請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91149
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 徐丞志 | zh_TW |
dc.contributor.advisor | Cheng-Chih Hsu | en |
dc.contributor.author | 紀舒媚 | zh_TW |
dc.contributor.author | Shu-Mei Chi | en |
dc.date.accessioned | 2023-11-20T16:09:05Z | - |
dc.date.available | 2023-11-21 | - |
dc.date.copyright | 2023-11-20 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-09-05 | - |
dc.identifier.citation | 1. El Nahas, A. M.; Bello, A. K., Chronic kidney disease: the global challenge. The lancet 2005, 365 (9456), 331-340.
2. Finco, D. R., Kidney function. In Clinical biochemistry of domestic animals, 5 ed.; Kaneko, J. J.; Harvey, J. W.; Bruss., M. L., Eds. Academic Press: 1997; pp 441-484. 3. Romagnani, P.; Remuzzi, G.; Glassock, R.; Levin, A.; Jager, K. J.; Tonelli, M.; Massy, Z.; Wanner, C.; Anders, H. J., Chronic kidney disease. Nat. Rev. Dis. Primers 2017, 3 (1), 1-24. 4. Johansen, K. L.; Chertow, G. M.; Gilbertson, D. T.; Ishani, A.; Israni, A.; Ku, E.; Li, S.; Li, S.; Liu, J.; Obrador, G. T.; Schulman, I.; Chan, K.; Abbott, K. C.; O'Hare, A. M.; Powe, N. R.; Roetker, N. S.; Scherer, J. S.; St Peter, W.; Snyder, J.; Winkelmayer, W. C.; Wong, S. P. Y.; Wetmore, J. B., US renal data system 2022 annual data report: epidemiology of kidney disease in the United States. Am. J. Kidney Dis. 2023, 81 (3S1), A8-A11. 5. Wang, Y. N.; Ma, S. X.; Chen, Y. Y.; Chen, L.; Liu, B. L.; Liu, Q. Q.; Zhao, Y. Y., Chronic kidney disease: biomarker diagnosis to therapeutic targets. Clin. Chim. Acta 2019, 499, 54-63. 6. Xu, Z.-C., 2022 Annual Report on Kidney Disease in Taiwan. N. H. R. I. 2023, 52. 7. National health insurance healthcare utilization and disease information for the population in 2021. N. H. I. 2023, 1. 8. Falconi, C. A.; Junho, C.; Fogaca-Ruiz, F.; Vernier, I. C. S.; da Cunha, R. S.; Stinghen, A. E. M.; Carneiro-Ramos, M. S., Uremic toxins: an alarming danger concerning the cardiovascular system. Front. Physiol. 2021, 12, 686249. 9. Yu, M.; Kim, Y. J.; Kang, D. H., Indoxyl sulfate-induced endothelial dysfunction in patients with chronic kidney disease via an induction of oxidative stress. Clin. J. Am. Soc. Nephrol. 2011, 6 (1), 30-39. 10. Dou, L.; Bertrand, E.; Cerini, C.; Faure, V.; Sampol, J.; Vanholder, R.; Berland, Y.; Brunet, P., The uremic solutes p-cresol and indoxyl sulfate inhibit endothelial proliferation and wound repair. Kidney Int. 2004, 65 (2), 442-451. 11. Yamamoto, H.; Tsuruoka, S.; Ioka, T.; Ando, H.; Ito, C.; Akimoto, T.; Fujimura, A.; Asano, Y.; Kusano, E., Indoxyl sulfate stimulates proliferation of rat vascular smooth muscle cells. Kidney Int. 2006, 69 (10), 1780-1785. 12. Watanabe, H.; Miyamoto, Y.; Honda, D.; Tanaka, H.; Wu, Q.; Endo, M.; Noguchi, T.; Kadowaki, D.; Ishima, Y.; Kotani, S.; Nakajima, M.; Kataoka, K.; Kim-Mitsuyama, S.; Tanaka, M.; Fukagawa, M.; Otagiri, M.; Maruyama, T., p-Cresyl sulfate causes renal tubular cell damage by inducing oxidative stress by activation of NADPH oxidase. Kidney Int. 2013, 83 (4), 582-592. 13. Sun, C. Y.; Chang, S. C.; Wu, M. S., Uremic toxins induce kidney fibrosis by activating intrarenal renin-angiotensin-aldosterone system associated epithelial-to-mesenchymal transition. PLoS One 2012, 7 (3), e34026. 14. Barreto, F. C.; Barreto, D. V.; Liabeuf, S.; Meert, N.; Glorieux, G.; Temmar, M.; Choukroun, G.; Vanholder, R.; Massy, Z. A., Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients. Clin. J. Am. Soc. Nephrol. 2009, 4 (10), 1551-1558. 15. Gryp, T.; Vanholder, R.; Vaneechoutte, M.; Glorieux, G., p-Cresyl sulfate. Toxins 2017, 9 (2), 52. 16. Vaziri, N. D., CKD impairs barrier function and alters microbial flora of the intestine: a major link to inflammation and uremic toxicity. Curr. Opin. Nephrol. Hypertens. 2012, 21 (6), 587-592. 17. Huc, T.; Nowinski, A.; Drapala, A.; Konopelski, P.; Ufnal, M., Indole and indoxyl sulfate, gut bacteria metabolites of tryptophan, change arterial blood pressure via peripheral and central mechanisms in rats. Pharmacol. Res. 2018, 130, 172-179. 18. Moeller, A. H.; Caro-Quintero, A.; Mjungu, D.; Georgiev, A. V.; Lonsdorf, E. V.; Muller, M. N.; Pusey, A. E.; Peeters, M.; Hahn, B. H.; Ochman, H., Cospeciation of gut microbiota with hominids. Science 2016, 353 (6297), 380-382. 19. Hamady, M.; Knight, R., Microbial community profiling for human microbiome projects: tools, techniques, and challenges. Genome Res. 2009, 19 (7), 1141-1152. 20. Chen, K.; Pachter, L., Bioinformatics for whole-genome shotgun sequencing of microbial communities. PLoS Comput. Biol. 2005, 1 (2), 106-112. 21. Thomas, T.; Gilbert, J.; Meyer, F., Metagenomics-a guide from sampling to data analysis. Microb. Inf. Exp. 2012, 2, 1-12. 22. Quince, C.; Walker, A. W.; Simpson, J. T.; Loman, N. J.; Segata, N., Shotgun metagenomics, from sampling to analysis. Nat. Biotechnol. 2017, 35 (9), 833-844. 23. Janda, J. M.; Abbott, S. L., 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J. Clin. Microbiol. 2007, 45 (9), 2761-2764. 24. Ruan, W.; Engevik, M. A.; Spinler, J. K.; Versalovic, J., Healthy human gastrointestinal microbiome: composition and function after a decade of exploration. Dig. Dis. Sci. 2020, 65 (3), 695-705. 25. Sharon, G.; Garg, N.; Debelius, J.; Knight, R.; Dorrestein, P. C.; Mazmanian, S. K., Specialized metabolites from the microbiome in health and disease. Cell Metab. 2014, 20 (5), 719-730. 26. Hall, A. B.; Tolonen, A. C.; Xavier, R. J., Human genetic variation and the gut microbiome in disease. Nat. Rev. Genet. 2017, 18 (11), 690-699. 27. Koppel, N.; Maini Rekdal, V.; Balskus, E. P., Chemical transformation of xenobiotics by the human gut microbiota. Science 2017, 356 (6344). 28. Tamboli, C. P.; Neut, C.; Desreumaux, P.; Colombel, J. F., Dysbiosis in inflammatory bowel disease. Gut 2004, 53 (1), 1-4. 29. Henao-Mejia, J.; Elinav, E.; Jin, C.; Hao, L.; Mehal, W. Z.; Strowig, T.; Thaiss, C. A.; Kau, A. L.; Eisenbarth, S. C.; Jurczak, M. J.; Camporez, J. P.; Shulman, G. I.; Gordon, J. I.; Hoffman, H. M.; Flavell, R. A., Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 2012, 482 (7384), 179-185. 30. Blacher, E.; Levy, M.; Tatirovsky, E.; Elinav, E., Microbiome-modulated metabolites at the interface of host immunity. J. Immunol. 2017, 198 (2), 572-580. 31. Zoccali, C.; Vanholder, R.; Massy, Z. A.; Ortiz, A.; Sarafidis, P.; Dekker, F. W.; Fliser, D.; Fouque, D.; Heine, G. H.; Jager, K. J.; Kanbay, M.; Mallamaci, F.; Parati, G.; Rossignol, P.; Wiecek, A.; London, G., The systemic nature of CKD. Nat. Rev. Nephrol. 2017, 13 (6), 344-358. 32. Anders, H. J.; Andersen, K.; Stecher, B., The intestinal microbiota, a leaky gut, and abnormal immunity in kidney disease. Kidney Int. 2013, 83 (6), 1010-1016. 33. Caggiano, G.; Cosola, C.; Di Leo, V.; Gesualdo, M.; Gesualdo, L., Microbiome modulation to correct uremic toxins and to preserve kidney functions. Curr. Opin. Nephrol. Hypertens. 2020, 29 (1), 49-56. 34. Vaziri, N. D.; Wong, J.; Pahl, M.; Piceno, Y. M.; Yuan, J.; DeSantis, T. Z.; Ni, Z.; Nguyen, T. H.; Andersen, G. L., Chronic kidney disease alters intestinal microbial flora. Kidney Int. 2013, 83 (2), 308-315. 35. Nallu, A.; Sharma, S.; Ramezani, A.; Muralidharan, J.; Raj, D., Gut microbiome in chronic kidney disease: challenges and opportunities. Transl. Res. 2017, 179, 24-37. 36. Feng, Z.; Wang, T.; Dong, S.; Jiang, H.; Zhang, J.; Raza, H. K.; Lei, G., Association between gut dysbiosis and chronic kidney disease: a narrative review of the literature. J. Int. Med. Res. 2021, 49 (10), 1-8. 37. Vatanen, T.; Ang, Q. Y.; Siegwald, L.; Sarker, S. A.; Le Roy, C. I.; Duboux, S.; Delannoy-Bruno, O.; Ngom-Bru, C.; Boulange, C. L.; Strazar, M.; Avila-Pacheco, J.; Deik, A.; Pierce, K.; Bullock, K.; Dennis, C.; Sultana, S.; Sayed, S.; Rahman, M.; Ahmed, T.; Modesto, M.; Mattarelli, P.; Clish, C. B.; Vlamakis, H.; Plichta, D. R.; Sakwinska, O.; Xavier, R. J., A distinct clade of Bifidobacterium longum in the gut of Bangladeshi children thrives during weaning. Cell 2022, 185 (23), 4280-4297. 38. Wong, J.; Piceno, Y. M.; DeSantis, T. Z.; Pahl, M.; Andersen, G. L.; Vaziri, N. D., Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD. Am. J. Nephrol. 2014, 39 (3), 230-237. 39. Gao, B.; Jose, A.; Alonzo-Palma, N.; Malik, T.; Shankaranarayanan, D.; Regunathan-Shenk, R.; Raj, D. S., Butyrate producing microbiota are reduced in chronic kidney diseases. Sci. Rep. 2021, 11 (1), 23530. 40. Wang, X.; Yang, S.; Li, S.; Zhao, L.; Hao, Y.; Qin, J.; Zhang, L.; Zhang, C.; Bian, W.; Zuo, L.; Gao, X.; Zhu, B.; Lei, X. G.; Gu, Z.; Cui, W.; Xu, X.; Li, Z.; Zhu, B.; Li, Y.; Chen, S.; Guo, H.; Zhang, H.; Sun, J.; Zhang, M.; Hui, Y.; Zhang, X.; Liu, X.; Sun, B.; Wang, L.; Qiu, Q.; Zhang, Y.; Li, X.; Liu, W.; Xue, R.; Wu, H.; Shao, D.; Li, J.; Zhou, Y.; Li, S.; Yang, R.; Pedersen, O. B.; Yu, Z.; Ehrlich, S. D.; Ren, F., Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents. Gut 2020, 69 (12), 2131-2142. 41. Huang, H.; Li, K.; Lee, Y.; Chen, M., Preventive effects of Lactobacillus mixture against chronic kidney disease progression through enhancement of beneficial bacteria and downregulation of gut-derived uremic toxins. J. Agric. Food Chem. 2021, 69 (26), 7353-7366. 42. Moon, S. J.; Hwang, J.; Kang, W. K.; Ahn, J. P.; Kim, H. J., Administration of the probiotic Lactiplantibacillus paraplantarum is effective in controlling hyperphosphatemia in 5/6 nephrectomy rat model. Life Sci. 2022, 306, 120856. 43. Chen, C. J.; Lee, D. Y.; Yu, J.; Lin, Y. N.; Lin, T. M., Recent advances in LC-MS-based metabolomics for clinical biomarker discovery. Mass Spectrom. Rev. 2022, e21785. 44. Becker, S.; Kortz, L.; Helmschrodt, C.; Thiery, J.; Ceglarek, U., LC-MS-based metabolomics in the clinical laboratory. J. Chromatogr. B 2012, 883, 68-75. 45. Cevallos-Cevallos, J. M.; Reyes-De-Corcuera, J. I.; Etxeberria, E.; Danyluk, M. D.; Rodrick, G. E., Metabolomic analysis in food science: a review. Trends Food Sci. Technol. 2009, 20 (11-12), 557-566. 46. Lin, L.; Huang, Z.; Gao, Y.; Yan, X.; Xing, J.; Hang, W., LC-MS based serum metabonomic analysis for renal cell carcinoma diagnosis, staging, and biomarker discovery. J. Proteome Res. 2011, 10 (3), 1396-1405. 47. Cuperlovic-Culf, M.; Culf, A. S., Applied metabolomics in drug discovery. Expert Opin. Drug Discov. 2016, 11 (8), 759-770. 48. Rinschen, M. M.; Ivanisevic, J.; Giera, M.; Siuzdak, G., Identification of bioactive metabolites using activity metabolomics. Nat. Rev. Mol. Cell Biol. 2019, 20 (6), 353-367. 49. Bayona, L. M.; de Voogd, N. J.; Choi, Y. H., Metabolomics on the study of marine organisms. Metabolomics 2022, 18 (3), 17. 50. Schauer, N.; Fernie, A. R., Plant metabolomics: towards biological function and mechanism. Trends Plant Sci. 2006, 11 (10), 508-516. 51. Lu, X.; Zhao, X.; Bai, C.; Zhao, C.; Lu, G.; Xu, G., LC-MS-based metabonomics analysis. J. Chromatogr. B 2008, 866 (1-2), 64-76. 52. Roca, M.; Alcoriza, M. I.; Garcia-Canaveras, J. C.; Lahoz, A., Reviewing the metabolome coverage provided by LC-MS: focus on sample preparation and chromatography-a tutorial. Anal. Chim. Acta 2021, 1147, 38-55. 53. de Hoffmann, E.; Stroobant, V., Mass spectrometry: principles and applications. John Wiley & Sons: 2007. 54. Kanehisa, M.; Goto, S., KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28 (1), 27-30. 55. Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K., KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017, 45 (D1), D353-D361. 56. Wheelock, C. E.; Wheelock, A. M.; Kawashima, S.; Diez, D.; Kanehisa, M.; van Erk, M.; Kleemann, R.; Haeggstrom, J. Z.; Goto, S., Systems biology approaches and pathway tools for investigating cardiovascular disease. Mol. Biosyst. 2009, 5 (6), 588-602. 57. Luo, X.; Yu, H.; Song, Y.; Sun, T., Integration of metabolomic and transcriptomic data reveals metabolic pathway alteration in breast cancer and impact of related signature on survival. J. Cell. Physiol. 2019, 234 (8), 13021-13031. 58. da Silva, R. R.; Dorrestein, P. C.; Quinn, R. A., Illuminating the dark matter in metabolomics. Proc. Natl. Acad. Sci. 2015, 112 (41), 12549-12550. 59. Wang, M.; Carver, J. J.; Phelan, V. V.; Sanchez, L. M.; Garg, N.; Peng, Y.; Nguyen, D. D.; Watrous, J.; Kapono, C. A.; Luzzatto-Knaan, T.; Porto, C.; Bouslimani, A.; Melnik, A. V.; Meehan, M. J.; Liu, W. T.; Crusemann, M.; Boudreau, P. D.; Esquenazi, E.; Sandoval-Calderon, M.; Kersten, R. D.; Pace, L. A.; Quinn, R. A.; Duncan, K. R.; Hsu, C. C.; Floros, D. J.; Gavilan, R. G.; Kleigrewe, K.; Northen, T.; Dutton, R. J.; Parrot, D.; Carlson, E. E.; Aigle, B.; Michelsen, C. F.; Jelsbak, L.; Sohlenkamp, C.; Pevzner, P.; Edlund, A.; McLean, J.; Piel, J.; Murphy, B. T.; Gerwick, L.; Liaw, C. C.; Yang, Y. L.; Humpf, H. U.; Maansson, M.; Keyzers, R. A.; Sims, A. C.; Johnson, A. R.; Sidebottom, A. M.; Sedio, B. E.; Klitgaard, A.; Larson, C. B.; P, C. A. B.; Torres-Mendoza, D.; Gonzalez, D. J.; Silva, D. B.; Marques, L. M.; Demarque, D. P.; Pociute, E.; O'Neill, E. C.; Briand, E.; Helfrich, E. J. N.; Granatosky, E. A.; Glukhov, E.; Ryffel, F.; Houson, H.; Mohimani, H.; Kharbush, J. J.; Zeng, Y.; Vorholt, J. A.; Kurita, K. L.; Charusanti, P.; McPhail, K. L.; Nielsen, K. F.; Vuong, L.; Elfeki, M.; Traxler, M. F.; Engene, N.; Koyama, N.; Vining, O. B.; Baric, R.; Silva, R. R.; Mascuch, S. J.; Tomasi, S.; Jenkins, S.; Macherla, V.; Hoffman, T.; Agarwal, V.; Williams, P. G.; Dai, J.; Neupane, R.; Gurr, J.; Rodriguez, A. M. C.; Lamsa, A.; Zhang, C.; Dorrestein, K.; Duggan, B. M.; Almaliti, J.; Allard, P. M.; Phapale, P.; Nothias, L. F.; Alexandrov, T.; Litaudon, M.; Wolfender, J. L.; Kyle, J. E.; Metz, T. O.; Peryea, T.; Nguyen, D. T.; VanLeer, D.; Shinn, P.; Jadhav, A.; Muller, R.; Waters, K. M.; Shi, W.; Liu, X.; Zhang, L.; Knight, R.; Jensen, P. R.; Palsson, B. O.; Pogliano, K.; Linington, R. G.; Gutierrez, M.; Lopes, N. P.; Gerwick, W. H.; Moore, B. S.; Dorrestein, P. C.; Bandeira, N., Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016, 34 (8), 828-837. 60. Quinn, R. A.; Melnik, A. V.; Vrbanac, A.; Fu, T.; Patras, K. A.; Christy, M. P.; Bodai, Z.; Belda-Ferre, P.; Tripathi, A.; Chung, L. K.; Downes, M.; Welch, R. D.; Quinn, M.; Humphrey, G.; Panitchpakdi, M.; Weldon, K. C.; Aksenov, A.; da Silva, R.; Avila-Pacheco, J.; Clish, C.; Bae, S.; Mallick, H.; Franzosa, E. A.; Lloyd-Price, J.; Bussell, R.; Thron, T.; Nelson, A. T.; Wang, M.; Leszczynski, E.; Vargas, F.; Gauglitz, J. M.; Meehan, M. J.; Gentry, E.; Arthur, T. D.; Komor, A. C.; Poulsen, O.; Boland, B. S.; Chang, J. T.; Sandborn, W. J.; Lim, M.; Garg, N.; Lumeng, J. C.; Xavier, R. J.; Kazmierczak, B. I.; Jain, R.; Egan, M.; Rhee, K. E.; Ferguson, D.; Raffatellu, M.; Vlamakis, H.; Haddad, G. G.; Siegel, D.; Huttenhower, C.; Mazmanian, S. K.; Evans, R. M.; Nizet, V.; Knight, R.; Dorrestein, P. C., Global chemical effects of the microbiome include new bile-acid conjugations. Nature 2020, 579 (7797), 123-129. 61. Yasuda, S.; Okahashi, N.; Tsugawa, H.; Ogata, Y.; Ikeda, K.; Suda, W.; Arai, H.; Hattori, M.; Arita, M., Elucidation of Gut Microbiota-Associated Lipids Using LC-MS/MS and 16S rRNA Sequence Analyses. iScience 2020, 23 (12). 62. Nothias, L. F.; Petras, D.; Schmid, R.; Duhrkop, K.; Rainer, J.; Sarvepalli, A.; Protsyuk, I.; Ernst, M.; Tsugawa, H.; Fleischauer, M.; Aicheler, F.; Aksenov, A. A.; Alka, O.; Allard, P. M.; Barsch, A.; Cachet, X.; Caraballo-Rodriguez, A. M.; Da Silva, R. R.; Dang, T.; Garg, N.; Gauglitz, J. M.; Gurevich, A.; Isaac, G.; Jarmusch, A. K.; Kamenik, Z.; Kang, K. B.; Kessler, N.; Koester, I.; Korf, A.; Le Gouellec, A.; Ludwig, M.; Martin, H. C.; McCall, L. I.; McSayles, J.; Meyer, S. W.; Mohimani, H.; Morsy, M.; Moyne, O.; Neumann, S.; Neuweger, H.; Nguyen, N. H.; Nothias-Esposito, M.; Paolini, J.; Phelan, V. V.; Pluskal, T.; Quinn, R. A.; Rogers, S.; Shrestha, B.; Tripathi, A.; van der Hooft, J. J. J.; Vargas, F.; Weldon, K. C.; Witting, M.; Yang, H.; Zhang, Z.; Zubeil, F.; Kohlbacher, O.; Bocker, S.; Alexandrov, T.; Bandeira, N.; Wang, M.; Dorrestein, P. C., Feature-based molecular networking in the GNPS analysis environment. Nat. Methods 2020, 17 (9), 905-908. 63. Hartmann, A. C.; Petras, D.; Quinn, R. A.; Protsyuk, I.; Archer, F. I.; Ransome, E.; Williams, G. J.; Bailey, B. A.; Vermeij, M. J. A.; Alexandrov, T.; Dorrestein, P. C.; Rohwer, F. L., Meta-mass shift chemical profiling of metabolomes from coral reefs. Proc. Natl. Acad. Sci. 2017, 114 (44), 11685-11690. 64. Caraballo-Rodríguez, A. M.; Puckett, S. P.; Kyle, K. E.; Petras, D.; da Silva, R.; Nothias, L.-F.; Ernst, M.; van der Hooft, J. J. J.; Tripathi, A.; Wang, M.; Balunas, M. J.; Klassen, J. L.; Dorrestein, P. C., Chemical gradients of plant substrates in an Atta texana fungus garden. mSystems 2021, 6 (4), e0060121. 65. Quinn, R. A.; Nothias, L. F.; Vining, O.; Meehan, M.; Esquenazi, E.; Dorrestein, P. C., Molecular networking as a drug discovery, drug metabolism, and precision medicine strategy. Trends Pharmacol. Sci. 2017, 38 (2), 143-154. 66. Bolger, A. M.; Lohse, M.; Usadel, B., Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30 (15), 2114-2120. 67. Langmead, B.; Salzberg, S. L., Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9 (4), 357-359. 68. Li, D.; Liu, C. M.; Luo, R.; Sadakane, K.; Lam, T. W., MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015, 31 (10), 1674-1676. 69. Steinegger, M.; Soding, J., MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 2017, 35 (11), 1026-1028. 70. Mirdita, M.; Steinegger, M.; Breitwieser, F.; Soding, J.; Levy Karin, E., Fast and sensitive taxonomic assignment to metagenomic contigs. Bioinformatics 2021, 37 (18), 3029-3031. 71. Seemann, T., Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014, 30 (14), 2068-2069. 72. Wagner, G. P.; Kin, K.; Lynch, V. J., Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 2012, 131 (4), 281-285. 73. Kang, D. D.; Li, F.; Kirton, E.; Thomas, A.; Egan, R.; An, H.; Wang, Z., MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 2019, 7, e7359. 74. Parks, D. H.; Imelfort, M.; Skennerton, C. T.; Hugenholtz, P.; Tyson, G. W., CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015, 25 (7), 1043-1055. 75. Schmid, R.; Heuckeroth, S.; Korf, A.; Smirnov, A.; Myers, O.; Dyrlund, T. S.; Bushuiev, R.; Murray, K. J.; Hoffmann, N.; Lu, M.; Sarvepalli, A.; Zhang, Z.; Fleischauer, M.; Duhrkop, K.; Wesner, M.; Hoogstra, S. J.; Rudt, E.; Mokshyna, O.; Brungs, C.; Ponomarov, K.; Mutabdzija, L.; Damiani, T.; Pudney, C. J.; Earll, M.; Helmer, P. O.; Fallon, T. R.; Schulze, T.; Rivas-Ubach, A.; Bilbao, A.; Richter, H.; Nothias, L. F.; Wang, M.; Oresic, M.; Weng, J. K.; Bocker, S.; Jeibmann, A.; Hayen, H.; Karst, U.; Dorrestein, P. C.; Petras, D.; Du, X.; Pluskal, T., Integrative analysis of multimodal mass spectrometry data in MZmine 3. Nat. Biotechnol. 2023, 41 (4), 447-449. 76. Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N. S.; Wang, J. T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T., Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13 (11), 2498-2504. 77. Ruttkies, C.; Schymanski, E. L.; Wolf, S.; Hollender, J.; Neumann, S., MetFrag relaunched: incorporating strategies beyond in silico fragmentation. J. Cheminform. 2016, 8 (1), 1-16. 78. Duhrkop, K.; Fleischauer, M.; Ludwig, M.; Aksenov, A. A.; Melnik, A. V.; Meusel, M.; Dorrestein, P. C.; Rousu, J.; Bocker, S., SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods 2019, 16 (4), 299-302. 79. Kanehisa, M.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M., KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016, 44 (D1), D457-462. 80. Agus, A.; Planchais, J.; Sokol, H., Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 2018, 23 (6), 716-724. 81. Li, G.; Young, K. D., Indole production by the tryptophanase TnaA in Escherichia coli is determined by the amount of exogenous tryptophan. Microbiology 2013, 159 (Pt_2), 402-410. 82. Saito, H.; Yoshimura, M.; Saigo, C.; Komori, M.; Nomura, Y.; Yamamoto, Y.; Sagata, M.; Wakida, A.; Chuman, E.; Nishi, K.; Jono, H., Hepatic sulfotransferase as a nephropreventing target by suppression of the uremic toxin indoxyl sulfate accumulation in ischemic acute kidney injury. Toxicol. Sci. 2014, 141 (1), 206-217. 83. Thompson, M. A.; Moon, E.; Kim, U. J.; Xu, J.; Siciliano, M. J.; Weinshilboum, R. M., Human indolethylamine N-methyltransferase: cDNA cloning and expression, gene cloning, and chromosomal localization. Genomics 1999, 61 (3), 285-297. 84. Forsstrom, T.; Tuominen, J.; Karkkainen, J., Determination of potentially hallucinogenic N-dimethylated indoleamines in human urine by HPLC/ESI-MS-MS. Scand. J. Clin. Lab Invest. 2001, 61 (7), 547-556. 85. Leong, S. C.; Sirich, T. L., Indoxyl sulfate—review of toxicity and therapeutic strategies. Toxins 2016, 8 (12), 358. 86. Satoh, M.; Hayashi, H.; Watanabe, M.; Ueda, K.; Yamato, H.; Yoshioka, T.; Motojima, M., Uremic toxins overload accelerates renal damage in a rat model of chronic renal failure. Nephron. Exp. Nephrol. 2003, 95 (3), e111-e118. 87. Dou, L.; Sallee, M.; Cerini, C.; Poitevin, S.; Gondouin, B.; Jourde-Chiche, N.; Fallague, K.; Brunet, P.; Calaf, R.; Dussol, B.; Mallet, B.; Dignat-George, F.; Burtey, S., The cardiovascular effect of the uremic solute indole-3 acetic acid. J. Am. Soc. Nephrol. 2015, 26 (4), 876-887. 88. Gryp, T.; De Paepe, K.; Vanholder, R.; Kerckhof, F. M.; Van Biesen, W.; Van de Wiele, T.; Verbeke, F.; Speeckaert, M.; Joossens, M.; Couttenye, M. M.; Vaneechoutte, M.; Glorieux, G., Gut microbiota generation of protein-bound uremic toxins and related metabolites is not altered at different stages of chronic kidney disease. Kidney Int. 2020, 97 (6), 1230-1242. 89. Dambrova, M.; Makrecka-Kuka, M.; Kuka, J.; Vilskersts, R.; Nordberg, D.; Attwood, M. M.; Smesny, S.; Sen, Z. D.; Guo, A. C.; Oler, E.; Tian, S.; Zheng, J.; Wishart, D. S.; Liepinsh, E.; Schioth, H. B., Acylcarnitines: nomenclature, biomarkers, therapeutic potential, drug targets, and clinical trials. Pharmacol. Rev. 2022, 74 (3), 506-551. 90. Smith, S. A.; Ogawa, S. A.; Chau, L.; Whelan, K. A.; Hamilton, K. E.; Chen, J.; Tan, L.; Chen, E. Z.; Keilbaugh, S.; Fogt, F.; Bewtra, M.; Braun, J.; Xavier, R. J.; Clish, C. B.; Slaff, B.; Weljie, A. M.; Bushman, F. D.; Lewis, J. D.; Li, H.; Master, S. R.; Bennett, M. J.; Nakagawa, H.; Wu, G. D., Mitochondrial dysfunction in inflammatory bowel disease alters intestinal epithelial metabolism of hepatic acylcarnitines. J. Clin. Invest. 2021, 131 (1). 91. Mafra, D.; Borges, N. A.; Lindholm, B.; Stenvinkel, P., Mitochondrial dysfunction and gut microbiota imbalance: An intriguing relationship in chronic kidney disease. Mitochondrion 2019, 47, 206-209. 92. Vaziri, N. D.; Zhao, Y. Y.; Pahl, M. V., Altered intestinal microbial flora and impaired epithelial barrier structure and function in CKD: the nature, mechanisms, consequences and potential treatment. Nephrol. Dial. Transplant. 2016, 31 (5), 737-746. 93. Rabbani, N.; Ashour, A.; Thornalley, P. J., Mass spectrometric determination of early and advanced glycation in biology. Glycoconj. J. 2016, 33 (4), 553-568. 94. Rabbani, N.; Thornalley, P. J., Glycation research in amino acids: a place to call home. Amino Acids 2012, 42 (4), 1087-1096. 95. Thornalley, P. J.; Battah, S.; Ahmed, N.; Karachalias, N.; Agalou, S.; Babaei-Jadidi, R.; Dawnay, A., Quantitative screening of advanced glycation endproducts in cellular and extracellular proteins by tandem mass spectrometry. Biochem. J. 2003, 375 (3), 581-592. 96. Liu, S.; Liang, S.; Liu, H.; Chen, L.; Sun, L.; Wei, M.; Jiang, H.; Wang, J., Metabolite profiling of feces and serum in hemodialysis patients and the effect of medicinal charcoal tablets. Kidney Blood Pressure Res. 2018, 43 (3), 755-767. 97. Adibi, S. A.; Morse, E. L., Intestinal transport of dipeptides in man: relative importance of hydrolysis and intact absorption. J. Clin. Invest. 1971, 50 (11), 2266-2275. 98. Bammens, B.; Evenepoel, P.; Verbeke, K.; Vanrenterghem, Y., Impairment of small intestinal protein assimilation in patients with end-stage renal disease: extending the malnutrition-inflammation-atherosclerosis concept. Am. J. Clin. Nutr. 2004, 80 (6), 1536-1543. 99. Bammens, B.; Verbeke, K.; Vanrenterghem, Y.; Evenepoel, P., Evidence for impaired assimilation of protein in chronic renal failure. Kidney Int. 2003, 64 (6), 2196-2203. 100. Shimizu, Y.; Masuda, S.; Nishihara, K.; Ji, L.; Okuda, M.; Inui, K., Increased protein level of PEPT1 intestinal H+-peptide cotransporter upregulates absorption of glycylsarcosine and ceftibuten in 5/6 nephrectomized rats. Am. J. Physiol. Gastrointest. Liver. Physiol. 2005, 288 (4), G664-G670. 101. Sasagawa, T.; Suzuki, K.; Shiota, T.; Kondo, T.; Okita, M., The significance of plasma lysophospholipids in patients with renal failure on hemodialysis. J. Nutr. Sci. Vitaminol. 1998, 44 (6), 809-818. 102. Michalczyk, A.; Dolegowska, B.; Heryc, R.; Chlubek, D.; Safranow, K., Associations between plasma lysophospholipids concentrations, chronic kidney disease and the type of renal replacement therapy. Lipids Health Dis. 2019, 18 (1), 1-9. 103. Wang, Y. N.; Zhang, Z. H.; Liu, H. J.; Guo, Z. Y.; Zou, L.; Zhang, Y. M.; Zhao, Y. Y., Integrative phosphatidylcholine metabolism through phospholipase A2 in rats with chronic kidney disease. Acta Pharmacol. Sin. 2023, 44 (2), 393-405. 104. Duranton, F.; Laget, J.; Gayrard, N.; Saulnier-Blache, J. S.; Lundin, U.; Schanstra, J. P.; Mischak, H.; Weinberger, K. M.; Servel, M. F.; Argiles, A., The CKD plasma lipidome varies with disease severity and outcome. J. Clin. Lipidol. 2019, 13 (1), 176-185. 105. Law, S. H.; Chan, M. L.; Marathe, G. K.; Parveen, F.; Chen, C. H.; Ke, L. Y., An updated review of lysophosphatidylcholine metabolism in human diseases. Int. J. Mol. Sci. 2019, 20 (5). 106. Gillett, M. P.; Obineche, E. N.; Lakhani, M. S.; Abdulle, A. M.; Amirlak, I.; Rukhaimi, M. A.; Suleiman, M. N., Levels of cholesteryl esters and other lipids in the plasma of patients with end-stage renal failure. Ann. Saudi Med. 2001, 21 (5-6), 283-286. 107. Bories, P. C.; Subbaiah, P. V.; Bagdade, J. D., Lecithin: cholesterol acyltransferase activity in dialyzed and undialyzed chronic uremic patients. Nephron. 1982, 32 (1), 22-27. 108. Humbert, L.; Maubert, M. A.; Wolf, C.; Duboc, H.; Mahe, M.; Farabos, D.; Seksik, P.; Mallet, J. M.; Trugnan, G.; Masliah, J.; Rainteau, D., Bile acid profiling in human biological samples: comparison of extraction procedures and application to normal and cholestatic patients. J. Chromatogr. B 2012, 899, 135-145. 109. Mukhopadhyay, S.; Maitra, U., Chemistry and biology of bile acids. Curr. Sci. 2004, 87 (12), 1666-1683. 110. Guzior, D. V.; Quinn, R. A., Microbial transformations of human bile acids. Microbiome 2021, 9 (1), 1-13. 111. Qiao, X.; Ye, M.; Liu, C. F.; Yang, W. Z.; Miao, W. J.; Dong, J.; Guo, D. A., A tandem mass spectrometric study of bile acids: interpretation of fragmentation pathways and differentiation of steroid isomers. Steroids 2012, 77 (3), 204-211. 112. de Aguiar Vallim, T. Q.; Tarling, E. J.; Edwards, P. A., Pleiotropic roles of bile acids in metabolism. Cell Metab. 2013, 17 (5), 657-669. 113. Ding, L.; Yang, L.; Wang, Z.; Huang, W., Bile acid nuclear receptor FXR and digestive system diseases. Acta. Pharm. Sin. B 2015, 5 (2), 135-144. 114. Long, S. L.; Gahan, C. G. M.; Joyce, S. A., Interactions between gut bacteria and bile in health and disease. Mol. Aspects Med. 2017, 56, 54-65. 115. Staudinger, J. L.; Goodwin, B.; Jones, S. A.; Hawkins-Brown, D.; MacKenzie, K. I.; LaTour, A.; Liu, Y.; Klaassen, C. D.; Brown, K. K.; Reinhard, J.; Willson, T. M.; Koller, B. H.; Kliewer, S. A., The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc. Natl. Acad. Sci. U. S. A. 2001, 98 (6), 3369-3374. 116. Duboc, H.; Tache, Y.; Hofmann, A. F., The bile acid TGR5 membrane receptor: from basic research to clinical application. Dig. Liver Dis. 2014, 46 (4), 302-312. 117. Makishima, M.; Lu, T. T.; Xie, W.; Whitfield, G. K.; Domoto, H.; Evans, R. M.; Haussler, M. R.; Mangelsdorf, D. J., Vitamin D receptor as an intestinal bile acid sensor. Science 2002, 296 (5571), 1313-1316. 118. Dorrestein, P.; Gentry, E.; Collins, S.; Panitchpakdi, M.; Belda-Ferre, P.; Stewart, A.; Wang, M.; Jarmusch, A.; Avila-Pacheco, J.; Plichta, D.; Aron, A.; Vlamakis, H.; Ananthakrishnan, A.; Clish, C.; Xavier, R.; Baker, E.; Patterson, A.; Knight, R.; Siegel, D., A synthesis-based reverse metabolomics approach for the discovery of chemical structures from humans and animals. Res. Sq. 2021. 119. Garcia, C. J.; Kosek, V.; Beltran, D.; Tomas-Barberan, F. A.; Hajslova, J., Production of new microbially conjugated bile acids by human gut microbiota. Biomolecules 2022, 12 (5). 120. Guzior, D.; Okros, M.; Hernandez, C. M.; Shivel, M.; Armwald, B.; Hausinger, R.; Quinn, R., Bile salt hydrolase/aminoacyltransferase shapes the microbiome. Res. Sq. 2022. 121. Foley, M. H.; Walker, M. E.; Stewart, A. K.; O'Flaherty, S.; Gentry, E. C.; Patel, S.; Beaty, V. V.; Allen, G.; Pan, M.; Simpson, J. B.; Perkins, C.; Vanhoy, M. E.; Dougherty, M. K.; McGill, S. K.; Gulati, A. S.; Dorrestein, P. C.; Baker, E. S.; Redinbo, M. R.; Barrangou, R.; Theriot, C. M., Bile salt hydrolases shape the bile acid landscape and restrict Clostridioides difficile growth in the murine gut. Nat. Microbiol. 2023, 8 (4), 611-628. 122. Patterson, A.; Rimal, B.; Collins, S.; Granda, M.; Koo, I.; Solanka, S.; Hoque, N.; Gentry, E.; Yan, T.; Bisanz, J.; Krausz, K.; Desai, D.; Amin, S.; Rocha, E.; Coleman, J.; Shah, Y.; Gonzalez, F.; Heuvel, J. V.; Dorrestein, P.; Weinert, E., Bile acids are substrates for amine N-acyl transferase activity by bile salt hydrolase. Res. Sq. 2022. 123. Wang, H.; Ainiwaer, A.; Song, Y.; Qin, L.; Peng, A.; Bao, H.; Qin, H., Perturbed gut microbiome and fecal and serum metabolomes are associated with chronic kidney disease severity. Microbiome 2023, 11 (1), 3. 124. Hu, X.; Ouyang, S.; Xie, Y.; Gong, Z.; Du, J., Characterizing the gut microbiota in patients with chronic kidney disease. Postgrad. Med. 2020, 132 (6), 495-505. 125. Bartochowski, P.; Gayrard, N.; Bornes, S.; Druart, C.; Argiles, A.; Cordaillat-Simmons, M.; Duranton, F., Gut-kidney axis investigations in animal models of chronic kidney disease. Toxins 2022, 14 (9). 126. Mei, Z.; Chen, G. C.; Wang, Z.; Usyk, M.; Yu, B.; Baeza, Y. V.; Humphrey, G.; Benitez, R. S.; Li, J.; Williams-Nguyen, J. S.; Daviglus, M. L.; Hou, L.; Cai, J.; Zheng, Y.; Knight, R.; Burk, R. D.; Boerwinkle, E.; Kaplan, R. C.; Qi, Q., Dietary factors, gut microbiota, and serum trimethylamine-N-oxide associated with cardiovascular disease in the Hispanic Community Health Study/Study of Latinos. Am. J. Clin. Nutr. 2021, 113 (6), 1503-1514. 127. Ramireddy, L.; Tsen, H. Y.; Chiang, Y. C.; Hung, C. Y.; Chen, F. C.; Yen, H. T., The gene expression and bioinformatic analysis of choline trimethylamine-lyase (CutC) and its activating enzyme (CutD) for gut microbes and comparison with their TMA production levels. Curr. Res. Microb. Sci. 2021, 2. 128. Wang, Z.; Klipfell, E.; Bennett, B. J.; Koeth, R.; Levison, B. S.; Dugar, B.; Feldstein, A. E.; Britt, E. B.; Fu, X.; Chung, Y. M.; Wu, Y.; Schauer, P.; Smith, J. D.; Allayee, H.; Tang, W. H.; DiDonato, J. A.; Lusis, A. J.; Hazen, S. L., Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011, 472 (7341), 57-63. 129. Tang, W. H.; Wang, Z.; Kennedy, D. J.; Wu, Y.; Buffa, J. A.; Agatisa-Boyle, B.; Li, X. S.; Levison, B. S.; Hazen, S. L., Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ. Res. 2015, 116 (3), 448-455. 130. Hofmann, A. F., The continuing importance of bile acids in liver and intestinal disease. Arch. Intern. Med. 1999, 159 (22), 2647-2658. 131. Chang, A.; Jeske, L.; Ulbrich, S.; Hofmann, J.; Koblitz, J.; Schomburg, I.; Neumann-Schaal, M.; Jahn, D.; Schomburg, D., BRENDA, the ELIXIR core data resource in 2021: new developments and updates. Nucleic Acids Res. 2021, 49 (D1), D498-D508. 132. Yoshimoto, T.; Higashi, H.; Kanatani, A.; Lin, X. S.; Nagai, H.; Oyama, H.; Kurazono, K.; Tsuru, D., Cloning and sequencing of the 7 alpha-hydroxysteroid dehydrogenase gene from Escherichia coli HB101 and characterization of the expressed enzyme. J. Bacteriol. 1991, 173 (7), 2173-2179. 133. Devlin, A. S.; Fischbach, M. A., A biosynthetic pathway for a prominent class of microbiota-derived bile acids. Nat. Chem. Biol. 2015, 11 (9), 685-690. 134. Christiaens, H.; Leer, R. J.; Pouwels, P. H.; Verstraete, W., Cloning and expression of a conjugated bile acid hydrolase gene from Lactobacillus plantarum by using a direct plate assay. Appl. Environ. Microbiol. 1992, 58 (12), 3792-3798. 135. Mallonee, D. H.; Adams, J. L.; Hylemon, P. B., The bile acid-inducible baiB gene from Eubacterium sp. strain VPI 12708 encodes a bile acid-coenzyme A ligase. J. bacteriol. 1992, 174 (7), 2065-2071. 136. Leblond, F.; Guévin, C.; Demers, C.; Pellerin, I.; Gascon-Barré, M.; Pichette, V., Downregulation of hepatic cytochrome P450 in chronic renal failure. J. Am. Soc. Nephrol. 2001, 12 (2), 326-332. 137. Leblond, F. A.; Giroux, L.; Villeneuve, J. P.; Pichette, V., Decreased in vivo metabolism of drugs in chronic renal failure. Drug Metab. Dispos. 2000, 28 (11), 1317-1320. 138. Leblond, F. A.; Petrucci, M.; Dube, P.; Bernier, G.; Bonnardeaux, A.; Pichette, V., Downregulation of intestinal cytochrome p450 in chronic renal failure. J. Am. Soc. Nephrol. 2002, 13 (6), 1579-1585. 139. Velenosi, T. J.; Feere, D. A.; Sohi, G.; Hardy, D. B.; Urquhart, B. L., Decreased nuclear receptor activity and epigenetic modulation associates with down-regulation of hepatic drug-metabolizing enzymes in chronic kidney disease. FASEB J. 2014, 28 (12), 5388-5397. 140. Hamoud, A. R.; Weaver, L.; Stec, D. E.; Hinds, T. D., Jr., Bilirubin in the liver-gut signaling axis. Trends Endocrinol. Metab. 2018, 29 (3), 140-150. 141. Sanada, S.; Suzuki, T.; Nagata, A.; Hashidume, T.; Yoshikawa, Y.; Miyoshi, N., Intestinal microbial metabolite stercobilin involvement in the chronic inflammation of ob/ob mice. Sci. Rep. 2020, 10 (1). 142. Williams, B. B.; Van Benschoten, A. H.; Cimermancic, P.; Donia, M. S.; Zimmermann, M.; Taketani, M.; Ishihara, A.; Kashyap, P. C.; Fraser, J. S.; Fischbach, M. A., Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine. Cell Host Microbe 2014, 16 (4), 495-503. 143. Capitani, G.; De Biase, D.; Aurizi, C.; Gut, H.; Bossa, F.; Grutter, M. G., Crystal structure and functional analysis of Escherichia coli glutamate decarboxylase. EMBO J. 2003, 22 (16), 4027-4037. 144. Funabashi, M.; Grove, T. L.; Wang, M.; Varma, Y.; McFadden, M. E.; Brown, L. C.; Guo, C.; Higginbottom, S.; Almo, S. C.; Fischbach, M. A., A metabolic pathway for bile acid dehydroxylation by the gut microbiome. Nature 2020, 582 (7813), 566-570. 145. Ridlon, J. M.; Kang, D. J.; Hylemon, P. B., Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 2006, 47 (2), 241-259. 146. Kang, D. J.; Ridlon, J. M.; Moore II, D. R.; Barnes, S.; Hylemon, P. B., Clostridium scindens baiCD and baiH genes encode stereospecific 7α/7β-hydroxy-3-oxo-Δ4-cholenoic acid oxidoreductases. Biochim. Biophys. Acta 2008, 1781 (1-2), 16-25. 147. Schirch, V.; Hopkins, S.; Villar, E.; Angelaccio, S., Serine hydroxymethyltransferase from Escherichia coli: purification and properties. J. Bacteriol. 1985, 163 (1), 1-7. 148. Dickert, S.; Pierik, A. J.; Buckel, W., Molecular characterization of phenyllactate dehydratase and its initiator from Clostridium sporogenes. Mol. Microbiol. 2002, 44 (1), 49-60. 149. Ferrandez, A.; Prieto, M. A.; Garcia, J. L.; Diaz, E., Molecular characterization of PadA, a phenylacetaldehyde dehydrogenase from Escherichia coli. FEBS Lett. 1997, 406 (1-2), 23-27. 150. Li, K.; Li, G.; Bradbury, L. M.; Hanson, A. D.; Bruner, S. D., Crystal structure of the homocysteine methyltransferase MmuM from Escherichia coli. Biochem. J. 2016, 473 (3), 277-284. 151. Yang, G.; Hong, S.; Yang, P.; Sun, Y.; Wang, Y.; Zhang, P.; Jiang, W.; Gu, Y., Discovery of an ene-reductase for initiating flavone and flavonol catabolism in gut bacteria. Nat. Commun. 2021, 12 (1). 152. Gomez, C.; Stucheli, S.; Kratschmar, D. V.; Bouitbir, J.; Odermatt, A., Development and validation of a highly sensitive LC-MS/MS method for the analysis of bile acids in serum, plasma, and liver tissue samples. Metabolites 2020, 10 (7). 153. Iida, T.; Tamura, T.; Matsumoto, T.; C., C. F., Carbon-13 NMR spectra of hydroxylated bile acid stereoisomers. Org. Magn. Reson. 1983, 21 (5), 305-309. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91149 | - |
dc.description.abstract | 慢性腎臟病是全世界盛行率高的疾病之一,其病因在於腎臟過濾功能下降。過去的研究結果表明,慢性腎臟病患者體內的腸道菌群為失衡狀態。然而,目前對於腸道菌在慢性腎臟病患者體內代謝活動的全貌仍知之甚少。因此,本研究旨在探討慢性腎臟病患者體內與腸道菌相關的代謝變化。我們採用了多體學分析,包括利用液相層析串聯質譜儀進行非標靶代謝體分析,以及利用散彈槍總體基因體定序技術進行研究。
在代謝體分析中,我們首先透過Kyoto Encyclopedia of Genes (KEGG)資料庫討論代謝途徑,並發現色胺酸路徑失調。為了探討未知代謝物,我們使用分子網路技術,通過計算離子碎片的相似度,將具有相似碎片的物質歸為一組。在分子網路研究中,我們共鑑定出九個代謝物群,其中包括呈現下降趨勢的膽酸群。在膽酸群中,其中一個膽酸被我們鑑定為麩胺膽酸。除了分子網路分析外,我們也透過分子差異分析討論分子之間潛在的酵素反應。在總體基因體分析中,我們探討了菌株分布差異以及與代謝相關的基因差異。我們發現有五個參與次級膽酸代謝的基因在疾病組中為失調情況。最後,通過相關性分析,我們探討了代謝體和總體基因體數據之間的關聯。其中麩胺膽酸與Clostridium sp. OF09-36為顯著正相關,此結果暗示此腸道菌可能參與麩胺膽酸的生成。 本研究的目的在於討論慢性腎臟病中具有變化的糞便代謝物和相關腸道菌。我們的研究結果不僅有助於更深入了解慢性腎臟病和菌群失衡,更重要的是揭示了許多以往未知的現象和關聯。這些發現為未來在此領域的研究和臨床應用提供了潛在方向。 | zh_TW |
dc.description.abstract | Chronic kidney disease (CKD) is a significant global health concern caused by loss of kidney function. Recent studies have explored the relationship between CKD and dysbiosis, an imbalance in gut bacteria. Integrative analyses have uncovered relationships between specific fecal metabolites, bacteria, and CKD patients. However, many altered fecal metabolites and their corresponding gut microbiota in CKD patients remain poorly understood. To gain further insights into gut microbiota-associated metabolism in CKD patients, we conducted untargeted metabolomic analysis by LC-MS/MS and shotgun metagenomic study.
In our study, we pointed out the altered tryptophan metabolism through the use of KEGG database. To explore unknown compounds, we employed feature-based molecular networking, a powerful tool that clusters molecules based on similar MS/MS spectra. In total, nine clusters were annotated, including the cluster of bile acid, which exhibited down-regulation in the CKD group. Additionally, mass shift analysis was further performed to investigate the mass differences between related molecules, aiding the exploration of potential enzymatic reactions. In addition, shotgun metagenomic sequencing was conducted to analyze the population of gut bacteria and genes about enzymes in secondary bile acid metabolism between the control and the CKD groups. In our results, five genes involved in secondary bile acid metabolism were dysregulated. Finally, through integrated analysis, we established connections between specific metabolites and gut microbiota. Notably, glutamatocholic acid, one of the annotated bile acids, showed a positive correlation with Clostridium sp. OF09-36, suggesting a potential role of bacteria in the biosynthesis. Our research provides novel findings into the altered fecal metabolites and their related gut microbiota in CKD patients. The findings contribute to a deeper understanding of CKD and dysbiosis, potentially paving the way for future research and clinical applications in this field. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-11-20T16:09:04Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-11-20T16:09:05Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 謝誌 i
摘要 iii Abstract iv 目錄 vi 圖目錄 ix 表目錄 xii Chapter 1 Introduction 1 1-1 Chronic kidney disease 1 1-2 Gut bacteria 3 1-3 Metabolomics 8 1-3-1 Metabolomic analysis 8 1-3-2 Molecular networking 9 1-3-3 Mass shift analysis 11 1-4 Aim 14 Chapter 2 Materials and methods 16 2-1 Study participants 16 2-2 Bacterial DNA extraction and shotgun metagenomic sequencing 16 2-3 Read quality control 17 2-4 Metagenome assembly and annotation 17 2-5 Chemicals 18 2-6 Samples extraction and LC-MS/MS analysis 18 2-7 Feature-Based Molecular Networking (FBMN) 19 2-8 Statistical analysis 21 2-9 Mass shift 21 Chapter 3 Results and discussion 22 3-1 KEGG pathway analysis 22 3-2 Featured-based molecular networking (FBMN) analysis 28 3-2-1 Characterization of fecal metabolites in molecular networking 28 3-2-2 Acylcarnitines 29 3-2-3 Glycated amino acids 30 3-2-4 Tryptophan-related compounds 31 3-2-5 Dipeptides 32 3-2-6 Lysophosphatidylserines (LPSs) 33 3-2-7 Lysophosphatidylethanolamines (LPEs) 33 3-2-8 Monoacylglycerols (MGs) 34 3-2-9 Lysophosphatidylcholines (LPCs) 34 3-2-10 Bile acids 35 3-3 Metagenomic analysis 56 3-3-1 Taxonomic analysis 56 3-3-2 Functional analysis of secondary bile acid metabolism 58 3-4 Integrated analysis 64 3-5 Mass shift chemical profiling between the control and the CKD groups 67 3-5-1 Meta-mass shift analysis revealed distinct diversity 67 3-5-2 Mass shifts indicated potential biotransformation 68 Chapter 4 Conclusion 84 References 86 Appendix 100 Appendix 1. Abbreviation 100 Appendix 2. KEGG Pathway 103 Appendix 3. Significantly different nodes in the nine clusters 108 Appendix 4. Significantly different species in the volcano plot 114 Appendix 5. Spearman correlation between gut microbiota and metabolites which have altered levels in the CKD group 120 | - |
dc.language.iso | en | - |
dc.title | 利用液相層析串聯質譜儀和總體基因體分析技術探索慢性腎臟病病患中與腸道菌相關之代謝 | zh_TW |
dc.title | Exploring Gut Microbiota-Associated Metabolism in Chronic Kidney Disease Using Liquid Chromatography Tandem Mass Spectrometry and Metagenomic Sequencing | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 吳秉勳;蔡伊琳;廖志中 | zh_TW |
dc.contributor.oralexamcommittee | Ping-Hsun Wu;I-Lin Tsai;Chih-Chuang Liaw | en |
dc.subject.keyword | 慢性腎臟病,非標靶代謝體分析,腸道菌,分子網路,總體基因體分析, | zh_TW |
dc.subject.keyword | chronic kidney disease,untargeted metabolomic analysis,gut bacteria,molecular networking,shotgun metagenomic sequencing, | en |
dc.relation.page | 122 | - |
dc.identifier.doi | 10.6342/NTU202304209 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-09-06 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 化學系 | - |
dc.date.embargo-lift | 2028-09-05 | - |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-1.pdf 此日期後於網路公開 2028-09-05 | 12.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。