請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91168
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳肇欣 | zh_TW |
dc.contributor.advisor | Chao-Hsin Wu | en |
dc.contributor.author | 蕭凱文 | zh_TW |
dc.contributor.author | Kai-Wen Hsiao | en |
dc.date.accessioned | 2023-11-20T16:14:22Z | - |
dc.date.available | 2023-11-21 | - |
dc.date.copyright | 2023-11-20 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-10-18 | - |
dc.identifier.citation | 參考文獻
[1] Prado, Edemar O., et al. "An overview about Si, Superjunction, SiC and GaN power MOSFET technologies in power electronics applications." Energies 15.14 (2022): 5244. [2] Roccaforte, Fabrizio, et al. "An overview of normally-off GaN-based high electron mobility transistors." Materials 12.10 (2019): 1599. [3] Sun, Jiandong. Field-effect self-mixing terahertz detectors. Springer, 2016. [4] 羅濟威 我國寬能隙半導體氮化鎵於微波射頻領域投入分析 [5] Stocco, Antonio. "Reliability and failure mechanisms of GaN HEMT devices suitable for high-frequency and high-power applications." (2012). [6] Sharan, Neha, and Ashwani K. Rana. "Impact of strain and channel thickness on performance of biaxial strained silicon MOSFETs." International Journal of VLSI Design & Communication Systems 2.1 (2011): 61-71. [7] He, Xiao-Guang, De-Gang Zhao, and De-Sheng Jiang. "Formation of two-dimensional electron gas at AlGaN/GaN heterostructure and the derivation of its sheet density expression." Chinese physics B 24.6 (2015): 067301. [8] Meneghini, Matteo, et al. "GaN-based power devices: Physics, reliability, and perspectives." Journal of Applied Physics 130.18 (2021). [9] Mishra, Umesh K., Primit Parikh, and Yi-Feng Wu. "AlGaN/GaN HEMTs-an overview of device operation and applications." Proceedings of the IEEE 90.6 (2002): 1022-1031. [10] T.-L. Wu et al., "Analysis of the gate capacitance–voltage characteristics in p-GaN/AlGaN/GaN heterostructures," IEEE Electron Device Lett., vol. 38, no. 12, pp. 1696-1699, 2017 [11] Jiang, Guangyuan, et al. "The relationship between AlGaN barrier layer thickness and polarization Coulomb field scattering in AlGaN/GaN heterostructure field-effect transistors." Superlattices and Microstructures 156 (2021): 106987. [12] Pal, S., and C. Jacob. "Silicon—a new substrate for GaN growth." Bulletin of Materials Science 27 (2004): 501-504. [13] Eller, Brianna S., Jialing Yang, and Robert J. Nemanich. "Electronic surface and dielectric interface states on GaN and AlGaN." Journal of Vacuum Science & Technology A 31.5 (2013). [14] Turuvekere, Sreenidhi, et al. "Evidence of Fowler–Nordheim tunneling in gate leakage current of AlGaN/GaN HEMTs at room temperature." IEEE Transactions on Electron Devices 61.12 (2014): 4291-4294. [15] Mitrofanov, Oleg, and Michael Manfra. "Poole-Frenkel electron emission from the traps in AlGaN/GaN transistors." Journal of applied physics 95.11 (2004): 6414-6419. [16] Turuvekere, Sreenidhi, et al. "Gate leakage mechanisms in AlGaN/GaN and AlInN/GaN HEMTs: comparison and modeling." IEEE Transactions on electron devices 60.10 (2013): 3157-3165. [17] Yang, Wen, et al. "Characterization of deep and shallow traps in GaN HEMT using multi-frequency CV measurement and pulse-mode voltage stress." IEEE Transactions on Device and Materials Reliability 19.2 (2019): 350-357. [18] Binari, Steven C., et al. "Trapping effects and microwave power performance in AlGaN/GaN HEMTs." IEEE Transactions on Electron Devices 48.3 (2001): 465-471. [19] Li, Xiangdong, et al. "Investigating the current collapse mechanisms of p-GaN gate HEMTs by different passivation dielectrics." IEEE Transactions on Power Electronics 36.5 (2020): 4927-4930. [20] Greco, Giuseppe, Ferdinando Iucolano, and Fabrizio Roccaforte. "Ohmic contacts to Gallium Nitride materials." Applied Surface Science 383 (2016): 324-345 [21] Mizutani, Takashi, et al. "A study on current collapse in AlGaN/GaN HEMTs induced by bias stress." IEEE transactions on Electron Devices 50.10 (2003): 2015-2020. [22] Benbakhti, Brahim, et al. "Effects of self-heating on performance degradation in AlGaN/GaN-based devices." IEEE transactions on electron devices 56.10 (2009): 2178-2185. [23] Zanoni, Enrico, et al. "AlGaN/GaN-based HEMTs failure physics and reliability: Mechanisms affecting gate edge and Schottky junction." IEEE Transactions on Electron Devices 60.10 (2013): 3119-3131. [24] Meneghesso, Gaudenzio, Matteo Meneghini, and Enrico Zanoni. "Breakdown mechanisms in AlGaN/GaN HEMTs: an overview." Japanese Journal of Applied Physics 53.10 (2014): 100211. [25] Kim, Kwangeun, et al. "AlGaN/GaN Schottky-Gate HEMTs With UV/O₃-Treated Gate Interface." IEEE Electron Device Letters 41.10 (2020): 1488-1491. [26] Chung, Jinwook W., et al. "Effect of gate leakage in the subthreshold characteristics of AlGaN/GaN HEMTs." IEEE Electron Device Letters 29.11 (2008): 1196-1198. [27] UV/O3清洗改質燈 http://www.uv-tech.com.tw/product_651036.html [28] Wu, Jingyi, et al. "Oxygen-based digital etching of AlGaN/GaN structures with AlN as etch-stop layers." Journal of Vacuum Science & Technology A 37.6 (2019). [29] Kim, Hyun-Seop, et al. "Effects of recessed-gate structure on AlGaN/GaN-on-SiC MIS-HEMTs with thin AlOxNy MIS gate." Materials 13.7 (2020): 1538. [30]https://seabaugh.nd.edu/assets/330856/at_b1500_semiconductordeviceanalyzerivandcvmeasurements.pdf [31] Nicollian, Edward H., and John R. Brews. MOS (metal oxide semiconductor) physics and technology. John Wiley & Sons, 2002. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91168 | - |
dc.description.abstract | 本論文首先將介紹氮化鎵高電子遷移率電晶體的原理與結構,並介紹磊晶層中所存在的缺陷。緊接著介紹氮化鎵的電流崩塌效應,連結此效應與材料中缺陷的關係,並量測不同的鈍化層對電流崩塌效應的影響,其中SiO2作為鈍化層造成的電流崩塌約為19.07%,SiN作為鈍化層造成的電流崩塌效應約為15.02%,可看出不同的鈍化層對於電流崩塌的抑制效果有所差異;其次為使用不同尺寸元件的電流崩塌效應會隨著LGD而改變。
其次,我們將使用兩種不同的表面處理方法,分別是紫外光臭氧處理技術與氧電漿表面處理技術,其中紫外光臭氧處理技術成功在直流導通電性僅有約15~20%的下降,閘極漏流便減少了約2~3個數量級;氧電漿技術則將漏流降了3~4個數量級,然而導通電流卻大幅降低,因此,在後續製程我們將對其進行優化。 最後,我們優化了氧電漿表面處理技術,解決了前述導通電流大幅下降的問題,並且比較不同製程瓦數與不同製程時間的元件之電性,最後通過此方法做出開關比達到6個數量級以上的電晶體元件。 | zh_TW |
dc.description.abstract | This paper provides an overview of the principles and structures of Gallium Nitride (GaN) high electron mobility transistors (HEMTs) and discusses the defects commonly found in epitaxial layers. It also explores the current collapse phenomenon in GaN HEMTs, establishing a correlation with material defects. Various passivation layers are studied to evaluate their impact on current collapse, with SiO2 causing a reduction of approximately 19.07% and SiN causing a reduction of approximately 15.02%. These results demonstrate the varying effectiveness of different passivation layers in mitigating current collapse. Furthermore, the paper investigates the dependence of current collapse on gate-drain distance (LGD) for devices of different sizes.
In the subsequent section, two different surface treatment techniques, namely ultraviolet (UV) ozone treatment and oxygen plasma surface treatment, are employed. UV ozone treatment successfully reduces the DC on-resistance by approximately 15-20% while decreasing gate leakage current by about 2-3 orders of magnitude. On the other hand, oxygen plasma treatment reduces gate leakage current by 3-4 orders of magnitude but results in a substantial decrease in the on-state current. Consequently, optimization of the oxygen plasma treatment process is carried out in the subsequent processing steps. In the final section, the optimized oxygen plasma surface treatment is applied, resolving the issue of significant on-state current reduction. The paper compares the electrical characteristics of devices fabricated using different processing parameters, ultimately achieving an improvement in the on-off ratio by more than 6 orders of magnitude for GaN HEMT devices. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-11-20T16:14:22Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-11-20T16:14:22Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 目錄
口試委員會審定書 i 中文摘要 ii 英文摘要 iii 目錄 v 圖目錄 vii 表目錄 ix Chapter 1 緒論 1 1.1 半導體產業的發展與背景介紹 1 1.2 氮化鎵材料的特性與原理介紹 3 1.3 氮化鎵高電子遷移率電晶體 (HEMTs) 概論 6 1.4 氮化鎵缺陷 (Trap State) 介紹與影響 7 1.5 研究動機與論文結構 9 Chapter 2 氮化鎵高電子遷移率電晶體之直流與動態量測 10 2.1 前言 10 2.2 磊晶結構與元件尺寸介紹 10 2.3 元件製程介紹 11 2.4 不同鈍化層與尺寸之元件直流量測與動態量測特性分析 15 2.5 本章總結 20 Chapter 3 氮化鎵高電子遷移率電晶體之表面處理與電性分析 21 3.1 前言 21 3.2 磊晶介紹與實驗設計 22 3.3 歐姆接觸與不同溫度的退火測試 23 3.4 表面處理原理介紹 24 3.5 不同表面處理之直流量測結果 26 3.6 電容-電壓相關量測介紹 30 3.7 電容-電壓量測結果與分析 31 3.8 電導法之介紹與結果分析 36 3.9 暫態量測結果與分析 41 3.10 本章總結 44 Chapter 4 感應耦合式氧電漿蝕刻表面處理製程優化 45 4.1 前言 45 4.2 磊晶介紹與實驗設計 45 4.3 製程結果與問題討論 46 4.4 直流量測結果與討論 48 4.5 後續製程優化 54 4.6 本章總結 55 Chapter 5 結論與未來展望 57 參考文獻 58 圖目錄 圖 1. 1氮化鎵與碳化矽不同電壓下的應用 [2] 2 圖 1. 2 氮化鎵/碳化矽/矽/砷化鎵電晶體性質之比較 [4] 3 圖 1. 3氮化鎵材料之自發極化效應 [5] 4 圖 1. 4氮化鋁鎵/氮化鎵異質接面晶格不匹配造成壓電極化示意圖 [6] 5 圖 1. 5 (左)自發極化與壓電極化效應產生 (中)極化效應使能帶傾斜產生內建電場 5 圖 1. 6 (左)累積於氮化鋁鎵表面的電子將進入氮化鎵層使費米能階達平衡 (右)在氮化鋁鎵/氮化鎵接面形成具高電子濃度的位能井(2DEG) [7] 5 圖 2. 1本章HEMTs所使用之磊晶結構 11 圖 2. 2不同參數對應元件尺寸示意圖 11 圖 2. 3氮化鎵高電子遷移率電晶體示意圖 14 圖 2. 4本章元件製程流程圖 15 圖 2. 5動態量測架設示意圖 16 圖 2. 6不同尺寸與Passivation Layer元件ID-VD圖 16 圖 2. 7動態脈衝量測示意圖 17 圖 2. 8不同 Passivation 之元件直流與動態量測特性圖 18 圖 2. 9 SiO2 Passivation 元件不同LGD直流與動態量測特性圖 19 圖 3. 1本章製程所使用之磊晶示意圖 22 圖 3. 2本章製程流程示意圖 23 圖 3. 3表面處理預期結果示意圖 23 圖 3. 4 歐姆接觸使用金屬示意圖 [20] 24 圖 3. 5 歐姆接觸變溫阻值測試 24 圖 3. 6 ICP O2 Treatment 前 EDS 元素分析 26 圖 3. 7 ICP O2 Treatment 後 EDS 元素分析 26 圖 3. 8 不同表面處理元件之ID-VG比較圖 28 圖 3. 9 不同表面處理元件之ID-VG Log-scale比較圖 29 圖 3. 10 MIS 結構電性示意圖[29] 30 圖 3. 11 SCUU 內部連接示意圖 [30] 31 圖 3. 12 二極體透過顯微鏡拍攝照片與示意圖 32 圖 3. 13 二極體 I-V 特性比較圖 32 圖 3. 14 Sample 1 二極體 C-V 變頻特性圖 33 圖 3. 15 Sample 2 二極體 C-V 變頻特性圖 34 圖 3. 16 Sample 2 二極體 C-V 變頻特性圖 35 圖 3. 17 Sample 1 和 Sample 2 二極體 陷阱密度比較圖 36 圖 3. 18 氮化鎵高電子遷移率電晶體與物理模型圖 37 圖 3. 19 陷阱的充放電電路模型圖 38 圖 3. 20 電容電壓量測電路模型示意圖 38 圖 3. 21 模型擬合參數調整示意圖 39 圖 3. 22 Sample 1模型擬合結果 40 圖 3. 23 Sample 2模型擬合結果 41 圖 3. 24 暫態量測示意圖 42 圖 3. 25 Sample 1 暫態量測結果 43 圖 3. 26 Sample 2 暫態量測結果 43 圖 4. 1 本章元件使用磊晶 46 圖 4. 2 本章製程流程介紹 46 圖 4. 3 未使用 ICP Treatment 之閘極OM 圖 47 圖 4. 4 ICP Treatment 25 W 之閘極 OM 圖 47 圖 4. 5 ICP Treatment 75W 之閘極OM 圖 48 圖 4. 6 無法舉離而黏著於元件上的金屬 48 圖 4. 7 Sample A ID-VG 特性圖 49 圖 4. 8 Sample B ID-VG 特性圖 50 圖 4. 9 Sample C ID-VG 特性圖 50 圖 4. 10 Sample A/B/C 之ID-VG 與gm 特性比較圖 51 圖 4. 11 Sample A/B/C ID-VG Log-scale 特性圖 52 圖 4. 12 G-S 二極體C-V量測結果 53 圖 4. 13 第三章與第四章製程差異 54 圖 4. 14 不同瓦數ID-VG特性圖 55 圖 4. 15不同瓦數ID-VG Log-scale 特性圖 55 表目錄 表 1. 1 矽、砷化鎵、氮化鎵等材料特性 [3] 2 表 1. 2氮化鎵中常見的缺陷類型 8 表 2. 1元件之電流與導通電阻 17 表 2. 2 元件直流與動態特性比較表 19 表 2. 3 元件直流與動態特性比較表 20 表 3. 1不同表面處理元件直流量測結果 29 表 3. 2 Sample 1 透過 C-V 量測分析萃取之參數 36 表 3. 3 Sample 2 透過 C-V 量測分析萃取之參數 36 表 3. 4 Sample 1 透過電導法分析萃取之陷阱特性 40 表 3. 5 Sample 2 透過電導法分析萃取之陷阱特性 41 表 4. 1 Sample A/B/C 直流特性比較表 52 | - |
dc.language.iso | zh_TW | - |
dc.title | 氮化鋁鎵/氮化鎵高電子遷移率電晶體之可靠度分析與閘極氧化製程優化 | zh_TW |
dc.title | Reliability Analysis and Gate Oxidation Process Optimization of AlGaN/GaN HEMTs | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 張子璿;吳育任;黃建璋 | zh_TW |
dc.contributor.oralexamcommittee | Tzu-Hsuan Chang;Yuh-Renn Wu;Jian-Jang Huang | en |
dc.subject.keyword | 氮化鎵,高電子遷移率電晶體,電流崩塌,表面處理, | zh_TW |
dc.subject.keyword | Gallium Nitride,High Electron Mobility Transistors,Current Collapse,Surface treatment, | en |
dc.relation.page | 60 | - |
dc.identifier.doi | 10.6342/NTU202304349 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-10-20 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 電子工程學研究所 | - |
顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-1.pdf 此日期後於網路公開 2028-10-18 | 3.95 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。