Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91141
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor汪根欉zh_TW
dc.contributor.advisorKen-Tsung Wongen
dc.contributor.author王奕翔zh_TW
dc.contributor.authorI-Hsiang Wangen
dc.date.accessioned2023-11-16T16:09:31Z-
dc.date.available2025-09-30-
dc.date.copyright2023-11-16-
dc.date.issued2023-
dc.date.submitted2023-09-30-
dc.identifier.citation1.5 參考文獻
1. Hu, Z.; Wang, J.; Ma, X.; Gao, J.; Xu, C.; Yang, K.; Wang, Z.; Zhang, J.; Zhang, F., A critical review on semitransparent organic solar cells. Nano Energy 2020, 78, 105376.
2. Zhao, J.; Li, Y.; Yang, G.; Jiang, K.; Lin, H.; Ade, H.; Ma, W.; Yan, H., Efficient organic solar cells processed from hydrocarbon solvents. Nat. Energy 2016, 1, 1-7.
3. Brus, V. V.; Lee, J.; Luginbuhl, B. R.; Ko, S. J.; Bazan, G. C.; Nguyen, T. Q., Solution‐processed semitransparent organic photovoltaics: from molecular design to device performance. Adv. Mater. 2019, 31, 1900904.
4. Wang, D.; Liu, H.; Li, Y.; Zhou, G.; Zhan, L.; Zhu, H.; Lu, X.; Chen, H.; Li, C.-Z., High-performance and eco-friendly semitransparent organic solar cells for greenhouse applications. Joule 2021, 5, 945-957.
5. Nelson, J., Polymer: fullerene bulk heterojunction solar cells. Mater. Today 2011, 14, 462-470.
6. Wadsworth, A.; Hamid, Z.; Kosco, J.; Gasparini, N.; McCulloch, I., The bulk heterojunction in organic photovoltaic, photodetector, and photocatalytic applications. Adv. Mater. 2020, 32, 2001763.
7. Cheng, Y.-J.; Yang, S.-H.; Hsu, C.-S., Synthesis of conjugated polymers for organic solar cell applications. Chem. Rev. 2009, 109, 5868-5923.
8. Menke, S. M.; Ran, N. A.; Bazan, G. C.; Friend, R. H., Understanding energy loss in organic solar cells: toward a new efficiency regime. Joule 2018, 2, 25-35.
9. Dornelles, K.; Roriz, M.; Roriz, V.; Caram, R. In Thermal performance of white solar-reflective paints for cool roofs and the influence on the thermal comfort and building energy use in hot climates, Solar World Congress. ISES. International Solar Energy Society, 2011.
10. Chochos, C. L.; Choulis, S. A., How the structural deviations on the backbone of conjugated polymers influence their optoelectronic properties and photovoltaic performance. Prog. Polym. Sci. 2011, 36, 1326-1414.
11. Kallmann, H.; Pope, M., Photovoltaic effect in organic crystals. J. Chem. Phys. 1959, 30, 585-586.
12. Tang, C. W., Two‐layer organic photovoltaic cell. Appl. Phys. Lett. 1986, 48, 183-185.
13. Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F., Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 1992, 258, 1474-1476.
14. Hummelen, J. C.; Knight, B. W.; LePeq, F.; Wudl, F.; Yao, J.; Wilkins, C. L., Preparation and characterization of fulleroid and methanofullerene derivatives. J. Org. Chem. 1995, 60, 532-538.
15. Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J., Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 1995, 270, 1789-1791.
16. Lin, Y.; Wang, J.; Zhang, Z. G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X., An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv. Mater. 2015, 27, 1170-1174.
17. Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.-L.; Lau, T.-K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P. A., Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 2019, 3, 1140-1151.
18. Cui, Y.; Yao, H.; Zhang, J.; Xian, K.; Zhang, T.; Hong, L.; Wang, Y.; Xu, Y.; Ma, K.; An, C., Single‐junction organic photovoltaic cells with approaching 18% efficiency. Adv. Mater. 2020, 32, 1908205.
19. Zhao, F.; Zheng, X.; Li, S.; Yan, K.; Fu, W.; Zuo, L.; Chen, H., Non‐Halogenated Solvents Processed Efficient ITO‐Free Flexible Organic Solar Cells with Upscaled Area. Macromol. Rapid Commun. 2022, 43, 2200049.
20. Jin, J.; Wang, Q.; Ma, K.; Shen, W.; Belfiore, L. A.; Bao, X.; Tang, J., Recent developments of polymer solar cells with photovoltaic performance over 17%. Adv. Funct. Mater. 2023, 2213324.
21. Ng, L. W.; Lee, S. W.; Chang, D. W.; Hodgkiss, J. M.; Vak, D., Organic Photovoltaics’ New Renaissance: Advances Toward Roll‐to‐Roll Manufacturing of Non‐Fullerene Acceptor Organic Photovoltaics. Adv. Mater. Technol. 2022, 7, 2101556.
22. Zhang, G.; Lin, F. R.; Qi, F.; Heumüller, T.; Distler, A.; Egelhaaf, H.-J.; Li, N.; Chow, P. C.; Brabec, C. J.; Jen, A. K.-Y., Renewed prospects for organic photovoltaics. Chem. Rev. 2022, 122, 14180-14274.
23. Zhang, B.; Yang, F.; Li, Y., Recent Progress in Large‐Area Organic Solar Cells. Small Science 2023, 2300004.
24. Yu, Z.-P.; Liu, Z.-X.; Chen, F.-X.; Qin, R.; Lau, T.-K.; Yin, J.-L.; Kong, X.; Lu, X.; Shi, M.; Li, C.-Z., Simple non-fused electron acceptors for efficient and stable organic solar cells. Nat. Commun. 2019, 10, 2152.
2.6 參考文獻
1. Li, Y.; Yu, J.; Zhou, Y.; Li, Z. a., Molecular Insights of Non‐fused Ring Acceptors for High‐Performance Non‐fullerene Organic Solar Cells. Chem. Eur. J. 2022, 28, e202201675.
2. Pang, S.; Zhou, X.; Zhang, S.; Tang, H.; Dhakal, S.; Gu, X.; Duan, C.; Huang, F.; Cao, Y., Nonfused Nonfullerene Acceptors with an A–D–A′–D–A Framework and a Benzothiadiazole Core for High-Performance Organic Solar Cells. ACS Appl. Mater. Interfaces 2020, 12, 16531-16540.
3. Zhang, C.; Yuan, J.; Chiu, K. L.; Yin, H.; Liu, W.; Zheng, G.; Ho, J. K. W.; Huang, S.; Yu, G.; Gao, F., A disorder-free conformation boosts phonon and charge transfer in an electron-deficient-core-based non-fullerene acceptor. J. Mater. Chem. A 2020, 8, 8566-8574.
4. Li, G.; Wang, S.; Yang, S.; Liu, G.; Hao, P.; Zheng, Y.; Long, G.; Li, D.; Zhang, Y.; Yang, W., Synthesis, Photophysical Properties and Two‐Photon Absorption Study of Tetraazachrysene‐based N‐Heteroacenes. Chem. Asian J. 2019, 14, 1807-1813.
5. He, M.; Zhang, F., Synthesis and structure of alkyl-substituted fused thiophenes containing up to seven rings. J. Org. Chem. 2007, 72, 442-451.
6. Yin, B.; Qin, Q.; Li, Z.; Wang, Y.; Liu, X.; Liu, Y.; Huan, S.; Zhang, X.; Song, G., Tongue cancer tailored photosensitizers for NIR-II fluorescence imaging guided precise treatment. Nano Today 2022, 45, 101550.
7. Liu, S.; Zhao, B.; Cong, Z.; Cheng, Q.; Wang, W.; Pan, H.; Liu, J.; Wu, H.; Gao, C., Influences of the terminal groups on the performances of asymmetric small molecule acceptors-based polymer solar cells. Dyes Pigm. 2020, 178, 108388.
8. Zhu, K.; Zhong, Y.; Wang, X.; Li, F.; Yu, L.; Chu, L.; Sun, M., Asymmetric ITIC acceptor for asymmetric benzodithiophene polymer solar cells. Dyes Pigm. 2020, 183, 108727.
9. Zhang, X.; Wang, Q.; Liang, Z.; Li, M.; Geng, Y., Low-bandgap non-fullerene acceptors based on selenophene π spacer and alkylated indaceno [1, 2-b: 5, 6-b′] dithiophene for organic solar cells. Org. Electron. 2019, 69, 200-207.
10. Wang, P.; Wang, K.; Chen, D.; Mao, Y.; Gu, Y., A novel colorimetric and near-infrared fluorescent probe for hydrogen peroxide imaging in vitro and in vivo. RSC Adv. 2015, 5, 85957-85963.
11. Chang, M.; Yan, C.; Shi, L.; Li, D.; Fu, W.; Guo, Z., Rational design of shortwave infrared (SWIR) fluorescence probe: Cooperation of ICT and ESIPT processes for sensing endogenous cysteine. Chin. Chem. Lett. 2022, 33, 762-766.
12. Chen, S.; Fang, Y.; Zhu, Q.; Zhang, W.; Zhang, X.; Lu, W., NIR fluorescent DCPO glucose analogues and their application in cancer cell imaging. RSC Adv. 2016, 6, 81894-81901.
13. Maduwu, R. D.; Jeong, M.; Jin, H. C.; Kim, J. H., Synthesis of benzothiadiazole-based small molecule and its photovoltaic property. Mol. Cryst. Liq. Cryst. 2020, 707, 101-109.
14. Noirbent, G.; Pigot, C.; Bui, T.-T.; Péralta, S.; Nechab, M.; Gigmes, D.; Dumur, F., Synthesis, optical and electrochemical properties of a series of push-pull dyes based on the 2-(3-cyano-4, 5, 5-trimethylfuran-2 (5H)-ylidene) malononitrile (TCF) acceptor. Dyes Pigm. 2021, 184, 108807.
15. Yang, J.; Duan, L.; Zhou, Y.; Wu, T.; Shi, J.; Zhou, Y., An effective NIR fluorescent molecular tool to monitor cancer cell migration derived from inhibiting autophagy-induced cellular inflammation. Dyes Pigm. 2022, 208, 110846.
16. Liu, C.; Liu, L.; Li, X.; Shao, C.; Huang, X.; Zhu, B.; Zhang, X., A highly selective colorimetric and far-red fluorescent probe for imaging bisulfite in living cells. RSC Adv. 2014, 4, 33507-33513.
17. Siarkiewicz, P.; Michalski, R.; Sikora, A.; Smulik-Izydorczyk, R.; Szala, M.; Grzelakowska, A.; Modrzejewska, J.; Bailey, A.; Nycz, J. E.; Kalyanaraman, B., On the chemical reactivity of tricyanofuran (TCF)-based near-infrared fluorescent redox probes–Effects of glutathione on the probe response and product fluorescence. Dyes Pigm. 2021, 192, 109405.
18. Feng, S.; Fang, Y.; Feng, W.; Xia, Q.; Feng, G., A colorimetric and ratiometric fluorescent probe with enhanced near-infrared fluorescence for selective detection of cysteine and its application in living cells. Dyes Pigm. 2017, 146, 103-111.
19. Lord, S. J.; Conley, N. R.; Lee, H.-l. D.; Samuel, R.; Liu, N.; Twieg, R. J.; Moerner, W., A photoactivatable push− pull fluorophore for single-molecule imaging in live cells. J. Am. Chem. Soc. 2008, 130, 9204-9205.
20. Shi, S.; Zhang, S.; Xue, Z.; Yao, X.; Zhang, G.; Gao, J.; Li, Y.; Tu, X.; Zhang, S.; Zhang, C., Near-Infrared Acceptors with Imide-Containing End Groups for Organic Solar Cells. ACS Appl. Mater. Interfaces 2023, 15, 12119-12126.
21. Li, C.; Zhou, J.; Song, J.; Xu, J.; Zhang, H.; Zhang, X.; Guo, J.; Zhu, L.; Wei, D.; Han, G., Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat. Energy 2021, 6, 605-613.
22. Borra, S.; Amrutapu, S. K.; Pabbaraja, S.; Singh, Y. J., Stereoselective total synthesis of palmyrolide A via intramolecular trans N-methyl enamide formation. Tetrahedron Lett. 2016, 57, 4456-4459.
23. Wei, Y.-C.; Wang, S. F.; Hu, Y.; Liao, L.-S.; Chen, D.-G.; Chang, K.-H.; Wang, C.-W.; Liu, S.-H.; Chan, W.-H.; Liao, J.-L., Overcoming the energy gap law in near-infrared OLEDs by exciton–vibration decoupling. Nat. Photonics 2020, 14, 570-577.
24. Elgrishi, N.; Rountree, K. J.; McCarthy, B. D.; Rountree, E. S.; Eisenhart, T. T.; Dempsey, J. L., A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ. 2018, 95, 197-206.
3.6 參考文獻
1. Odyniec, M. L.; Park, S.-J.; Gardiner, J. E.; Webb, E. C.; Sedgwick, A. C.; Yoon, J.; Bull, S. D.; Kim, H. M.; James, T. D., A fluorescent ESIPT-based benzimidazole platform for the ratiometric two-photon imaging of ONOO− In vitro and ex vivo. Chem. Sci. 2020, 11, 7329-7334.
2. Chang, Y.-C.; Chen, Y.-D.; Chen, C.-H.; Wen, Y.-S.; Lin, J. T.; Chen, H.-Y.; Kuo, M.-Y.; Chao, I., Crystal Engineering for π− π Stacking via Interaction between Electron-Rich and Electron-Deficient Heteroaromatics. J. Org. Chem. 2008, 73, 4608-4614.
3. Dekamin, M. G.; Arefi, E.; Yaghoubi, A., Isocyanurate-based periodic mesoporous organosilica (PMO-ICS): a highly efficient and recoverable nanocatalyst for the one-pot synthesis of substituted imidazoles and benzimidazoles. RSC Adv. 2016, 6, 86982-86988.
4. Secci, D.; Bolasco, A.; D'Ascenzio, M.; Della Sala, F.; Yáñez, M.; Carradori, S., Conventional and microwave‐assisted synthesis of benzimidazole derivatives and their in vitro inhibition of human cyclooxygenase. J. Heterocycl. Chem. 2012, 49, 1187-1195.
5. David, A. H.; Garci, A.; Abid, S.; Li, X.; Young, R. M.; Seale, J. S.; Hornick, J. E.; Azad, C. S.; Jiao, Y.; Roy, I., Divinylanthracene-Containing Tetracationic Organic Cyclophane with Near-Infrared Photoluminescence. J. Am. Chem. Soc. 2023.
6. Yang, J.; Chi, W.; Shi, W.-J.; Zhang, L.; Yan, J.-W., An in situ-triggered and chemi-excited photooxygenation system for Aβ aggregates. J. Chem. Eng. 2023, 456, 140998.
7. Lanza, F.; Pérez, J. M.; Jumde, R. P.; Harutyunyan, S. R., Lewis acid promoted trapping of chiral aza-enolates. Synth. 2019, 51, 1253-1262.
8. Su, W.; Gu, B.; Hu, X.; Duan, X.; Zhang, Y.; Li, H.; Yao, S., A near-infrared and colorimetric fluorescent probe for palladium detection and bioimaging. Dyes Pigm. 2017, 137, 293-298.
9. Wu, Y.; Zeng, F.; Sun, L.; Chen, J.; Wu, S., ALP-activated probe for diagnosis of liver injury by multispectral optoacoustic tomography. In Methods in Enzymology, Elsevier: 2021; Vol. 657, pp 301-330.
10. Xing, J.; Gong, Q.; Zou, R.; Li, Z.; Xia, Y.; Yu, Z.; Ye, Y.; Xiang, L.; Wu, A., A novel fibroblast activation protein-targeted near-infrared fluorescent off–on probe for cancer cell detection, in vitro and in vivo imaging. J. Mater. Chem. B 2018, 6, 1449-1451.
11. Wang, T.; Hu, Y.; Deng, Z.; Wang, Y.; Lv, L.; Zhu, L.; Lou, Z.; Hou, Y.; Teng, F., High sensitivity, fast response and low operating voltage organic photodetectors by incorporating a water/alcohol soluble conjugated polymer anode buffer layer. RSC Adv. 2017, 7, 1743-1748.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91141-
dc.description.abstract太陽能是再生能源中最具潛力的一種能源,而有機太陽能電池在太陽能應用領域當中,具備了低成本、輕量化、可大面積製作、可撓曲等優點。近年來因眾多團隊在分子設計上與元件製程的努力,使得有機太陽能電池的光電轉換效率不斷創下新高的紀錄。
在本論文中,第一部分設計了容易調整能階與光電特性的非富勒烯的非稠環受體分子,以萘并[1,2-d:5,6-d']雙([1,2,3]三唑)作為核心結構,透過噻吩並[3,2-b]噻吩作為電子予體,末端引入兩種拉電子基團,設計出A-D-A’-D-A架構的分子,分別合成出EH-NTzTTID、EH-NTzTT2F兩個分子。由於兩分子的溶解度不佳,我們嘗試將分子核心上的碳鏈延長,以改善溶解度的問題,合成出溶解度較佳的OD-NTzTTID、OD-NTzTT2F兩個分子。其中OD-NTzTT2F的最大吸收波長在656 nm,消光係數為176500 M-1 cm-1。將OD-NTzTT2F以微量添加的形式,與PM6:Y6共混製作成三元有機太陽能電池,其光電轉換效率超過16.2%。
第二部份則是繼續改善OD-NTzTT系列分子的溶解度,將末端引入帶電荷基團,合成出OD-NTzTTMPPF6。以乙腈為溶劑的狀況下,在動態光散射中獲得最小的奈米粒徑為70 nm,嘗試與PM6:Y6共混製作成三元有機太陽能電池,其光電轉換效率略降至15.4 %,但元件的填充因子為75.7 %有顯著上升的趨勢,說明該帶電荷的非富勒烯受體材料在三元有機太陽能電池還是有潛力的。
zh_TW
dc.description.abstractSolar energy is one of the most promising renewable energies. In solar energy applications, organic photovoltaics (OPVs) have several advantages including low cost, lightweight, large-area production capability and flexibility. Recent advancements in molecular designs and methods for device fabrications have led to significant improvements in the power conversion efficiency (PCE) of OPVs.
In this thesis, the first part focuses on the design of non-fullerene non-fused acceptor molecules with easy tunable energy levels and photovoltaic properties. Two A-D-A’-D-A-configured molecules, EH-NTzTTID and EH-NTzTT2F were synthesized with the core structure based on naphtho[1,2-d:5,6-d']bis([1,2,3]triazole) (NTz), thieno[3,2-b]thiophene (TT) as the donor and two electron-withdrawing end groups. Due to the poor solubility, synthetic efforts were made to improve their solubility by elongating the carbon chain on the NTz core, resulting in better soluble molecules, OD-NTzTTID and OD-NTzTT2F. OD-NTzTT2F exhibited a maximum absorption wavelength at 656 nm with an extinction coefficient of 176500 M-1 cm-1. By incorporating a trace amount of OD-NTzTT2F into the PM6:Y6 blend , a ternary OPV with PCE exceeding 16.2% was fabricated.
The second part aimed to further improve the solubility of the OD-NTzTT series molecules by introducing charged end groups, leading to the synthesis of OD-NTzTTMPPF6. In acetonitrile, OD-NTzTTMPPF6 aggregates into into a minimum nanoparticle size of 70 nm observed by the dynamic light scattering (DLS). Although the PCE decreased to 15.4% when incorporated OD-NTzTTMPPF6 with PM6:Y6 into a ternary organic solar cell, the fill factor significantly increased to 75.7%, indicating the potential of this charged non-fullerene acceptor material for use in ternary OPVs.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-11-16T16:09:31Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-11-16T16:09:31Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目錄
謝誌 i
中文摘要 ii
ABSTRACT ii
目錄 iv
圖目錄 vii
表目錄 xi
縮寫表 xiii
Chemical Structure Index xiv
第 1 章、 緒論 1
1.1 太陽能電池發展與近況 1
1.2 OPVs架構與工作原理 2
1.3 濕製程有機太陽能電池 9
1.4 非富勒烯受體材料於OPVs上之應用 12
1.5 參考文獻 14
第 2 章、 以NTz為核心之對稱A-D-A’-D-A濕製程NFAs OPVs 17
2.1 對稱A-D-A’-D-A NFAs之設計 17
2.2 對稱A-D-A’-D-A NFAs之合成 20
2.2.1 分子核心之R-NTz之合成 22
2.2.2 R-NTz-Br系列之合成 23
2.2.3 R-NTzTT系列之合成 24
2.2.4 OD-NTzbhTT系列之合成 29
2.3 對稱A-D-A’-D-A NFAs之性質 32
2.3.1 R-NTzTT系列之聚集特性 32
2.3.2 R-NTzTT系列之光物理 35
2.3.3 R-NTzTT系列之電化學性質 38
2.3.4 NTzTT系列之理論計算 39
2.4 對稱A-D-A’-D-A NFAs於OPVs之應用 43
2.4.1 EH-NTzTT系列之應用 43
2.4.2 OD-NTzTT系列之應用 45
2.5 結論 50
2.6 參考文獻 52
第 3 章、 以NTz為核心之對稱A-D-A’-D-A之帶電荷NFAs 56
3.1 對稱A-D-A’-D-A之帶電荷NFAs之設計 56
3.2 對稱A-D-A’-D-A之帶電荷NFAs之合成 56
3.2.1 OD-NTzTTBIC8MPF6合成 56
3.2.2 OD-NTzTTMPPF6合成 58
3.2.3 OD-NTzTTINPF6合成 59
3.3 對稱A-D-A’-D-A之帶電荷非富勒烯受體之性質 60
3.3.1 OD-NTzTTMPPF6之聚集特性 60
3.3.2 OD-NTzTTMPPF6之光物理 63
3.3.3 OD-NTzTTMPPF6之電化學性質 64
3.3.4 OD-NTzTTMPPF6之理論計算 65
3.4 對稱A-D-A’-D-A之帶電荷NFA於於OPVs應用以及OPD應用 68
3.4.1 OD-NTzTTMPPF6於OPVs之應用 68
3.4.2 OD-NTzTTMPPF6之OPD應用 70
3.5 結論 72
3.6 參考文獻 73
第 4 章、 實驗部份 75
4.1 實驗儀器 75
4.2 實驗步驟 77
附錄 1H、13C NMR Spectra 93
-
dc.language.isozh_TW-
dc.subject非富勒烯受體zh_TW
dc.subjectNon-Fullerene Acceptorsen
dc.title以三唑衍生物為核心之非富勒烯受體之設計、合成與應用zh_TW
dc.titleDesign, Synthesis and Application of 1,2,3-Triazole Derivative-based Non-Fullerene Acceptorsen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee劉振良;陳志平zh_TW
dc.contributor.oralexamcommitteeCheng-Liang Liu;Chih-Ping Chenen
dc.subject.keyword非富勒烯受體,zh_TW
dc.subject.keywordNon-Fullerene Acceptors,en
dc.relation.page99-
dc.identifier.doi10.6342/NTU202304278-
dc.rights.note未授權-
dc.date.accepted2023-10-03-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  未授權公開取用
9.4 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved