請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91057完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭富書 | zh_TW |
| dc.contributor.advisor | Fu-Shu Jeng | en |
| dc.contributor.author | 陳柏愷 | zh_TW |
| dc.contributor.author | Po-Kai Chen | en |
| dc.date.accessioned | 2023-10-24T16:55:30Z | - |
| dc.date.available | 2025-09-09 | - |
| dc.date.copyright | 2023-10-24 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-10 | - |
| dc.identifier.citation | 1. Bandis, S. C., Lumsden, A. C., and Barton, N. R. (1983). “Fundamentals of Rock Joint Deformation.” International Journal of Rock Mechanics and Mining Sciences & geomechanics abstracts, 20, 249-268.
2. Barton, N., Bandis, S., and Bakhtar, K. (1985). “Strength, Deformation and Conductivity Coupling of Rock Joints.” International Journal of Rock Mechanics and Mining Sciences & geomechanics abstracts, 22, 121-140. 3. Barton, N. and Choubey, V. (1977). “The Shear Strength of Rock Joints in Theory and Practice.” Rock Mechanics 10, 1-54. 4. Bisdom, K., Bertotti, G., and Nick, H. (2016). “The impact of in-situ stress and outcrop-based fracture geometry on hydraulic aperture and upscaled permeability in fractured reservoirs.” Tectonophysics, 690, 63-75. 5. Huang, N., Liu, R., Jiang, Y., and Cheng, Y. (2021). “Development and application of three-dimensional discrete fracture network modeling approach for fluid flow in fractured rock masses.” Journal of Natural Gas Science and Engineering, 91, 103957. 6. Onoe, H., Misayuki, I., Yusuke, O., Teruki, I. (2021). “Development of modeling methodology for hydrogeological heterogeneity of the deep fractured granite in Japan.” International Journal of Rock Mechanics and Mining Sciences, 144, 104737. 7. Li, X,, Zuo, Y., Zhuang, X., and Zhu, H. (2014). “Estimation of fracture trace length distributions using probability weighted moments and L-moments.” Engineering Geology, 168, 69-85. 8. Li, J., Wang, Y., Tan, Z., Du, W., Liu, Z. (2021). “Study on Water Inflow Variation Law of No.1 Shaft Auxiliary Shaft in HighLiGongshan Based on Dual Medium Model.” Symmetry, 13, 930. 9. Ma, L., Gao, D., Qian, J., Han, D., Xing, K., Ma, H., and Deng, Y. (2023). “Multiscale fractures integrated equivalent porous media method for simulating flow and solute transport in fracture-matrix system.” Journal of Hydrology, 617, 128845. 10. Min, K. B., Rutqvist, J., Tsang, C. F., and Jing, L. “Stress-Dependent Permeability of Fractured Rock Masses: A Numerical Study.” International Journal of Rock Mechanics & Mining Sciences. 11. Olsson, R., and Barton, N. (2001). “An improved model for hydromechanical coupling during shearing of rock joints.” International Journal of Rock Mechanics and Mining Sciences, 38, 317-329. PII: S 1365-1609(00)00079-4 12. Rutqvist, J. and Stephansson, O. (2003). “The role of hydromechanical coupling in fractured rock engineering.” Hydrogeology Journal, 11, 7-40. 13. Wang, T. T., Zhan, S. S., and Huang, T. H. (2015). “Determining transmissivity of fracture sets with statistical significance using single-borehole hydraulic tests : Methodology and implementation at Heshe well site in central Taiwan.” Engineering Geology, 198, 1-15. 14. Wang, T.T., Zhan, S.S., Chen, C.H., and Su, W.C. (2017). “Characterizing fractures to mitigate inrush of water into a shaft using hydrogeological approaches.” Tunnel and Underground Space Technology, 61, 205–220. 15. Zhan, S.S., Wang, T.T., and Jeng, F.S. (2018). “Fracture characterization using hydrogeological approaches and measures taken for groundwater inrush mitigation in shaft excavation.” Tunnel and Underground Space Technology, 82, 554–567. 16. Zou, L. and Cvetkovic, V. (2020). “Impact of normal stress-induced closure on laboratory-scale solute transport in a natural rock fracture.” Journal of Rock Mechanics and Geotechnical Engineering, 12, 732-741. 17. 郭威廷(2022),「考慮空間變異離散裂隙網絡之岩體水力特性代表性單元體積評估」,碩士論文,國立台灣大學土木工程研究所,台北。 18. 蘇芳郁(2021),「裂隙岩體水力傳導特性代表性單元體積數值評估」,碩士論文,國立台灣大學土木工程研究所,台北。 19. 詹尚書(2018),「裂隙岩體滲透特性調查暨參數特徵化技術之研究」,博士論文,國立臺北科技大學資源工程研究所,台北。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91057 | - |
| dc.description.abstract | 核廢料處置、地熱能源、碳封存等地下資源的開發與地下空間的使用為現代國際間大地工程領域致力發展重點之一,相關岩石力學之學術研究也因此正快速發展中。然而岩體通常伴隨許多裂隙,產生裂隙岩體,成為流體通過的主要通道。裂隙空間分布上的不確定性使岩體特性難以量化與評估,此外,裂隙之幾何對於正向應力加壓、解壓與剪應力剪動有顯著性影響,意味著應力將對岩體透水性造成顯著改變,因此,如何描述工程應力改變造成裂隙特性變化為本研究主要目的。
本研究使用草埔井場所蒐集裂隙資料作為離散裂隙網絡建模基礎,模擬草埔豎井開挖應力改變造成裂隙岩體透水性變化。為了簡化模型,本研究以離散裂隙網絡評估所得代表性單元體積與之對應代表性水力傳導係數張量,作為等值連續體水力特性,取代模型大部分區域裂隙岩體,只於靠近豎井開挖周圍建立離散裂隙網絡,呈現應力解壓造成透水性改變之行為。最後以根據草埔井場的調查資料建立等值連續體(EPM)-離散裂隙網絡(DFN)耦合模型模擬豎井開挖後水流分析,比較有無考慮應力狀態模型於水流分析結果差異,同時亦與現地觀測井隨開挖深度紀錄所得數據作為模擬結果比對。比較結果顯示,考慮岩覆壓力與豎井開挖解壓EPM-DFN耦合模型是最接近現地真實量測數據的模型。 本研究所整合一系列建模方法,可以利用現地調查、實驗裂隙參數,建立EPM-DFN耦合模型,使現地離散裂隙網絡之分布與裂隙參數視覺化,模擬岩盤工程開挖前後可能的水流情形,並呈現裂隙異質性與異向性,可以作為未來岩盤工程精細化工程設計研究方法之一。例如針對優勢水流路徑主導裂隙進行灌漿,設計最有效解決湧水問題方案。 | zh_TW |
| dc.description.abstract | Nuclear waste disposal, geothermal energy, and carbon capture and storage are among the key focuses of modern international geotechnical engineering in terms of the development of offshore resources and the utilization of underground space. As a result, academic research in rock mechanics is rapidly advancing. However, rock masses are often characterized by numerous fractures, which form fracture networks and serve as the main channels for fluid flow. The uncertainty in the distribution of fracture spaces makes it difficult to quantify and assess rock mass properties. Additionally, the geometry of fractures significantly affects the response of the rock mass to normal stress loading, stress relief, and shear stress, implying that stress will cause significant changes in the permeability of the rock mass. Therefore, the main objective of this study is to describe the changes in fracture characteristics caused by engineering stress variations.
To achieve this goal, this research uses fracture data collected from the Tsaopu well site as the basis for modeling discrete fracture networks. It simulates how excavation-induced stress changes affect the permeability of fractured rock masses in the vicinity of the Tsaopu Shaft. To simplify the model, representative element volumes obtained through the evaluation of the discrete fracture network are used, along with corresponding representative hydraulic conductivity tensor values, as equivalent continuous medium hydraulic properties. These properties replace the majority of the fractured rock mass in the model, focusing only on establishing a discrete fracture network around the vicinity of the shaft to represent the behavior of permeability changes due to stress unloading. Finally, an Equivalent Porous Medium (EPM) - Discrete Fracture Network (DFN) coupled model is established based on the survey data from the Tsaopu well site. This model is used to simulate groundwater flow after shaft excavation and to compare the differences in the simulation results between models with and without considering stress conditions. The simulation results are also compared with data recorded from onsite observation wells at different depths. The comparison shows that the EPM-DFN coupled model that considers both overlying rock stress and stress-induced unloading is the model that best matches the real measured data from the site. By integrating a series of modeling methods, this research can use on-site surveys and experimental fracture parameters to establish an EPM-DFN coupled model. This model visualizes the distribution of discrete fracture networks and fracture parameters in the field and simulates potential water flow conditions before and after rock engineering excavation. It also represents fracture heterogeneity and anisotropy, making it a valuable approach for future detailed engineering design research in rock engineering. For example, it can be used to design the most effective solutions, such as grouting dominant water flow pathways in fractures, to address water inflow issues. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-24T16:55:30Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-24T16:55:30Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II Abstract III 目錄 V 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1.1. 研究背景與目的 1 1.2. 研究方法及流程 2 1.3. 本文架構及主要內容 4 第二章 文獻回顧 5 2.1. 裂隙特性參數與離散裂隙網絡模型 5 2.1.1. 裂隙特性參數 5 2.1.2. 離散裂隙網絡 9 2.2. 岩體裂隙力學-水力特性 10 2.2.1. 正向應力使裂隙閉合行為 10 2.2.2. 剪應力使裂隙剪脹行為 11 2.2.3. 裂隙力學-水力耦合行為 12 2.2.4. 單一裂隙力學-水力耦合試驗 13 2.3. 裂隙岩體代表性單元體積評估 13 2.3.1. 代表性單元體積 13 2.3.2. 等值連續模型(equivalent continuum model) 14 2.4. 場址現地調查與水文地質試驗案例 18 2.4.1. 研究場址案例回顧 18 2.4.2. 其他現地案例回顧 18 第三章 現地離散裂隙網絡與代表性單元體積評估 24 3.1. 現地離散裂隙網絡建立 24 3.1.1. 露頭量測 25 3.1.2. 鑽孔影像 25 3.1.3. 水文地質試驗 25 3.1.4. 模型使用參數 25 3.2. 裂隙岩體水力傳導係數代表性單元體積評估 35 3.2.1. 代表性單元體積評估流程 35 3.2.2. 現地代表性單元體積與水力傳導係數 36 3.3. 裂隙岩體力學與水力特性耦合 40 3.3.1. 裂隙面正向應力與剪應力 40 3.3.2. 各深度岩覆下水力傳導係數張量評估 41 第四章 離散裂隙網絡-等值連續體耦合模型與地下水流分析 46 4.1. 等值連續體模型 47 4.2. 離散裂隙網絡-等值連續體耦合模型 47 4.2.1. 離散裂隙網絡部分 48 4.2.2. 等值連續體部分 49 4.3. 地下水流分析 53 4.3.1. 現地地下水監測簡介 53 4.3.2. 模型設置 53 第五章 結果與討論 62 5.1. 地下水流穩態分析 62 5.1.1. 各案例整體水頭分布比較 62 5.1.2. 各案例豎井壁面隨深度導水係數與水流通量變化曲線 63 5.1.3. 開挖至各深度穩態模擬結果 63 5.1.4. 各案例監測點最大洩降高度 64 5.2. 地下水流穩態分析總結 75 第六章 結論與建議 76 6.1. 結論 76 6.2. 建議 77 參考文獻 79 附錄-口委提問與建議 82 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 等值連續體 | zh_TW |
| dc.subject | 離散裂隙網絡 | zh_TW |
| dc.subject | 豎井開挖 | zh_TW |
| dc.subject | 水力傳導係數 | zh_TW |
| dc.subject | 應力變化 | zh_TW |
| dc.subject | hydraulic conductivity | en |
| dc.subject | equivalent continuum | en |
| dc.subject | stress variation | en |
| dc.subject | shaft excavation | en |
| dc.subject | discrete fracture network (DFN) | en |
| dc.title | 裂隙岩體力學-水力耦合模式應用於豎井開挖滲流行為 | zh_TW |
| dc.title | Application of Fractured Rock Mass Mechanical-Hydraulic Coupling Model to Vertical Shaft Excavation Seepage Behavior | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 王泰典 | zh_TW |
| dc.contributor.coadvisor | Tai-Tien Wang | en |
| dc.contributor.oralexamcommittee | 翁孟嘉;郭家瑋;李在平 | zh_TW |
| dc.contributor.oralexamcommittee | Meng-Chia Weng;Chia-Wei Kuo;Tsai-Ping Lee | en |
| dc.subject.keyword | 離散裂隙網絡,水力傳導係數,等值連續體,應力變化,豎井開挖, | zh_TW |
| dc.subject.keyword | discrete fracture network (DFN),hydraulic conductivity,equivalent continuum,stress variation,shaft excavation, | en |
| dc.relation.page | 84 | - |
| dc.identifier.doi | 10.6342/NTU202303115 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-11 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2025-11-20 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 8.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
