請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91153
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 江建文 | zh_TW |
dc.contributor.advisor | Kien Voon Kong | en |
dc.contributor.author | 黃姿綾 | zh_TW |
dc.contributor.author | Zi-Ling Huang | en |
dc.date.accessioned | 2023-11-20T16:10:13Z | - |
dc.date.available | 2023-11-21 | - |
dc.date.copyright | 2023-11-20 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-09-05 | - |
dc.identifier.citation | 1. Yamazaki, Y.; Takeda, H.; Ishitani, O. Photocatalytic reduction of CO2 using metal complexes. J. Photochem. Photobiol., C. 2015, 25, 106-137.
2. National Ocean and Atmospheric Administration (NOAA), National Centers for Environmental Information, Climate Change: Annual greenhouse gas index. https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide (accessed June 2022). 3. Crabtree, G. W.; Lewis, N. S. Solar energy conversion. Phys. Today. 2007, 60, 37-42. 4. Aresta, M.; Dibenedetto, A.; Angelini, A. Catalysis for the Valorization of Exhaust Carbon: from CO2 to Chemicals, Materials, and Fuels. Technological Use of CO2. Chem. Rev. 2014, 114, 1709-1742. 5. Takeda, H.; Cometto, C.; Ishitani, O.; Robert, M. Electrons, Photons, Protons and Earth-Abundant Metal Complexes for Molecular Catalysis of CO2 Reduction. ACS Catal. 2017, 7, 70-88. 6. Maeda, K. Photocatalytic water splitting using semiconductor particles: History and recent developments. J. Photochem. Photobiol., C. 2011, 12, 237-268. 7. Al Jitan, S.; Palmisano, G.; Garlisi, C. Synthesis and Surface Modification of TiO2-Based Photocatalysts for the Conversion of CO2. Catalysts, 2020; Vol. 10. 8. Takeda, H.; Kamiyama, H.; Okamoto, K.; Irimajiri, M.; Mizutani, T.; Koike, K.; Sekine, A.; Ishitani, O. Highly Efficient and Robust Photocatalytic Systems for CO2 Reduction Consisting of a Cu(I) Photosensitizer and Mn(I) Catalysts. J. Am. Chem. Soc. 2018, 140, 17241-17254. 9. Woo, S.-J.; Choi, S.; Kim, S.-Y.; Kim, P. S.; Jo, J. H.; Kim, C. H.; Son, H.-J.; Pac, C.; Kang, S. O. Highly Selective and Durable Photochemical CO2 Reduction by Molecular Mn(I) Catalyst Fixed on a Particular Dye-Sensitized TiO2 Platform. ACS Catal. 2019, 9, 2580-2593. 10. Rehman, Z. U.; Bilal, M.; Hou, J.; Butt, F. K.; Ahmad, J.; Ali, S.; Hussain, A. Photocatalytic CO2 Reduction Using TiO2-Based Photocatalysts and TiO2 Z-Scheme Heterojunction Composites: A Review. Molecules, 2022; Vol. 27. 11. Koike, K.; Grills, D. C.; Tamaki, Y.; Fujita, E.; Okubo, K.; Yamazaki, Y.; Saigo, M.; Mukuta, T.; Onda, K.; Ishitani, O. Investigation of excited state, reductive quenching, and intramolecular electron transfer of Ru(ii)–Re(i) supramolecular photocatalysts for CO2 reduction using time-resolved IR measurements. Chem. Sci. 2018, 9, 2961-2974. 12. Fabry, D. C.; Koizumi, H.; Ghosh, D.; Yamazaki, Y.; Takeda, H.; Tamaki, Y.; Ishitani, O. A Ru(II)–Mn(I) Supramolecular Photocatalyst for CO2 Reduction. Organometallics. 2020, 39, 1511-1518. 13. Neri, G.; Forster, M.; Walsh, J. J.; Robertson, C. M.; Whittles, T. J.; Farràs, P.; Cowan, A. J. Photochemical CO2 reduction in water using a co-immobilised nickel catalyst and a visible light sensitiser. ChemComm. 2016, 52, 14200-14203. 14. Windle, C. D.; Pastor, E.; Reynal, A.; Whitwood, A. C.; Vaynzof, Y.; Durrant, J. R.; Perutz, R. N.; Reisner, E. Improving the Photocatalytic Reduction of CO2 to CO through Immobilisation of a Molecular Re Catalyst on TiO2. Chem. Eur. J. 2015, 21, 3746-3754. 15. Ha, E.-G.; Chang, J.-A.; Byun, S.-M.; Pac, C.; Jang, D.-M.; Park, J.; Kang, S. O. High-turnover visible-light photoreduction of CO2 by a Re(i) complex stabilized on dye-sensitized TiO2. ChemComm. 2014, 50, 4462-4464. 16. Won, D.-I.; Lee, J.-S.; Ji, J.-M.; Jung, W.-J.; Son, H.-J.; Pac, C.; Kang, S. O. Highly Robust Hybrid Photocatalyst for Carbon Dioxide Reduction: Tuning and Optimization of Catalytic Activities of Dye/TiO2/Re(I) Organic–Inorganic Ternary Systems. J. Am. Chem. Soc. 2015, 137, 13679-13690. 17. Cheong, H.-Y.; Kim, S.-Y.; Cho, Y.-J.; Cho, D. W.; Kim, C. H.; Son, H.-J.; Pac, C.; Kang, S. O. Photosensitization Behavior of Ir(III) Complexes in Selective Reduction of CO2 by Re(I)-Complex-Anchored TiO2 Hybrid Catalyst. Inorg. Chem. 2017, 56, 12042-12053. 18. Kim, W.; Tachikawa, T.; Majima, T.; Li, C.; Kim, H.-J.; Choi, W. Tin-porphyrin sensitized TiO2 for the production of H2 under visible light. Energy Environ. Sci. 2010, 3, 1789-1795. 19. Choi, S.; Kim, C. H.; Baeg, J.-O.; Son, H.-J.; Pac, C.; Kang, S. O. Collisional Electron Transfer Route between Homogeneous Porphyrin Dye and Catalytic TiO2/Re(I) Particles for CO2 Reduction. ACS A.E.M. 2020, 3, 11581-11596. 20. Bourrez, M.; Molton, F.; Chardon-Noblat, S.; Deronzier, A. [Mn(bipyridyl)(CO)3Br]: An Abundant Metal Carbonyl Complex as Efficient Electrocatalyst for CO2 Reduction. Angew. Chem. Int. Ed. 2011, 50, 9903-9906. 21. Takeda, H.; Koizumi, H.; Okamoto, K.; Ishitani, O. Photocatalytic CO2 reduction using a Mn complex as a catalyst. ChemComm. 2014, 50, 1491-1493. 22. Zhang, J.-X.; Hu, C.-Y.; Wang, W.; Wang, H.; Bian, Z.-Y. Visible light driven reduction of CO2 catalyzed by an abundant manganese catalyst with zinc porphyrin photosensitizer. APPL CATAL A-GEN. 2016, 522, 145-151. 23. Luo, C.; Ren, X.; Dai, Z.; Zhang, Y.; Qi, X.; Pan, C. Present Perspectives of Advanced Characterization Techniques in TiO2-Based Photocatalysts. ACS Appl. Mater. Interfaces. 2017, 9, 23265-23286. 24. Dambournet, D.; Belharouak, I.; Amine, K. Tailored Preparation Methods of TiO2 Anatase, Rutile, Brookite: Mechanism of Formation and Electrochemical Properties. Chem. Mater. 2010, 22, 1173-1179. 25. Linsebigler, A. L.; Lu, G.; Yates, J. T., Jr. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chem. Rev. 1995, 95, 735-758. 26. Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors. Angew. Chem. Int. Ed. 2013, 52, 7372-7408. 27. Fresno, F.; Villar-García, I. J.; Collado, L.; Alfonso-González, E.; Reñones, P.; Barawi, M.; de la Peña O’Shea, V. A. Mechanistic View of the Main Current Issues in Photocatalytic CO2 Reduction. J. Phys. Chem. 2018, 9, 7192-7204. 28. Fujishima, A.; Zhang, X.; Tryk, D. A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 2008, 63, 515-582. 29. Mi, Y.; Weng, Y. Band Alignment and Controllable Electron Migration between Rutile and Anatase TiO2. Sci. Rep. 2015, 5, 11482. 30. Maheu, C.; Cardenas, L.; Puzenat, E.; Afanasiev, P.; Geantet, C. UPS and UV spectroscopies combined to position the energy levels of TiO2 anatase and rutile nanopowders. Phys. Chem. Chem. Phys. 2018, 20, 25629-25637. 31. Yamakata, A.; Ishibashi, T.-a.; Onishi, H. Time-resolved infrared absorption study of nine TiO2 photocatalysts. Chem. Phys. 2007, 339, 133-137. 32. Xu, M.; Gao, Y.; Moreno, E. M.; Kunst, M.; Muhler, M.; Wang, Y.; Idriss, H.; Wöll, C. Photocatalytic Activity of Bulk Anatase and Rutile Single Crystals Using Infrared Absorption Spectroscopy. Phys. Rev. Lett. 2011, 106, 138302. 33. Tang, H.; Prasad, K.; Sanjinès, R.; Schmid, P. E.; Lévy, F. Electrical and optical properties of TiO2 anatase thin films. J. Appl. Phys. 1994, 75, 2042-2047. 34. Luttrell, T.; Halpegamage, S.; Tao, J.; Kramer, A.; Sutter, E.; Batzill, M. Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO2 films. Sci. Rep. 2014, 4, 4043. 35. Son, H.-J.; Pac, C.; Kang, S. O. Inorganometallic Photocatalyst for CO2 Reduction. Acc. Chem. Res. 2021, 54, 4530-4544. 36. Park, H.; Kim, H.-i.; Moon, G.-h.; Choi, W. Photoinduced charge transfer processes in solar photocatalysis based on modified TiO2. Energy Environ. Sci. 2016, 9, 411-433. 37. Padmanabhan, N. T.; Thomas, R. M.; John, H. Antibacterial self-cleaning binary and ternary hybrid photocatalysts of titanium dioxide with silver and graphene. J. Environ. Chem. Eng. 2022, 10, 107275. 38. Park, H.; Choi, W.; Hoffmann, M. R. Effects of the preparation method of the ternary CdS/TiO2/Pt hybrid photocatalysts on visible light-induced hydrogen production. J. Mater. Chem. 2008, 18, 2379-2385. 39. Schneider, T. W.; Ertem, M. Z.; Muckerman, J. T.; Angeles-Boza, A. M. Mechanism of Photocatalytic Reduction of CO2 by Re(bpy)(CO)3Cl from Differences in Carbon Isotope Discrimination. ACS Catal. 2016, 6, 5473-5481. 40. Sekizawa, K.; Maeda, K.; Domen, K.; Koike, K.; Ishitani, O. Artificial Z-Scheme Constructed with a Supramolecular Metal Complex and Semiconductor for the Photocatalytic Reduction of CO2. J. Am. Chem. Soc. 2013, 135, 4596-4599. 41. Walsh, J. J.; Neri, G.; Smith, C. L.; Cowan, A. J. Water-Soluble Manganese Complex for Selective Electrocatalytic CO2 Reduction to CO. Organometallics. 2019, 38, 1224-1229. 42. Zeininger, L.; Portilla, L.; Halik, M.; Hirsch, A. Quantitative Determination and Comparison of the Surface Binding of Phosphonic Acid, Carboxylic Acid, and Catechol Ligands on TiO2 Nanoparticles. Chem. Eur. J. 2016, 22, 13506-13512. 43. Nilsing, M.; Lunell, S.; Persson, P.; Ojamäe, L. Phosphonic acid adsorption at the TiO2 anatase (101) surface investigated by periodic hybrid HF-DFT computations. Surf. Sci. 2005, 582, 49-60. 44. Boissezon, R.; Muller, J.; Beaugeard, V.; Monge, S.; Robin, J.-J. Organophosphonates as anchoring agents onto metal oxide-based materials: synthesis and applications. RSC Adv. 2014, 4, 35690-35707. 45. Wagstaffe, M.; Thomas, A. G.; Jackman, M. J.; Torres-Molina, M.; Syres, K. L.; Handrup, K. An Experimental Investigation of the Adsorption of a Phosphonic Acid on the Anatase TiO2(101) Surface. J. Phys. Chem. C. 2016, 120, 1693-1700. 46. Luschtinetz, R.; Frenzel, J.; Milek, T.; Seifert, G. Adsorption of Phosphonic Acid at the TiO2 Anatase (101) and Rutile (110) Surfaces. J. Phys. Chem. C. 2009, 113, 5730-5740. 47. Zuo, B.; Wang, M.; Lin, B.-P.; Yang, H. Visible and infrared three-wavelength modulated multi-directional actuators. Nat. Commun. 2019, 10, 4539. 48. Li, Y.; Liu, Y.; Luo, D. Polarization Dependent Light-Driven Liquid Crystal Elastomer Actuators Based on Photothermal Effect. Adv. Opt. Mater. 2021, 9, 2001861. 49. Yoshino, T.; Kondo, M.; Mamiya, J.-i.; Kinoshita, M.; Yu, Y.; Ikeda, T. Three-Dimensional Photomobility of Crosslinked Azobenzene Liquid-Crystalline Polymer Fibers. Adv. Mater. 2010, 22, 1361-1363. 50. Pang, X.; Lv, J.-a.; Zhu, C.; Qin, L.; Yu, Y. Photodeformable Azobenzene-Containing Liquid Crystal Polymers and Soft Actuators. Adv. Mater. 2019, 31, 1904224. 51. Ware, T. H.; McConney, M. E.; Wie, J. J.; Tondiglia, V. P.; White, T. J. Voxelated liquid crystal elastomers. Science. 2015, 347, 982-984. 52. Shimoga, G.; Choi, D.-S.; Kim, S.-Y. Bio-Inspired Soft Robotics: Tunable Photo-Actuation Behavior of Azo Chromophore Containing Liquid Crystalline Elastomers. Appl. Sci., 2021; Vol. 11. 53. Zhang, W.; Nan, Y.; Wu, Z.; Shen, Y.; Luo, D. Photothermal-Driven Liquid Crystal Elastomers: Materials, Alignment and Applications. Molecules, 2022; Vol. 27. 54. Kularatne, R. S.; Kim, H.; Boothby, J. M.; Ware, T. H. Liquid crystal elastomer actuators: Synthesis, alignment, and applications. J. Polym. Sci., Part B: Polym. Phys. 2017, 55, 395-411. 55. Gelebart, A. H.; Jan Mulder, D.; Varga, M.; Konya, A.; Vantomme, G.; Meijer, E. W.; Selinger, R. L. B.; Broer, D. J. Making waves in a photoactive polymer film. Nature. 2017, 546, 632-636. 56. Lu, X.; Zhang, H.; Fei, G.; Yu, B.; Tong, X.; Xia, H.; Zhao, Y. Liquid-Crystalline Dynamic Networks Doped with Gold Nanorods Showing Enhanced Photocontrol of Actuation. Adv. Mater. 2018, 30, 1706597. 57. Ge, F.; Yang, R.; Tong, X.; Camerel, F.; Zhao, Y. A Multifunctional Dye-doped Liquid Crystal Polymer Actuator: Light-Guided Transportation, Turning in Locomotion, and Autonomous Motion. Angew. Chem. Int. Ed. 2018, 57, 11758-11763. 58. Gruzdenko, A.; Dierking, I. Liquid crystal-based actuators. Soft Matter. 2022, 2, Review. 59. Rogóż, M.; Dradrach, K.; Xuan, C.; Wasylczyk, P. A Millimeter-Scale Snail Robot Based on a Light-Powered Liquid Crystal Elastomer Continuous Actuator. Macromol. Rapid Commun. 2019, 40, 1900279. 60. Wani, O. M.; Zeng, H.; Priimagi, A. A light-driven artificial flytrap. Nat. Commun. 2017, 8, 15546. 61. Elgrishi, N.; Chambers, M. B.; Wang, X.; Fontecave, M. Molecular polypyridine-based metal complexes as catalysts for the reduction of CO2. Chem. Soc. Rev. 2017, 46, 761-796. 62. Kim, S.; Laschi, C.; Trimmer, B. Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol. 2013, 31, 287-294. 63. Huang, Y.; Yu, Q.; Su, C.; Jiang, J.; Chen, N.; Shao, H. Light-Responsive Soft Actuators: Mechanism, Materials, Fabrication, and Applications. Actuators, 2021; Vol. 10. 64. Myahkostupov, M.; Castellano, F. N. Synthesis and Characterization of Tris(Heteroleptic) Ru(II) Complexes Bearing Styryl Subunits. Inorg. Chem. 2011, 50, 9714-9727. 65. Gillaizeau-Gauthier, I.; Odobel, F.; Alebbi, M.; Argazzi, R.; Costa, E.; Bignozzi, C. A.; Qu, P.; Meyer, G. J. Phosphonate-Based Bipyridine Dyes for Stable Photovoltaic Devices. Inorg. Chem. 2001, 40, 6073-6079. 66. Queffélec, C.; Petit, M.; Janvier, P.; Knight, D. A.; Bujoli, B. Surface Modification Using Phosphonic Acids and Esters. Chem. Rev. 2012, 112, 3777-3807. 67. Pujari, S. P.; Scheres, L.; Marcelis, A. T. M.; Zuilhof, H. Covalent Surface Modification of Oxide Surfaces. Angew. Chem. Int. Ed. 2014, 53, 6322-6356. 68. Chougrani, K.; Niel, G.; Boutevin, B.; David, G. Regioselective ester cleavage during the preparation of bisphosphonate methacrylate monomers. Beilstein J Org Chem. 2011, 7, 364-8. 69. Braumüller, M.; Schulz, M.; Staniszewska, M.; Sorsche, D.; Wunderlin, M.; Popp, J.; Guthmuller, J.; Dietzek, B.; Rau, S. Synthesis and characterization of ruthenium and rhenium dyes with phosphonate anchoring groups. Dalton Trans. 2016, 45, 9216-9228. 70. Govender, P.; Pai, S.; Schatzschneider, U.; Smith, G. S. Next generation PhotoCORMs: polynuclear tricarbonylmanganese(I)-functionalized polypyridyl metallodendrimers. Inorg Chem. 2013, 52, 5470-8. 71. Schatzschneider, U. PhotoCORMs: Light-triggered release of carbon monoxide from the coordination sphere of transition metal complexes for biological applications. Inorganica Chim. Acta. 2011, 374, 19-23. 72. Kottelat, E.; Fabio, Z. Visible Light-Activated PhotoCORMs. Inorganics, 2017; Vol. 5. 73. Kim, Y. J.; Chai, S. Y.; Lee, W. I. Control of TiO2 Structures from Robust Hollow Microspheres to Highly Dispersible Nanoparticles in a Tetrabutylammonium Hydroxide Solution. Langmuir. 2007, 23, 9567-9571. 74. Sergio Ricardo de, L.; Renan Augusto Pontes, R.; Luis Henrique da Silveira, L. Quantum Chemistry Applied to Photocatalysis with TiO2. Titanium Dioxide, Magdalena, J. Ed.; IntechOpen, 2017; p Ch. 9. 75. Nosaka, Y.; Nosaka, A. Y. Reconsideration of Intrinsic Band Alignments within Anatase and Rutile TiO2. J. Phys. Chem. 2016, 7, 431-434. 76. Batzill, M. Fundamental aspects of surface engineering of transition metal oxide photocatalysts. Energy Environ. Sci. 2011, 4, 3275-3286. 77. Won, D.-I.; Lee, J.-S.; Ba, Q.; Cho, Y.-J.; Cheong, H.-Y.; Choi, S.; Kim, C. H.; Son, H.-J.; Pac, C.; Kang, S. O. Development of a Lower Energy Photosensitizer for Photocatalytic CO2 Reduction: Modification of Porphyrin Dye in Hybrid Catalyst System. ACS Catal. 2018, 8, 1018-1030. 78. Lee, J.-S.; Won, D.-I.; Jung, W.-J.; Son, H.-J.; Pac, C.; Kang, S. O. Widely Controllable Syngas Production by a Dye-Sensitized TiO2 Hybrid System with ReI and CoIII Catalysts under Visible-Light Irradiation. Angew. Chem. Int. Ed. 2017, 56, 976-980. 79. Qin, X.; Sun, H.; Zaera, F. Thermal chemistry of Mn2(CO)10 during deposition of thin manganese films on silicon oxide and on copper surfaces. J. Vac. Sci. Technol. A. 2011, 30, 01A112. 80. Tan, B. J.; Klabunde, K. J.; Sherwood, P. M. A. XPS studies of solvated metal atom dispersed (SMAD) catalysts. Evidence for layered cobalt-manganese particles on alumina and silica. J. Am. Chem. Soc. 1991, 113, 855-861. 81. Nirmalesh Naveen, A.; Selladurai, S. Fabrication and performance evaluation of symmetrical supercapacitor based on manganese oxide nanorods–PANI composite. Mater. Sci. Semicond. Process. 2015, 40, 468-478. 82. Clark, M. L.; Rudshteyn, B.; Ge, A.; Chabolla, S. A.; Machan, C. W.; Psciuk, B. T.; Song, J.; Canzi, G.; Lian, T.; Batista, V. S.; Kubiak, C. P. Orientation of Cyano-Substituted Bipyridine Re(I) fac-Tricarbonyl Electrocatalysts Bound to Conducting Au Surfaces. J. Phys. Chem. C. 2016, 120, 1657-1665. 83. Tan, R.; Lv, Z.; Tang, J.; Wang, Y.; Guo, J.; Li, L. Theoretical study of the adsorption characteristics and the environmental influence of ornidazole on the surface of photocatalyst TiO2. Sci. Rep. 2019, 9, 10891. 84. Soria, F. A.; Di Valentin, C. Binding group of oligonucleotides on TiO2 surfaces: Phosphate anions or nucleobases? Appl. Surf. Sci. 2022, 575, 151560. 85. Bunjes, O.; Paul, L. A.; Dai, X.; Jiang, H.; Claus, T.; Rittmeier, A.; Schwarzer, D.; Ding, F.; Siewert, I.; Wenderoth, M. Ordering a rhenium catalyst on Ag(001) through molecule-surface step interaction. Commun. Chem. 2022, 5, 3. 86. Kuo, H.-Y.; Lee, T. S.; Chu, A. T.; Tignor, S. E.; Scholes, G. D.; Bocarsly, A. B. A cyanide-bridged di-manganese carbonyl complex that photochemically reduces CO2 to CO. Dalton Trans. 2019, 48, 1226-1236. 87. Kuramochi, Y.; Ishitani, O. Iridium(III) 1-Phenylisoquinoline Complexes as a Photosensitizer for Photocatalytic CO2 Reduction: A Mixed System with a Re(I) Catalyst and a Supramolecular Photocatalyst. Inorg. Chem. 2016, 55, 5702-5709. 88. Vandewal, K.; Benduhn, J.; Nikolis, V. C. How to determine optical gaps and voltage losses in organic photovoltaic materials. Sustain. Energy Fuels. 2018, 2, 538-544. 89. Wang, J.-W.; Jiang, L.; Huang, H.-H.; Han, Z.; Ouyang, G. Rapid electron transfer via dynamic coordinative interaction boosts quantum efficiency for photocatalytic CO2 reduction. Nat. Commun. 2021, 12, 4276. 90. Farnum, B. H.; Jou, J. J.; Meyer, G. J. Visible light generation of I-I bonds by Ru-tris(diimine) excited states. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 15628-15633. 91. Gautam, P.; Dhokale, B.; Mobin, S. M.; Misra, R. Ferrocenyl BODIPYs: synthesis, structure and properties. RSC Adv. 2012, 2, 12105-12107. 92. Yin, X.; Li, Y.; Zhu, Y.; Jing, X.; Li, Y.; Zhu, D. A highly sensitive viscosity probe based on ferrocene-BODIPY dyads. Dalton Trans. 2010, 39, 9929-9935. 93. Thorat, K. G.; Kamble, P.; Mallah, R.; Ray, A. K.; Sekar, N. Congeners of Pyrromethene-567 Dye: Perspectives from Synthesis, Photophysics, Photostability, Laser, and TD-DFT Theory. J. Org. Chem. 2015, 80, 6152-6164. 94. Guo, S.; Kong, L.-H.; Wang, P.; Yao, S.; Lu, T.-B.; Zhang, Z.-M. Switching Excited State Distribution of Metal–Organic Framework for Dramatically Boosting Photocatalysis. Angew. Chem. Int. Ed. 2022, 61, e202206193. 95. van de Krol, R.; Goossens, A.; Schoonman, J. Mott‐Schottky Analysis of Nanometer‐Scale Thin‐Film Anatase TiO2. J. Electrochem. Soc. 1997, 144, 1723. 96. Kaizra, S.; Bellal, B.; Louafi, Y.; Trari, M. Improved activity of SnO for the photocatalytic oxygen evolution. J. Saudi Chem. Soc. 2018, 22, 76-83. 97. Chen, S.; Li, K.; Zhao, F.; Zhang, L.; Pan, M.; Fan, Y.-Z.; Guo, J.; Shi, J.; Su, C.-Y. A metal-organic cage incorporating multiple light harvesting and catalytic centres for photochemical hydrogen production. Nat. Commun. 2016, 7, 13169. 98. Zhao, J.; Ji, S.; Wu, W.; Wu, W.; Guo, H.; Sun, J.; Sun, H.; Liu, Y.; Li, Q.; Huang, L. Transition metal complexes with strong absorption of visible light and long-lived triplet excited states: from molecular design to applications. RSC Adv. 2012, 2, 1712-1728. 99. Zhao, J.; Wu, W.; Sun, J.; Guo, S. Triplet photosensitizers: from molecular design to applications. Chem. Soc. Rev. 2013, 42, 5323-5351. 100. Zhao, X.; Hou, Y.; Liu, L.; Zhao, J. Triplet Photosensitizers Showing Strong Absorption of Visible Light and Long-Lived Triplet Excited States and Application in Photocatalysis: A Mini Review. Energy Fuels. 2021, 35, 18942-18956. 101. Ooyama, Y.; Inoue, S.; Nagano, T.; Kushimoto, K.; Ohshita, J.; Imae, I.; Komaguchi, K.; Harima, Y. Dye-Sensitized Solar Cells Based On Donor–Acceptor π-Conjugated Fluorescent Dyes with a Pyridine Ring as an Electron-Withdrawing Anchoring Group. Angew. Chem. Int. Ed. 2011, 50, 7429-7433. 102. Sinopoli, A.; La Porte, N. T.; Martinez, J. F.; Wasielewski, M. R.; Sohail, M. Manganese carbonyl complexes for CO2 reduction. Coord. Chem. Rev. 2018, 365, 60-74. 103. Nichols, A. W.; Machan, C. W. Secondary-Sphere Effects in Molecular Electrocatalytic CO2 Reduction. Front. Chem. 2019, 7, Review. 104. Fabry, D. C.; Ishitani, O. CO2 Reduction Using Molecular Photocatalysts. Springer Handbook of Inorganic Photochemistry, Bahnemann, D.; Patrocinio, A. O. T. Eds.; Springer International Publishing, 2022; pp 1429-1452. 105. Pellegrin, Y.; Odobel, F. Sacrificial electron donor reagents for solar fuel production. C.R. Chim. 2017, 20, 283-295. 106. Tamaki, Y.; Koike, K.; Ishitani, O. Highly efficient, selective, and durable photocatalytic system for CO2 reduction to formic acid. Chem. Sci. 2015, 6, 7213-7221. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91153 | - |
dc.description.abstract | 為了實現有效的光催化CO2還原,開發了一種基於Mn(I) 的混合系統並將其固定在TiO2半導體顆粒上 (Mn@TiO2)。該混合系統展現了持續的光催化性能,產生顯著的周轉率和出色的產物選擇性。在常規的實驗過程中,將含有0.1M電子供體 (ED) 的溶液中的混合催化劑暴露於可見光照射下,產生的CO選擇性產物高達99%,並且只有微量的HCOO-生成;最終,經過7小時的照射後,透過Mn:bdp 比例的優化發現,1:2的比例在總周轉率 (TONmax (CO) = 54) 方面提供最佳性能。 催化反應後,13CO2氣氛下的同位素標記實驗可以證實CO是由CO2產生。為了透過太陽能驅動光最大限度地減少二氧化碳排放,我們將Mn@TiO2結合在一起應用於CO2還原反應。 | zh_TW |
dc.description.abstract | To achieve an effective photocatalytic CO2 reduction, a Mn(I)-based hybrid system (Mn@TiO2) was created and arranged on TiO2 semiconductor particles. The hybrid demonstrates continual photocatalytic properties, producing remarkable turnover numbers and outstanding product selectivity. In the usual procedure, visible-light irradiation of the hybrid catalyst in a solution containing 0.1 M electron donor (ED) yielded CO with over 99% selectivity and only trace amounts of HCOO–; eventually, after 7 hours of illumination, The optimization of the Mn:bdp ratio shows that the 1:2 ratio offers the best performance in terms of total turnover number (TONmax (CO) = 54). After catalysis, the isotope labeling experiment under 13CO2 atmosphere can confirm that CO was produced from CO2. To minimize carbon dioxide emissions through solar-driven light, we brought together the Mn@TiO2 for CO2 reduction. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-11-20T16:10:13Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-11-20T16:10:13Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Acknowledgement i
摘要 ii Abstract iii Table of Contents iv List of Figures vii List of Schemes xiii List of Tables xiv Chapter 1 Introduction 1 1.1. Overview:CO2 reduction 1 1.2. Photocatalytic reduction of CO2 using metal complexes 4 1.3. Semiconducting TiO2 nanoparticles 13 1.4. Photocatalytic system of Mn(I) catalyst for multi-electron CO2 reduction 16 1.5. Anchoring functional groups to graft a metal complex onto a surface 18 1.6. Bio-inspired liquid crystal actuator materials 20 1.7. Research motivation 27 Chapter 2 Results and Discussion 29 2.1. Synthesis and Characterization of Manganese Complex 29 2.2. Synthesis and Characterization of TiO2 Microspheres 38 2.3. Preparation of the Hybrid Catalyst Mn@TiO2 MPs 44 2.4 Photocatalytic CO2 Reduction 52 2.2.1 PS-Mn@TiO2 hybrid photocatalytic system for photocatalytic CO2 reduction 52 2.2.2 Electrochemical properties 53 2.2.3 UV-vis spectroscopy, Emission spectra and Electrochemical properties of Photosensitizers 56 2.2.4 Mott-Schottky Analysis of TiO2 Microspheres Film 64 2.2.5 Mechanistic Studies of the Binary Hybrid System 74 2.5 Conclusion 78 Chapter 3 Experimental Section 79 General information 79 Physical Measurements 82 Preparation 87 4,4’-Bis(diethylphosphonatomethyl)-2,2’-bipyridine (L2) 87 fac-[Mn(4,4’-Bis(diethoxyphosphorylmethyl)-2,2’-bipyridine)(CO)3Br] (MnPE) 88 fac-[Mn(4,4’-Bis(dihydroxyphosphorylmethyl)-2,2’-bipyridine)(CO)3Br] (MnP) 89 4-hydroxyphenyl 4-hydroxybenzoate (HPHB) 90 4-[4-(vinyloxy)butoxy]phenyl 4-[4-(vinyloxy)-butoxy]benzoate (VBPB) 91 TiO2 Microspheres 92 Mn(bpy-R)CO3Br@microspheres (Mn@TiO2) 93 Preparation of pre-crosslinked LCE512 film. 94 Preparation of pre-crosslinked LCE1002 film. 95 References 96 Appendix 113 | - |
dc.language.iso | en | - |
dc.title | 利用Mn(I)催化劑進行光化學CO2還原反應 | zh_TW |
dc.title | Photochemical Reduction of CO2 with a Mn(I) Catalyst | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 劉沂欣;陳振中;江偉宏 | zh_TW |
dc.contributor.oralexamcommittee | Yi-Hsin Liu;Chun-Chung Chan;Wei-Hung Chiang | en |
dc.subject.keyword | 光催化,有機-無機混合系統,二氧化碳還原,分子催化劑固定於TiO2, | zh_TW |
dc.subject.keyword | photocatalysis,organic-inorganic hybrid systems,CO2 reduction,molecular catalyst TiO2 immobilization, | en |
dc.relation.page | 146 | - |
dc.identifier.doi | 10.6342/NTU202304212 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2023-09-06 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 化學系 | - |
dc.date.embargo-lift | 2028-09-05 | - |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-1.pdf 目前未授權公開取用 | 9.78 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。