Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91144
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳昭瑩zh_TW
dc.contributor.advisorChao-Ying Chenen
dc.contributor.author陳映杰zh_TW
dc.contributor.authorYing-Chieh Chenen
dc.date.accessioned2023-11-16T16:10:20Z-
dc.date.available2023-11-17-
dc.date.copyright2023-11-16-
dc.date.issued2023-
dc.date.submitted2023-09-25-
dc.identifier.citation江旻叡。2023。LsGRP1促進植物生長與防禦之關鍵區段及其與LsRbcS之交互作用。國立臺灣大學植物病理與微生物學系碩士論文。臺北。臺灣。
行政院農業委員會2020。109年農業統計年報。行政院農業委員會。
施苡亘。2014。LsGRP1C對十字花科炭疽病之抑病功能及抑菌機制探討。國立臺灣大學植物病理與微生物學系碩士論文。臺北。臺灣。
施侑廷。百合防禦相關蛋白LsGRP1誘導植物抗灰黴病之應用。國立臺灣大學植物病理與微生物學系碩士論文。臺北。臺灣。
洪瑛穗、周明燕、郭宏遠、劉明宗、李美娟。2019。番茄生產、抗病育種及品種育成概況。種苗科技專訊,No.105。行政院農業委員會種苗改良繁殖場。
孫依婷。2023。LsGRP1經由水楊酸及乙烯傳訊路徑強化植物免疫。國立臺灣大學植物病理與微生物學系碩士論文。臺北。臺灣。
陸曉親。2021。外源性抗菌胜肽LsGRP1C抗草莓炭疽病之機制研究。國立臺灣大學植物病理與微生物學系碩士論文。臺北。臺灣。
黃博洋。2021。LsGRP1誘導阿拉伯芥系統性抗病之傳訊路徑探討。國立臺灣大學植物病理與微生物學系碩士論文。臺北。臺灣。
鍾珮哲、潘俊傑。2018。草莓育苗經驗談。苗栗區農業專訊 81:4-6。
Abbas, M., Saleem, M., Hussain, D., Ramzan, M., Jawad Saleem, M., Abbas, S., and Parveen, Z. 2022. Review on integrated disease and pest management of field crops. Int. J. Trop. Insect Sci. 42: 3235-3243.
Abdelaziz, A. M., Hashem, A. H., El-Sayyad, G. S., El-Wakil, D. A., Selim, S., Alkhalifah, D. H., and Attia, M. S. 2023. Biocontrol of soil borne diseases by plant growth promoting rhizobacteria. Trop. Plant Pathol. 48: 105-127.
Amsbury, S. 2020. Sensing Attack: The role of wall-associated kinases in plant pathogen responses. Plant Physiol. 183:1420-1421.
Balint‐Kurti, P. 2019. The plant hypersensitive response: concepts, control and consequences. Mol. Plant Pathol. 20:1163-1178.
Barzman, M., Bàrberi, P., Birch, A. N. E., Boonekamp, P., Dachbrodt-Saaydeh, S., Graf, B., and Sattin, M. 2015. Eight principles of integrated pest management. Agron. Sustain. Dev. 35:1199-1215.
Beffa, R. S., Hofer, R. M., Thomas, M., and Meins Jr, F. 1996. Decreased susceptibility to viral disease of β-1, 3-glucanase-deficient plants generated by antisense transformation. Plant Cell 8:1001-1011.
Betsuyaku, S., Katou, S., Takebayashi, Y., Sakakibara, H., Nomura, N., and Fukuda, H. 2018. Salicylic acid and jasmonic acid pathways are activated in spatially different domains around the infection site during effector-triggered immunity in Arabidopsis thaliana. Plant Cell Physiol. 59:8-16.
Bigeard, J., Colcombet, J., and Hirt, H. 2015. Signaling mechanisms in pattern-triggered immunity (PTI). Mol. Plant 8:521-539.
Charng, Y. Y., Liu, H. C., Liu, N. Y., Chi, W. T., Wang, C. N., Chang, S. H., and Wang, T. T. 2007. A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol. 143:251-262.
Chen, P., Giarola, V., and Bartels, D. 2021. The Craterostigma plantagineum protein kinase CpWAK1 interacts with pectin and integrates different environmental signals in the cell wall. Planta 253:1-16.
Chen, X. Y., Liu, L., Lee, E., Han, X., Rim, Y., Chu, H., and Kim, J. Y. 2009. The Arabidopsis callose synthase gene GSL8 is required for cytokinesis and cell patterning. Plant Physiol. 150:105-113.
Choi, H. W., and Klessig, D. F. 2016. DAMPs, MAMPs, and NAMPs in plant innate immunity. BMC Plant Biol. 16: 1-10.
Conrath, U. 2006. Systemic acquired resistance. Plant Signal. Behav. 1:179-184.
Conrath, U., Beckers, G. J., Flors, V., García-Agustín, P., Jakab, G., Mauch, F., and Mauch-Mani, B. 2006. Priming: getting ready for battle. Mol. Plant-Microbe Interact. 19:1062-1071.
Conrath, U., Beckers, G. J., Langenbach, C. J., and Jaskiewicz, M. R. 2015. Priming for enhanced defense. Annu. Rev. Phytopathol. 53:97-119.
Czolpinska, M., and Rurek, M. 2018. Plant glycine-rich proteins in stress response: An emerging, still prospective story. Front. Plant Sci. 9:302.
da Silva, M., Germano, S., Duarte, A., Pinto, P., and Marques, N. T. 2023. Callose synthase and xyloglucan endotransglucosylase gene expression over time in Citrus × clementina and Citrus × sinensis infected with citrus tristeza virus. Phytoparasitica 2023: 1-13.
Denoux, C., Galletti, R., Mammarella, N., Gopalan, S., Werck, D., De Lorenzo, G., and Dewdney, J. 2008. Activation of defense response pathways by OGs and Flg22 elicitors in Arabidopsis seedlings. Mol. Plant 1:423-445.
Ding, Y., Fromm, M., and Avramova, Z. 2012. Multiple exposures to drought 'train' transcriptional responses in Arabidopsis. Nat. Commun. 3:740.
Dodds, P. N., and Rathjen, J. P. 2010. Plant immunity: towards an integrated view of plant–pathogen interactions. Nat. Rev. Genet. 11:539-548.
Dos Santos, C., and Franco, O. L. 2023. Pathogenesis-related proteins (PRs) with enzyme activity activating plant defense responses. Plants 12: 2226.
Dumalisile, P., Witthuhn, R. C., and Britz, T. J. 2005. Impact of different pasteurization temperatures on the survival of microbial contaminants isolated from pasteurized milk. Int. J. Dairy Technol. 58:74-82.
Ellinger, D., and Voigt, C. A. 2014. Callose biosynthesis in Arabidopsis with a focus on pathogen response: what we have learned within the last decade. Ann. Bot. 114:1349-1358.
Gaffney. T., Friederich, L., Vernooij, B., Nye, G., Uknes, S., and Ward, E. 1993. Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261: 754–6.
Geng, X., Jin, L., Shimada, M., Kim, M. G., and Mackey, D. 2014. The phytotoxin coronatine is a multifunctional component of the virulence armament of Pseudomonas syringae. Planta 240: 1149-1165.
González‐Castro, R., Gómez‐Lim, M. A., and Plisson, F. 2021. Cysteine‐rich peptides: Hyperstable scaffolds for protein engineering. Chembiochemistry 22: 961-973.
Gouveia, B. C., Calil, I. P., Machado, J. P. B., Santos, A. A., and Fontes, E. P. 2017. Immune receptors and co-receptors in antiviral innate immunity in plants. Front. Microbiol. 7:2139.
Guedes, R. N. C., Smagghe, G., Stark, J. D., and Desneux, N. 2016. Pesticide-induced stress in arthropod pests for optimized integrated pest management programs. Annu. Rev. Entomol. 61:43-62.
Hachem, R., Bahna, P., Hanna, H., Stephens, L. C., and Raad, I. 2006. EDTA as an adjunct antifungal agent for invasive pulmonary aspergillosis in a rodent model. Antimicrob. Agents Chemother. 50: 1823-1827.
Hamann, T. 2012. Plant cell wall integrity maintenance as an essential component of biotic stress response mechanisms. Front. Plant Sci. 3:77.
Hampp, R., Hartmann, A., and Nehls, U. 2012. The rhizosphere: molecular interactions between microorganisms and roots. In: Growth and Defense in Plants. pp.111-139. Springer, Berlin, Heidelberg.
Han, X., Huang, L. J., Feng, D., Jiang, W., Miu, W., and Li, N. 2019. Plasmodesmata-related structural and functional proteins: the long sought-after secrets of a cytoplasmic channel in plant cell walls. Int. J. Mol. 20:2946.
He, Z. H., Cheeseman, I., He, D., and Kohorn, B. D. 1999. A cluster of five cell wall-associated receptor kinase genes, Wak1–5, are expressed in specific organs of Arabidopsis. Plant Mol. Biol. 39: 1189-1196.
Hilker, M., Schwachtje, J., Baier, M., Balazadeh, S., Bäurle, I., Geiselhardt, S., and Kopka, J. 2016. Priming and memory of stress responses in organisms lacking a nervous system. Biol. Rev. 91:1118-1133.
Hogg, P. J. 2003. Disulfide bonds as switches for protein function. Trends Biochem. 28: 210-214.
Hönig, M., Roeber, V. M., Schmülling, T., and Cortleven, A. 2023. Chemical priming of plant defense responses to pathogen attacks. Front. Plant Sci. 14: 1146577.
Hou, S., Liu, Z., Shen, H., and Wu, D. 2019. Damage-associated molecular pattern-triggered immunity in plants. Front. Plant Sci. 10:646.
Hu, Z., Shao, S., Zheng, C., Sun, Z., Shi, J., Yu, J., and Shi, K. 2018. Induction of systemic resistance in tomato against Botrytis cinerea by N-decanoyl-homoserine lactone via jasmonic acid signaling. Planta 247:1217-1227.
Hu, Z., Zhang, H., and Shi, K. 2018. Plant peptides in plant defense responses. Plant Signal. Behav.. 13: e1475175.
Hua, G. K. H., Ji, P., Culbreath, A. K., and Ali, M. E. 2022. Comparative study of phosphorous-acid-containing products for managing Phytophthora blight of bell pepper. Agronmy 12:1293.
Ishiga, T., Iida, Y., Sakata, N., Ugajin, T., Hirata, T., Taniguchi, S., and Ishiga, Y. 2020. Acibenzolar-S-methyl activates stomatal-based defense against Pseudomonas cannabina pv. alisalensis in cabbage. J. Gen. Plant Pathol. 2020: 1-7.
Kachroo, A., and Robin, G. P. 2013. Systemic signaling during plant defense. Curr. Opin. Plant Biol. 16:527-533.
Kanneganti, V., and Gupta, A. K. 2008. Wall associated kinases from plants—an overview. Physiol. Mol. Biol. Plants 14:109-118.
Kao, H. Y., Chung, K. R., and Huang, J. W. 2019. Paraquat and glyphosate increase severity of strawberry anthracnose caused by Colletotrichum gloeosporioides. J. Gen. Plant Pathol. 85:23-32.
Karlsson Green, K., Stenberg, J. A., and Lankinen, Å. 2020. Making sense of Integrated Pest Management (IPM) in the light of evolution. Evol. Appl., 13: 1791-1805.
Kogan, M. 1998. Integrated pest management: historical perspectives and contemporary developments. Annu. Rev. Entomol. 43:243-270.
Koley, P., Brahmachari, S., Saha, A., Deb, C., Mondal, M., Das, N., and Kundu, S. 2022. Phytohormone priming of tomato plants evoke differential behavior in Rhizoctonia solani during infection, with salicylate priming imparting greater tolerance than jasmonate. Front. Plant Sci. 12:766095.
Kong, F., and Yang, L. 2023. Pathogen-triggered changes in plant development: Virulence strategies or host defense mechanism. Front. Microbiol. 14: 1122947.
Korek, M., and Marzec, M. 2023. Strigolactones and abscisic acid interactions affect plant development and response to abiotic stresses. BMC Plant Biol. 23: 314.
Kurt, F., Kurt, B., and Filiz, E. 2020. Wall associated kinases (WAKs) gene family in tomato (Solanum lycopersicum): insights into plant immunity. Gene Rep. 21: 100828.
Lazebnik, J., Frago, E., Dicke, M., and Van Loon, J. J. 2014. Phytohormone mediation of interactions between herbivores and plant pathogens. J. Chem. Ecol. 40:730-741.
Lin, C. H., Chang, M. W., and Chen, C. Y. 2014. A potent antimicrobial peptide derived from the protein LsGRP1 of Lilium. Phytopathology 104:340-346.
Lin, C. H., Pan, Y. C., Ye, N. H., Shih, Y. T., Liu, F. W., and Chen, C. Y. 2020. LsGRP1, a class II glycine‐rich protein of Lilium, confers plant resistance via mediating innate immune activation and inducing fungal programmed cell death. Mol. Plant Pathol. 21:1149-1166.
Lu, Y. Y., and Chen, C. Y. 2005. Molecular analysis of lily leaves in response to salicylic acid effective towards protection against Botrytis elliptica. Plant Sci. 169:1-9.
Lyu, D., Backer, R., Robinson, W. G., and Smith, D. L. 2019. Plant growth-promoting rhizobacteria for cannabis production: yield, cannabinoid profile and disease resistance. Front. Microbiol. 2019: 1761.
Mahmood, A., Turgay, O. C., Farooq, M., and Hayat, R. 2016. Seed biopriming with plant growth promoting rhizobacteria: a review. FEMS Microbiol. Ecol. 92: fiw112.
Martinez-Medina, A., Flors, V., Heil, M., Mauch-Mani, B., Pieterse, C. M., Pozo, M. J., and Conrath, U. 2016. Recognizing plant defense priming. Trends Plant Sci. 21:818-822.
Martínez-Soto, D., Yu, H., Allen, K. S., and Ma, L. J. 2023. Differential colonization of the plant vasculature between endophytic versus pathogenic Fusarium oxysporum strains. Mol. Plant Microbe Interact. 36: 4-13.
Mason, K. N., Ekanayake, G., and Heese, A. 2020. Staining and automated image quantification of callose in Arabidopsis cotyledons and leaves. In: Methods in Cell Biology Vol. 160, pp.181-199. Academic Press.
McDonald, A. E., Grant, B. R., and Plaxton, W. C. 2001. Phosphite (phosphorous acid): its relevance in the environment and agriculture and influence on plant phosphate starvation response. J. Plant Nutr. 24:1505-1519.
Meitzler, J. L., Hinde, S., Bánfi, B., Nauseef, W. M., and de Montellano, P. R. O. 2013. Conserved cysteine residues provide a protein-protein interaction surface in dual oxidase (DUOX) proteins. J. Biol. Chem. 288: 7147-7157.
Monaghan, J., and Zipfel, C. 2012. Plant pattern recognition receptor complexes at the plasma membrane. Curr. Opin. Plant Biol. 15:349-357.
Nakashita, H., Yasuda, M., Nitta, T., Asami, T., Fujioka, S., Arai, Y., and Yoshida, S. 2003. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J. 33:887-898.
Nasir, F., Tian, L., Chang, C., Li, X., Gao, Y., Tran, L. S. P., and Tian, C. 2018. Current understanding of pattern-triggered immunity and hormone-mediated defense in rice (Oryza sativa) in response to Magnaporthe oryzae infection. In: Seminars in Cell and Developmental Biology 83:95-105. Academic Press.
Park, A. R., Cho, S. K., Yun, U. J., Jin, M. Y., Lee, S. H., Sachetto-Martins, G., and Park, O. K. 2001. Interaction of the Arabidopsis receptor protein kinase Wak1 with a glycine-rich protein, AtGRP-3. J. Biol. Chem. 276:26688-26693.
Piršelová, B., and Matušíková, I. 2013. Callose: the plant cell wall polysaccharide with multiple biological functions. Acta Physiol. Plant. 35:635-644.
Purrington, C. B. 2000. Costs of resistance. Curr. Opin. Plant Biol. 3:305–8.
Ramírez-Zavaleta, C. Y., García-Barrera, L. J., Rodríguez-Verástegui, L. L., Arrieta-Flores, D., and Gregorio-Jorge, J. 2022. An overview of PRR-and NLR-mediated immunities: Conserved signaling components across the plant kingdom that communicate both pathways. Int. J. Mol. Sci. 23: 12974.
Reddy, P. P. 2013. Plant defense activators. In: Recent Advances in Crop Protection. pp.121-129. Springer.
Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H.-Y., and Hunt, M. D. 1996. Systemic acquired resistance. Plant Cell 8:1808–19.
Sani, E., Herzyk, P., Perrella, G., Colot, V., and Amtmann, A. 2013. Hyperosmotic priming of Arabidopsis seedlings establishes a long-term somatic memory accompanied by specific changes of the epigenome. Genome Biol. 14:1-24.
Shafi, Z., Ilyas, T., Shahid, M., Vishwakarma, S. K., Malviya, D., Yadav, B., and Singh, H. V. 2023. Microbial Management of Fusarium Wilt in Banana: A Comprehensive Overview. In: Detection, Diagnosis and Management of Soil-Borne Phytopathogens, pp.413-435. Springer Nature
Sharp, R. E., LeNoble, M. E., Else, M. A., Thorne, E. T., and Gherardi, F. 2000. Endogenous ABA maintains shoot growth in tomato independently of effects on plant water balance: evidence for an interaction with ethylene. J. Exp. Bot. 51:1575-1584.
Shen, Y., Liu, N., Li, C., Wang, X., Xu, X., Chen, W., et al. 2017. The early response during the interaction of fungal phytopathogen and host plant. Open Biol. 7:170057.
Shulaev, V., Silverman, P., and Raskin, I. 1997. Airborne signaling by methyl salicylate in plant pathogen resistance. Nature 385:718-721.
Sivager, G., Calvez, L., Bruyere, S., Boisne-Noc, R., Hufnagel, B., Cebrian-Torrejon, G., and Morillon, R. 2022. Better tolerance to Huanglongbing is conferred by tetraploid Swingle citrumelo rootstock and is influenced by the ploidy of the scion. Front. Plant Sci., 13: 1030862.
Slaby, P., Körner, M., and Albert, M. 2021. A cell wall-localized glycine-rich protein of dodder acts as pathogen-associated molecular pattern. Commun. Integr. Biol. 14:111-114.
Sun, J., Ning, Y., Wang, L., Wilkins, K. A., and Davies, J. M. 2021. Damage signaling by extracellular nucleotides: A role for cyclic nucleotides in elevating cytosolic free calcium. Front. Plant Sci. 12: 788514.
Sun, Z., Song, Y., Chen, D., Zang, Y., Zhang, Q., Yi, Y.,and Qu, G. 2020. Genome-wide identification, classification, characterization, and expression analysis of the wall-associated kinase family during fruit development and under wound stress in tomato (Solanum lycopersicum L.). Genes. 11: 1186.
Tang, J., Han, Z., Sun, Y., Zhang, H., Gong, X., and Chai, J. 2015. Structural basis for recognition of an endogenous peptide by the plant receptor kinase PEPR1. Cell Res. 25:110-120.
Tanveer, S., Ilyas, N., Akhtar, N., Sayyed, R. Z., and Almalki, W. H. 2023. Induction of regulatory mechanisms by plant growth promoting rhizobacteria in crops facing drought stress. Crop Pasture Sci.
Tavormina, P., De Coninck, B., Nikonorova, N., De Smet, I., and Cammue, B. P. 2015. The plant peptidome: an expanding repertoire of structural features and biological functions. The Plant Cell, 27: 2095-2118.
Tör, M., Lotze, M. T., and Holton, N. 2009. Receptor-mediated signaling in plants: molecular patterns and programmes. J. Exp. Bot. 60:3645-3654.
Trischuk, R. G., Schilling, B. S., Low, N. H., Gray, G. R., and Gusta, L. V. 2014. Cold acclimation, de-acclimation and re-acclimation of spring canola, winter canola and winter wheat: The role of carbohydrates, cold-induced stress proteins and vernalization. Environ. Exp. Bot. 106:156-163.
uot, B., Yao, J., Montgomery, B. L., and He, S. Y. 2014. Growth–defense tradeoffs in plants: a balancing act to optimize fitness. Mol. Plant 7: 1267-1287.
Verma, D. P. S., and Hong, Z. 2001. Plant callose synthase complexes. Plant Mol. Biol. 47:693-701.
Wagner, T. A., and Kohorn, B. D. 2001. Wall-associated kinases are expressed throughout plant development and are required for cell expansion. Plant Cell 13:303-318.
Walters, D., and Heil, M. 2007. Costs and trade-offs associated with induced resistance. Physiol. Mol. Plant Pathol. 71:3-17.
Wang, B., Andargie, M., and Fang, R. 2022. The function and biosynthesis of callose in high plants. Heliyone:09248.
Wu, H. Y., Tsai, C. Y., Wu, Y. M., Ariyawansa, H. A., Chung, C. L., and Chung, P. C. 2021. First report of Neopestalotiopsis rosae causing leaf blight and crown rot on strawberry in Taiwan. Plant Dis. 105:487-487.
Wu, Z., Wang, G., Zhang, B., Dai, T., Gu, A., Li, X., and Liu, X. 2021. Metabolic mechanism of plant defense against rice blast induced by probenazole. Metabolites 11: 246.
Yang, J., Duan, G., Li, C., Liu, L., Han, G., Zhang, Y., and Wang, C. 2019. The crosstalks between jasmonic acid and other plant hormone signaling highlight the involvement of jasmonic acid as a core component in plant response to biotic and abiotic stresses. Front. Plant Sci. 10:1349.
Yi, X., and Lu, Y. 2006. Residues and dynamics of probenazole in rice field ecosystem. Chemosphere 65:639-643.
Zhou, M., and Wang, W. 2018. Recent advances in synthetic chemical inducers of plant immunity. Front. Plant Sci. 9:1613.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91144-
dc.description.abstract隨著氣候環境不斷變化與糧食需求上升,農業面臨更嚴重的病害威脅與產量挑戰,故需在現行農法中導入病蟲害整合管理(integrated pest management)與植物健康管理(plant health management)措施,以提升病害防治與生產效率,並降低對環境造成之影響。本研究探討百合蛋白LsGRP1系統性調控植物預警效應(priming effect)的主效區段與對應之植物受體,以及其應用於田間植物健康管理之潛力。觀察融合蛋白SUMO-LsGRP1∆SS根部預處理後的阿拉伯芥幼苗與番茄植株經flg22誘導所產生的防禦反應,確認LsGRP1可系統性啟動植物的預警效應,而觀察經SUMO-LsGRP1∆SS澆灌的阿拉伯芥,並無發現生長與防禦間權衡作用的不良影響。以LsGRP1C合成胜肽澆灌處理阿拉伯芥可以誘發植株產生預警效應,而以相同方式處理SUMO-LsGRP1∆SS∆C則無此效果,顯示LsGRP1C為此預警調節之主效區段。LsGRP1於不同植物上皆可啟動預警的功能,推測植物種間可能具有相似的LsGRP1受體,本研究以阿拉伯芥受體突變株測試LsGRP1啟動預警的程度,初步推篩選AtWAK2為阿拉伯芥的LsGRP1候選受體。將LsGRP1以澆灌方式施用於田間草莓與番茄植株,對植株防禦與生產皆有正面效益,顯示LsGRP1具有應用於田間作物健康管理的潛力。zh_TW
dc.description.abstractWith the ever-changing climate and rising of food demand, agriculture is facing severe disease threats and production challenges. Implementation of plant health managements in conventional farming is important for effective disease control and reducing hazardous pesticide impact to the environment. In this study, the main region of Lilium protein LsGRP1 responsible for systemic defense mediation and the corresponding plant receptor was explored. The potential of LsGRP1 applied as a priming stimulus in the field was evaluated. By assessing the defense responses of SUMO-LsGRP1∆SS-pretreated Arabidopsis seedlings and tomatoes triggered by flg22, LsGRP1-triggered priming effect was verified. Meanwhile, negative effects caused by growth-defense trade-off were not observed. In addition, synthetic peptide LsGRP1C triggered priming but not the SUMO-LsGRP1∆SS∆C, showing that LsGRP1C is the main functioning region for the priming effect. The facts that LsGRP1 triggered priming on different plant species, implicated the presence of common receptor in plants. Among the receptor mutats of Arabidopsis, AtWAK2 was screened as a candidate receptor of LsGRP1. Further field assays showed that the plant defenses of strawberry and tomato could be triggered by LsGRP1 which also increased plant production, indicating the application potential of LsGRP1 in the plant health managment.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-11-16T16:10:20Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-11-16T16:10:20Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要 II
英文摘要 III
壹、前言 1
貳、前人研究 3
一、植物誘導性抗病(induced resistance, IR) 3
二、植物防禦誘導物(Plant defense inducers) 5
1. 分子模式(Molecular patterns) 5
2. 植物荷爾蒙(Plant hormones) 6
3. 化學物質 6
三、癒傷葡聚醣(callose) 7
四、防禦預警(defense priming) 7
五、植物富含甘胺酸蛋白(Glycine-rich protein, GRPs) 8
六、WAK與植物富含甘胺酸蛋白間的交互作用 9
七、葵百合富含甘胺酸之防禦蛋白LsGRP1 9
八、草莓栽培現況 11
九、番茄栽培現況 12
參、材料與方法 13
一、供試植物 13
1. 阿拉伯芥無菌苗栽培 13
2. 植物生長室番茄植株盆缽栽培 13
3. 田間試驗植物 13
二、以大腸桿菌系統生產LsGRP1衍生融合蛋白與其粗萃液 14
1. 表現融合蛋白之大腸桿菌菌株 14
2. 表現與純化融合蛋白 14
3. 檢測蛋白濃度 15
4. 製備SUMO-LsGRP1∆SS粗萃液 15
三、合成胜肽製備 16
1. 病原相關分子模式flagellin 22 (flg22)之製備 16
2. LsGRP1區段合成胜肽製備 16
四、蛋白質電泳與西方墨點分析 16
1. 蛋白質電泳 16
2. 西方墨點分析(Western blot analysis) 17
五、苯胺藍染色 18
六、探討LsGRP1對阿拉伯芥免疫活化的影響 18
1. 以阿拉伯芥幼苗探討LsGRP1促進PTI的功能 18
2. 鑑定LsGRP1活化PTI的作用區段與篩選LsGRP1細胞受體 19
3. 探討LsGRP1對阿拉伯芥防禦預警的影響 20
4. 探討LsGRP1C對植物系統性防禦活化的參與以及半胱胺酸(cysteine)位點置換對其功能之影響 20
七、分析LsGRP1處理對阿拉伯芥生長的影響 20
1. 對根部生長的影響 20
2. 對植株鮮重的影響 20
八、在植物生長室與溫室探討LsGRP1粗萃液澆灌對番茄防禦預警之貢獻 21
九、在溫室探討LsGRP1粗萃液澆灌對番茄果實生產的效益 21
十、以LsGRP1粗萃液進行草莓田間健康管理 22
1. 產果期葉枯病防治試驗 22
2. 產果期草莓生殖生長促進試驗 22
3. 育苗期草莓營養生長促進試驗 23
十一、胺基酸序列比對 23
十二、統計方法 23
肆、結果 24
一、大腸桿菌(Escherichia coli)系統生產SUMO-LsGRP1融合蛋白 24
二、外源SUMO-LsGRP1∆SS預處理促進阿拉伯芥幼苗之PTI防禦反應 24
三、SUMO-LsGRP1∆SS誘導阿拉伯芥產生預警作用(priming effect) 24
四、LsGRP1處理不影響阿拉伯芥幼苗主根生長 25
五、根部澆灌SUMO-LsGRP1∆SS不影響阿拉伯芥地上部生長 25
六、LsGRP1C為促進阿拉伯芥植株PTI防禦反應之重要區段 25
七、LsGRP1C合成胜肽預處理促進阿拉伯芥PTI防禦反應 26
八、LsGRP1C之半胱胺酸位點置換影響其促進PTI防禦反應之功能 26
九、篩選阿拉伯芥參與LsGRP1促進PTI的模式辨識受體(pattern recognition receptor) 26
十、根部澆灌SUMO-LsGRP1∆SS促進番茄葉組織之PTI防禦反應 27
十一、田間澆灌SUMO-LsGRP1∆SS粗萃液增加番茄葉組織之PTI反應強度 27
十二、田間澆灌SUMO-LsGRP1∆SS粗萃液提升番茄果實產量 27
十三、田間澆灌SUMO-LsGRP1∆SS粗萃液促進草莓營養生長及生殖生長 28
十四、田間澆灌SUMO-LsGRP1∆SS粗萃液提升草莓對葉枯病之抗性 29
十五、蛋白區段胺基酸序列比對 29
伍、討論 30
陸、參考文獻 37
柒、圖表集 50
表一、LsGRP1相關人工合成胜肽 51
表二、AtWAK 1-4預測胞外區段序列相似百分比 52
圖一、以西方墨點法分析大腸桿菌系統表現之SUMO-LsGRP1∆SS與其衍生蛋白 53
圖二、SUMO-LsGRP1∆SS浸泡預處理增加阿拉伯芥幼苗子葉由flg22誘導之癒傷葡聚醣沉積 56
圖三、SUMO-LsGRP1∆SS根部預處理增加阿拉伯芥幼苗子葉由flg22誘導的癒傷葡聚醣沉積 58
圖四、根部預處理SUMO-LsGRP1∆SS促進阿拉伯芥之預警效應 60
圖五、根部處理SUMO-LsGRP1∆SS不影響阿拉伯芥根部生長 61
圖六、根部澆灌處理SUMO-LsGRP1∆SS不影響阿拉伯芥地上部生長 62
圖七、LsGRP1C為LsGRP1外源處理促進阿拉伯芥PTI之重要區段 63
圖八、LsGRP1C人工合成胜肽預處理增加阿拉伯芥PTI反應程度 66
圖九、LsGRP1C之半胱胺酸位點為促進PTI功能之重要區段 68
圖十、參與LsGRP1促進PTI作用的候選受體篩選 70
圖十一、SUMO-LsGRP1∆SS粗萃液誘導番茄植株之防禦預警 72
圖十二、溫室澆灌SUMO-LsGRP1∆SS粗萃液促進番茄植株經PAMP誘導之癒傷葡聚醣沉積 73
圖十三、溫室澆灌SUMO-LsGRP1∆SS粗萃液促進番茄果實產量 75
圖十四、草莓母株澆灌SUMO-LsGRP1∆SS粗萃液增加走莖苗冠部直徑 77
圖十五、慣行農法田間澆灌SUMO-LsGRP1∆SS粗萃液增進草莓果實生產 79
圖十六、有機農法田間澆灌SUMO-LsGRP1∆SS粗萃液增進草莓果實生產 81
圖十七、試驗田區澆灌SUMO-LsGRP1∆SS粗萃液降低草莓葉枯病罹病程度 83
圖十八、AtGRP3與LsGRP1之胺基酸序列比較 84
圖十九、AtWAK1-4預測胞外區段胺基酸序列比較 86
圖二十、AtWAK2, AtWAK3預測胞外區段與SlWAK7、SlWAK8、SlWAK11之胺基酸序列之比較 89
-
dc.language.isozh_TW-
dc.title植物源LsGRP1具防禦預警與田間應用潛力zh_TW
dc.titleThe potential of defense priming and field application of plant-originated LsGRP1en
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李敏惠;鄭秋萍;路幼妍zh_TW
dc.contributor.oralexamcommitteeMiin-Huey Lee;Chiu-Ping Cheng;Yu-Yen Luen
dc.subject.keywordLsGRP1,預警效應,系統性抗病,田間試驗,候選受體,zh_TW
dc.subject.keywordLsGRP1,defense priming,system acquired resistance,field assay,candidate receptor,en
dc.relation.page97-
dc.identifier.doi10.6342/NTU202304262-
dc.rights.note未授權-
dc.date.accepted2023-09-28-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept植物病理與微生物學系-
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  目前未授權公開取用
2.96 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved