Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9105
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor管希聖
dc.contributor.authorBai-Cian Keen
dc.contributor.author柯百謙zh_TW
dc.date.accessioned2021-05-20T20:09:24Z-
dc.date.available2010-07-31
dc.date.available2021-05-20T20:09:24Z-
dc.date.copyright2009-07-31
dc.date.issued2009
dc.date.submitted2009-07-30
dc.identifier.citation[1] P. W. Shor, 'Algorithms for quantum computation: discrete logarithms and factoring,' In 35th Annual Symposium on Foundations of Computer Science. IEEE Press, Los Alamos (1994).
[2] P. W. Shor, 'Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,' SIAM J. Computing 26 (1997).
[3] L. K. Grover, 'A fast quantum mechanical algorithm for database search,' In STOC '96: Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pp. 212-219 (ACM, New York, NY, USA, 1996).
[4] L. K. Grover, 'Quantum Mechanics Helps in Searching for a Needle in a Haystack,' Phys. Rev. Lett. 79, 325-328 (1997).
[5] L. K. Grover, 'Quantum Computers Can Search Rapidly by Using Almost Any Transformation,' Phys. Rev. Lett. 80, 4329-4332 (1998).
[6] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, 2 ed. (Cambridge University Press, 2001).
[7] I. Siddiqi, R. Vijay, F. Pierre, C. M. Wilson, M. Metcalfe, C. Rigetti, L. Frunzio, and M. H. Devoret, 'RF-Driven Josephson Bifurcation Amplifier for Quantum Measurement,' Physical Review Letters 93, 207002+ (2004).
[8] M. I. Dykman and M. A. Krivoglaz, 'Fluctuations in nonlinear systems near bifurcations corresponding to the appearance of new stable states,' Physica A 104, 480 (1980).
[9] V. E. Manucharyan, E. Boaknin, M. Metcalfe, R. Vijay, I. Siddiqi, and M. Devoret, 'Microwave bifurcation of a Josephson junction: Embedding-circuit requirements,' Physical Review B (Condensed Matter and Materials Physics) 76, 014524 (2007).
[10] J. Clarke and F. K. Wilhelm, 'Superconducting quantum bits,' Nature 453, 1031-1042 (2008).
[11] J. Q. You and F. Nori, 'Superconducting Circuits and Quantum Information,' Physics Today 58, 42-47 (2005).
[12] G. Wendin and V. S. Shumeiko, 'Superconducting Quantum Circuits, Qubits and Computing,' arxiv:cond-mat (2005).
[13] Y. Makhlin, G. Schon, and A. Shnirman, 'Quantum-state engineering with Josephson-junction devices,' Reviews of Modern Physics 73, 357+ (2001).
[14] M. H. Devoret, A. Wallra , and J. M. Martinis, 'Superconducting Qubits: A Short Review,' arxiv:cond-mat (2004).
[15] C. Kittel, Introduction to Solid State Physics, 8 ed. (John Wiley and Sons (WIE), 2004).
[16] M. Tinkham, Introduction to Superconductivity: Second Edition (Dover Books on Physics), 2 ed. (Dover Publications, 2004).
[17] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, 'Charge-insensitive qubit design derived from the Cooper pair box,' Physical Review A 76, 042319 (2007).
[18] J. E. Mooij, T. P. Orlando, L. Levitov, L. Tian, C. H. v. d. Wal, and S. Lloyd, 'Josephson Persistent-Current Qubit,' Science 285, 1036-1039 (1999).
[19] D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, and M. H. Devoret, 'Manipulating the Quantum State of an Electrical Circuit,' Science 296, 886{889 (2002).
[20] G. Ithier et al., 'Decoherence in a superconducting quantum bit circuit,' Physical Review B 72, 134519 (2005).
[21] I. Siddiqi, R. Vijay, M. Metcalfe, E. Boaknin, L. Frunzio, R. J. Schoelkopf, and M. H. Devoret, 'Dispersive measurements of superconducting qubit coherence with a fast latching readout,' Physical Review B 73, 054510 (2006).
[22] N. Boulant et al., 'Quantum nondemolition readout using a Josephson bifurcation amplifier,' Physical Review B 76, 014525 (2007).
[23] A. Lupascu, C. J. M. Verwijs, R. N. Schouten, C. J. P. M. Harmans, and J. E. Mooij, 'Nondestructive readout for a superconducting
ux qubit,' Physical Review Letters 93, 177006 (2004).
[24] J. H. Shirley, 'Solution of the Schroedinger Equation with a Hamiltonian Periodic in Time,' Physical Review 138, B979+ (1965).
[25] A. G. Fainshtein, N. L. Manakov, and L. P. Rapoport, 'Some general properties of quasi-energetic spectra of quantum systems in classical monochromatic elds,' Journal of Physics B 11, 2561 (1978).
[26] S.-I. Chu and D. A. Telnov, 'Beyond the Floquet theorem: generalized Floquet formalisms and quasienergy methods for atomic and molecular multiphoton processes in intense laser fields,' Physics Reports 390, 1-131 (2004).
[27] S. Kohler, T. Dittrich, and P. Hanggi, 'Floquet-Markovian description of the parametrically driven, dissipative harmonic quantum oscillator,' Physics Review E 55, 300-313 (1997).
[28] S. Kohler, R. Utemann, and P. Hanggi, 'Coherent and incoherent chaotic tunneling near singlet-doublet crossings,' Physics Review E 58, 7219-7230 (1998).
[29] M. Thorwart, P. Reimann, P. Jung, and R. F. Fox, 'Quantum hysteresis and resonant tunneling in bistable systems,' Chemical Physics 235, 61-80 (1998).
[30] V. Peano and M. Thorwart, 'Dynamics of the quantum Duffing oscillator in the driving induced bistable regime,' Chemical Physics 322, 135-143 (2006).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9105-
dc.description.abstract最近,一種新型的放大器,稱為約瑟夫森分支放大 (JBA),用以測量超導量子位元(qubit),已經被提議和建造出來。JBA 解決了建構在傳統超導 Josephson junction 量子位元測量裝置的散熱問題,此惱人的散熱問題是由此裝置的電壓切換到 normal state 所引起 。本論文旨在模擬使用 JBA 測量量子位元的過程,並提供對理解量子測量問題所必需的相關知識。我們一開始回顧一些基本的超導量子電路元件,並介紹兩種不同類型的量子位元:flux qubit 和 charge qubit。由於 Josephson junction 的非線性電感,JBA 的數學模型可由驅動非線性振盪器所描述,此數學模型被稱為 Duffing 振子。因此,我們著重於量子 Duffing 振子的性質和介紹 JBA 的運作原理。測量量子位元的過程本身是一個開放量子系統的問題。為了來描述它的行為,我們推導了驅動 Duffing 振子和量子位元系統的縮減密度矩陣的 quantum master equation。我們區分了熱環境和測量裝置對系統的影響,並使用 Floquet formalism 處理時間上的週期性問題。並在最後提出一些 Duffing 振子和量子位元測量的模擬結果。zh_TW
dc.description.abstractRecently, a new type of amplifier, called the Josephson bifurcation amplifier (JBA), to read out the state of a superconducting quantum bit (qubit), has been proposed and constructed. This JBA has solved the annoying dissipation problem of voltage switching to the normal state in traditional superconducting Josephson junction based qubit measurement devices. This thesis aims to model the qubit readout process by the JBA, and to provide the essential input toward the understanding of the quantum measurement problem. We first review some basic elements of superconducting quantum circuit, and introduce
two different types of qubits: flux qubits and charge qubits. Due to the nonlinear inductance of a Josephson junction, the mathematical model of the JBA can be linked to a driven non-linear oscillator, known as the Duffing oscillator. So we focus on the properties of the quantum Duffing oscillator and present the operation principles of the JBA. The qubit readout process is itself an open quantum system problem. To describe its dynamics, we derive the quantum master equation for the reduced density matrix of the combined driven quantum Duffing oscillator and qubit system. We distinguish the influence of the
thermal environment on the combined system from that of the measurement device, and use the Floquet formalism to tackle the time-periodical driven problem. Simulation results of the Duffing oscillator and qubit measurement will be presented.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:09:24Z (GMT). No. of bitstreams: 1
ntu-98-R96222018-1.pdf: 1511224 bytes, checksum: 778ab74e83ec33a28691522bb76e2e1f (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsTable of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Introduction to superconducting quantum bits . . . . . . . . . . . . . . . . 4
2.1 Josephson junctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.1 The Josephson effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 A Josephson junction with a nonlinear inductance . . . . . . . . . . 8
2.1.3 The current-biased Josephson junction . . . . . . . . . . . . . . . . . .9
2.2 The Cooper-pair box and the SQUID . . . . . . . . . . . . . . . . . . . 11
2.2.1 The single cooper-pair box device . . . . . . . . . . . . . . . . . . . 11
2.2.2 The SQUID device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Charge qubits and flux qubits . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 Charge qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Advanced charge qubits . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.3 Flux qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.4 Advanced flux qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 The quantronium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 The Josephson bifurcation amplier . . . . . . . . . . . . . . . . . . . . . 22
2.5.1 The quantronium with a JBA readout . . . . . . . . . . . . . . . . . 23
3 The Floquet formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1 The Flouqet theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.1 General form of the solution . . . . . . . . . . . . . . . . . . . . . . 28
3.1.2 Some properties of quasienergy and QES . . . . . . . . . . . . . . 29
3.2 The extended Hilbert space . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.1 Operators in the extended Hilbert space . . . . . . . . . . . . . . . 32
3.2.2 The Floquet Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Driven two-level systems and oscillators in the Floquet picture . . . 35
3.3.1 Driven two-level systems . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.2 Driven oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.3 The rotating wave approximation . . . . . . . . . . . . . . . . . . . 39
3.4 Time evolution operators . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4 Quantum dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1 The Density Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1.1 Pure states and mixed states . . . . . . . . . . . . . . . . . . . . . . 44
4.1.2 Ensemble average . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Derivation of the Master equation . . . . . . . . . . . . . . . . . . . . . 46
4.2.1 Equations of motion of the density matrix of closed systems . . 46
4.2.2 Integro-dierential form of the equation of motion for the density
matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.3 The Born approximation . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.4 The Markovian approximation and bath correlation functions . . 51
4.3 Master equations of driven systems . . . . . . . . . . . . . . . . . . . . 53
4.3.1 The derivation of master equations . . . . . . . . . . . . . . . . . . 53
4.3.2 Microscopic models of dissipation . . . . . . . . . . . . . . . . . . . 55
5 The quantum Duffing oscillator . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.1 Hamiltonian of quantum Dung oscillator . . . . . . . . . . . . . . . 59
5.2 The Floquet-Born-Markovian master equation . . . . . . . . . . . . . . 60
5.2.1 The driven weak-coupling master equation . . . . . . . . . . . . . 60
5.2.2 Complete set property of Floquet states . . . . . . . . . . . . . . . 61
5.2.3 The Floquet master equation . . . . . . . . . . . . . . . . . . . . . . 61
5.2.4 The rotating wave approximation . . . . . . . . . . . . . . . . . . . 63
5.2.5 Dynamics of the quantum Dung oscillator . . . . . . . . . . . . . 63
5.2.6 Expectation value of x(t) . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3 Numerical simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3.1 Amplitude response . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3.2 Varying temperatures and the nonlinearity coefficients . . . . . . 68
5.3.3 Varying driving amplitudes . . . . . . . . . . . . . . . . . . . . . . . 68
5.3.4 Expansion in x space . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.4 Driven quantum Duffing oscillator coupled to a qubit . . . . . . . . 72
5.4.1 The JBA response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.4.2 Behaviors of the qubit . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
A Classical Duffing oscillation . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
dc.language.isoen
dc.title使用約瑟夫森分支放大器的量子測量之研究zh_TW
dc.titleStudy of Quantum Measurement by a Superconducting Josephson Bifurcation Amplifieren
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳岳男,周忠憲
dc.subject.keyword量子測量,zh_TW
dc.subject.keywordJosephson bifurcation amplifier,quantum measurement,josephson junction,en
dc.relation.page90
dc.rights.note同意授權(全球公開)
dc.date.accepted2009-07-30
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf1.48 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved