. Sun, J. Xu, X. Zhang, C. Xu and X. Liao, "A 0.4-V Startup, Dead-Zone-Free, Monolithic Four-Mode Synchronous Buck-Boost Converter," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 31, no. 7, pp. 1004-1013, July 2023
[6] M. -W. Ko et al., "A 97% high-efficiency 6μs fast-recovery-time buck-based step-up/down converter with embedded 1/2 and 3/2 charge-pumps for li-lon battery management," 2018 IEEE International Solid - State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2018, pp. 428-430.
[7] I. Park, J. Maeng, J. Jeon, H. Kim and C. Kim, "A Four-Phase Hybrid Step-Up/Down Converter With RMS Inductor Current Reduction and Delay-Based Zero-Current Detection," in IEEE Transactions on Power Electronics, vol. 37, no. 4, pp. 3708-3712, April 2022
[8] J. Baek et al., "11.7 A Voltage-Tolerant Three-Level Buck-Boost DC-DC Converter with Continuous Transfer Current and Flying Capacitor Soft Charger Achieving 96.8% Power Efficiency and 0.87µs/V DVS Rate," 2020 IEEE International Solid- State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2020, pp. 202-204
[9] H. Shin et al., "A 96.6%-Efficiency Continuous-Input-Current Hybrid Dual-Path Buck-Boost Converter with Single-Mode Operation and Non-Stopping Output Current Delivery," 2021 Symposium on VLSI Circuits, Kyoto, Japan, 2021, pp. 1-2.
[10] A. Mishra and V. De Smedt, "A Novel Hybrid Buck-Boost Converter Topology for Li-ion Batteries with Increased Efficiency," 2020 27th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Glasgow, UK, 2020, pp. 1-4.
[11] D. Cho et al., "A Single-Mode Dual-Path Buck-Boost Converter with Reduced Inductor Current Across All Duty Cases Achieving 95.58% Efficiency at 1A in Boost Operation," 2022 IEEE Custom Integrated Circuits Conference (CICC), Newport Beach, CA, USA, 2022, pp. 1-2.
[12] H. Y. H. Lam, Wing-Hung Ki and Dongsheng Ma, "Loop gain analysis and development of high-speed high-accuracy current sensors for switching converters," 2004 IEEE International Symposium on Circuits and Systems (ISCAS), Vancouver, BC, Canada, 2004, pp. V-V
[13] Y. J. Park et al., "A design of a 92.4% efficiency triple mode control DC–DC buck converter with low power retention mode and adaptive zero current detector for IoT/wearable applications", IEEE Trans. Power Electron., vol. 32, no. 9, pp. 6946-6960, Sep. 2017.
[14] K. -C. Woo, J. -M. Oh and B. -D. Yang, "DC–DC Buck Converter Using Analog Coarse-Fine Self-Tracking Zero-Current Detection Scheme," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 11, pp. 1850-1854, Nov. 2019
[15] P. Favrat, P. Deval and M. J. Declercq, "A high-efficiency CMOS voltage doubler," in IEEE Journal of Solid-State Circuits, vol. 33, no. 3, pp. 410-416, March 1998.
[16]A. Chakraborty, A. Khaligh and A. Emadi, "Combination of Buck and Boost Modes to Minimize Transients in the Output of a Positive Buck-Boost Converter", Digital Objet Identifier, pp. 2372-2377, 2006.
[17]P. Malcovati, M. Belloni, F. Gozzini, C. Bazzani and A. Baschirotto, "A 0.18-µm CMOS 91%-Efficiency 2-A Scalable Buck-Boost DC-DC Converter for LED Drivers", IEEE Transaction on Power Electronics, vol. 29, no. 10, pp. 5392-5398, Oct. 2014.
[18] A. Mishra and V. De Smedt, "A Novel Hybrid Buck-Boost Converter Topology for Li-ion Batteries with Increased Efficiency," 2020 27th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Glasgow, UK, 2020, pp. 1-4
[19] S. -Y. Li et al., "A High Conversion Ratio and 97.4% High Efficiency Three-Switch Boost Converter With Duty-Dependent Charge Topology for 1.2-A High Driving Current and 20% Reduction of Inductor DC Current in MiniLED Applications," in IEEE Journal of Solid-State Circuits, vol. 57, no. 6, pp. 1877-1887, June 2022
[20] M. -W. Ko et al., "A 97% high-efficiency 6μs fast-recovery-time buck-based step-up/down converter with embedded 1/2 and 3/2 charge-pumps for li-lon battery management," 2018 IEEE International Solid - State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2018, pp. 428-430
[21] Y. -M. Ju et al., "10.4 A hybrid inductor-based flying-capacitor-assisted step-up/step-down DC-DC converter with 96.56% efficiency," 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2017, pp. 184-185
[22] Y. -A. Lin et al., "A Right-Half-Plane Zero-Free Buck-Boost DC-DC Converter with 97.46% High Efficiency and Low Output Voltage Ripple," 2019 Symposium on VLSI Circuits, Kyoto, Japan, 2019, pp. C174-C175
[23] S. -U. Shin et al., "A 95.2% efficiency dual-path DC-DC step-up converter with continuous output current delivery and low voltage ripple," 2018 IEEE International Solid - State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2018, pp. 430-432
[24] S. Fan, Z. Xue, Z. Guo, W. Gou, X. Yang and L. Geng, "An ultra-low power (ULP) zero-current-detector (ZCD) circuit for switching inductor converter applied in energy harvesting system," 2017 IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS), Haining, China, 2017, pp. 1-3
[25] C. Schaef et al., "8.1 A 93.8% Peak Efficiency, 5V-Input, 10A Max ILOAD Flying Capacitor Multilevel Converter in 22nm CMOS Featuring Wide Output Voltage Range and Flying Capacitor Precharging," 2019 IEEE International Solid- State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2019, pp. 146-148
[26] V. H. Nguyen, X. -D. Do, Y. Blaquière and G. Cowan, "A 3.3 V 0.1–1 A Hybrid Buck-Boost Converter with 85–97 % Power Efficiency Range Highly-Suited for Battery-Powered Devices using Low-Profile High-DCR Inductor," 2022 20th IEEE Interregional NEWCAS Conference (NEWCAS), Quebec City, QC, Canada, 2022, pp. 303-307
[27] N. Zhang, G. Zhang and K. W. See, "Systematic Derivation of Dead-Zone Elimination Strategies for the Noninverting Synchronous Buck–Boost Converter," in IEEE Transactions on Power Electronics, vol. 33, no. 4, pp. 3497-3508, April 2018
[28] N. Zhang, S. Batternally, K. C. Lim, K. W. See and F. Han, "Analysis of the non-inverting buck-boost converter with four-mode control method," IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 2017, pp. 876-881
[29] Byungcho Choi, " Pulsewidth Modulated DC-to-DC Power Conversion: Circuits, Dynamics, and Control Designs", 2013 IEEE, Published by John Wiley & Sons, Inc.
[30]王信雄,開關轉換器控制理論與設計實務,2015年,立錡科技股份有限公司
[31] Bao-Xian Peng, " A Four-Switch Three-Mode Non-Inverting Buck-Boost DC-DC Converter with Low Mode Transition Voltage Ripples for Wearable Application", 2022, National Taiwan University, Graduate Institute of Electronics Engineering
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91198-
dc.description.abstract現在有許多的攜帶性的電子產品輸出在幾百毫瓦消耗功率並使用鋰電池供電。因此,升降壓直流電壓轉換器需求日益增加,其中,四開關非反向電感式的升降壓直流電壓轉換器因為其低功耗與大範圍輸入電壓操作區間而受到歡迎。
在鋰電池的應用中,由於鋰電池的輸出電壓會隨著時間而降低,因此,後端的直流電壓轉換器需同時具備升降壓的功能,才能穩定輸出電壓給晶片中的其他子電路。在四開關非反向電感式的升降壓直流電壓轉換器中,分為升壓模式、降壓模式與升降壓模式。在這三種操作模式中,升降壓模式會產生最多的導通損耗和切換損失。因此,很多研究致力於取代掉傳統的升降壓模式,只單純使用升壓與降壓兩種模式。但是在實際應用中,升壓和降壓模式因為最大和最小週期限制,無法運作在極端充放電週期下,所以產生了一個週期空乏區的區間。
本論文透過提出一種混合式無週期空乏區區間的升降壓轉換器架構並且只使用低電壓元件,來解決輸入電壓和輸出電壓相近時的低效率問題。此新架構利用電容結合傳統電感式降壓轉換器來達到升壓的效果並克服了週期空乏區的區間問題並操作在兩種模式下。同時,比起四開關非反向升降壓轉換器的升壓模式和升降壓模式的不連續輸出電流,新的架構的輸出電流連續,不但可以降低平均電感電流值,同時控制設計系統也相對較為簡單,不須考慮三種模式切換的補償設計。
此晶片透過台積電0.18μm 1P6M High Voltage Mixed Signal CMOS製程實現,並且只使用五伏低壓元件。依據實驗結果的波型展示,本晶片在兩種模式下,輸入電壓在四點二伏到二點八伏的區間中均可如預期操作,使輸出電壓穩定在三點三伏特。且負載電流範圍從20毫安培(mA)到300毫安培(mA),最高效率在負載為60毫安培(mA)時為92.44%。儘管在量測時,有些設計時未考量到的非預期問題產生,但是結果顯示這個架構依舊可以成功達到解決週期空乏區的區間的問題。
zh_TW
dc.description.abstractNowadays, many portable electronic devices with power consumption in the range of several hundred milliwatts are powered by lithium batteries. As a result, there is a growing demand for buck-boost DC-DC converters, with the Non-Inverting Buck-Boost Converter (NIBBC) gaining popularity due to its low power consumption and wide input voltage operating range.
In the application of lithium batteries, the output voltage tends to decrease over time. Therefore, the DC-DC converter at the backend needs to have both boost and buck-boost capabilities to stabilize the output voltage for other subcircuits within the chip. In the NIBBC, there are three operating modes: boost mode, buck mode, and boost-buck mode. Among these, the boost-buck mode has the highest conduction loss and switching loss due to the operation. Consequently, many research efforts aim to replace the boost-buck mode and use only boost and buck modes. However, boost and buck modes cannot operate in extreme duty cycles in practice due to maximum and minimum duty cycle limitations, creating a dead-zone issue.
This thesis addresses the poor efficiency when input voltage and output voltage are close by proposing a Dead-Zone-Free Hybrid Buck-Boost Converter using only low-voltage devices. This architecture combines an extra flying capacitor with the conventional buck converter to replace the capability of the boost converter, which conquers the dead-zone issue and only operates in two modes. Compared to the discontinuous output current in the boost and buck-boost modes of the NIBBC, the proposed architecture provides a continuous output current. This not only reduces the average inductor current but also simplifies control system design, eliminating the need for compensation designs related to three modes.
This chip was implemented in the TSMC 0.18μm 1P6M High Voltage Mixed Signal CMOS process and only used low-voltage devices. According to experimental results, the waveform shows that this chip operates as expected under two modes, with the input voltages ranging from 2.8 V to 4.2 V and 3.3V output voltage. The output loading current ranges from 20mA to 300mA, with the highest efficiency reaching 92.44% at a 60mA output loading current. Despite encountering unexpected problems during the measurement, it is noteworthy that the proposed architecture successfully eliminates the dead-zone issue.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-12-12T16:10:15Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-12-12T16:10:15Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
摘要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xiv
Chapter 1 Introduction 1
1.1 Motivation 4
1.2 Thesis Organization 8
Chapter 2 Fundamentals of Inductive Switching DC-DC Converter 10
2.1 Introduction 10
2.1.1 The Pulsewidth Modulation Technique 10
2.1.2 Architecture 12
2.2 Operation 14
2.2.1 Piecewise Linear Analysis 14
2.2.2 Small-Ripple Approximation 15
2.2.3 Flux Balance Rule and Charge Balance Rule 15
2.2.4 Steady-State Analysis 16
2.2.5 Estimation of Output Voltage Ripple 19
2.3 Small Signal Modeling 21
2.3.1 Pulse-Width Modulator Model 22
2.3.2 State Space Average Model 23
2.3.3 Small Signal Analysis of Switching Converter 28
2.4 Control System 32
2.4.1 Voltage Mode Control 32
2.4.2 Peak Current Mode Control 34
2.5 Efficiency Analysis 37
Chapter 3 Basics of Non-Inverting Buck-Boost Converter(NIBBC) and Hybrid Buck-Boost Converter(HBBC) 40
3.1 Conventional NIBBC 40
3.1.1 Operation 41
3.1.2 Dead-Zone Issue 43
3.2 Improve Efficiency in Buck-Boost Mode 46
3.3 Hybrid Buck-Boost Converter(HBBC) 48
3.3.1 Hybrid Step-Up/Down Converter[7] 48
3.3.2 Three-Level Buck-Boost DC-DC Converter[8] 51
3.4 Conclusion 55
Chapter 4 Proposed Dead-Zone-Free Hybrid Buck-Boost Converter 57
4.1 Design Goal 57
4.1.1 Preliminary Research 58
4.2 Proposed Architecture 60
4.3 Operation Principle 61
4.4 Three-Phase Peak Current Mode Control 67
4.5 Circuit Implementation 71
4.5.1 Power Stage 72
4.5.2 Type II Compensation 75
4.5.3 PWM Comparator 79
4.5.4 Current Sensor 81
4.5.5 Slope Generator 83
4.5.6 Cfly Controller 85
4.5.7 Zero Current Detector (ZCD) 86
4.5.8 Soft-Start Circuit 88
4.6 Simulation Result 89
4.6.1 Steady-State Operation 89
4.6.2 Input Voltage Sweep 91
4.6.3 Efficiency 91
Chapter 5 Experimental Results 93
5.1 Measurement Environment 93
5.2 Measurement Result 97
5.2.1 Steady State Operation 97
5.2.2 Input voltage sweep 99
5.2.3 Efficiency 100
5.3 Summary 103
5.3.1 Improvement of the Measurement 103
5.3.2 Comparision Table 105
Chapter 6 Conclusion and Future Work 108
6.1 Conclusions 108
6.2 Future Work 108
REFERENCE 110
-
dc.language.isoen-
dc.subject週期空乏區問題zh_TW
dc.subject電容混合式升降壓轉換器zh_TW
dc.subject升降壓直流電壓轉換器zh_TW
dc.subject電感式直流電壓轉換器zh_TW
dc.subject電壓轉換器zh_TW
dc.subject週期空乏區問題zh_TW
dc.subject電容混合式升降壓轉換器zh_TW
dc.subject升降壓直流電壓轉換器zh_TW
dc.subject電感式直流電壓轉換器zh_TW
dc.subject電壓轉換器zh_TW
dc.subjectDead-Zoneen
dc.subjectInductive Switching DC-DC Converteren
dc.subjectBuck-Boost Converteren
dc.subjectNon-Inverting Buck-Boost Converteren
dc.subjectHybrid Converteren
dc.subjectDead-Zoneen
dc.subjectInductive Switching DC-DC Converteren
dc.subjectBuck-Boost Converteren
dc.subjectNon-Inverting Buck-Boost Converteren
dc.subjectHybrid Converteren
dc.title一個只使用低壓元件並達到最高92%轉換效率的無周期空乏區間混合式升降壓轉換器zh_TW
dc.titleA Dead-Zone-Free Hybrid Buck-Boost Converter with 92% Peak-Efficiency Using Only Low-Voltage Devicesen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee劉宗德;吳文中zh_TW
dc.contributor.oralexamcommitteeTsung-Te Liu;Wen-Jong Wuen
dc.subject.keyword電壓轉換器,電感式直流電壓轉換器,升降壓直流電壓轉換器,電容混合式升降壓轉換器,週期空乏區問題,zh_TW
dc.subject.keywordInductive Switching DC-DC Converter,Buck-Boost Converter,Non-Inverting Buck-Boost Converter,Hybrid Converter,Dead-Zone,en
dc.relation.page114-
dc.identifier.doi10.6342/NTU202304457-
dc.rights.note未授權-
dc.date.accepted2023-11-30-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  未授權公開取用
5.2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved