請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91032完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林法勤 | zh_TW |
| dc.contributor.advisor | Far-Ching Lin | en |
| dc.contributor.author | 趙昱翔 | zh_TW |
| dc.contributor.author | Yu-Hsiang Chao | en |
| dc.date.accessioned | 2023-10-24T16:49:06Z | - |
| dc.date.available | 2025-07-30 | - |
| dc.date.copyright | 2023-10-24 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-10 | - |
| dc.identifier.citation | Belley, D., Duchesne, I., Vallerand, S., Barrette, J., & Beaudoin, M. (2019). Computed tomography (CT) scanning of internal log attributes prior to sawing increases lumber value in white spruce (Picea glauca) and jack pine (Pinus banksiana). Canadian Journal of Forest Research, 49(12), 1516-1524. https://doi.org/10.1139/cjfr-2018-0409
Bishop, C. M. (2006). Pattern recognition and machine learning. New York : Springer, [2006] ©2006. https://search.library.wisc.edu/catalog/9910032530902121 Chen, L. J., Wang, K. Q., Xie, Y. H., & Wang, J. C. (2014). The segmentation of timber defects based on color and the mathematical morphology. Optik, 125(3), 965-967. https://doi.org/10.1016/j.ijleo.2013.07.098 Conners, R. W., McMillin, C. W., Lin, K., & Vasquezespinosa, R. E. (1983). IDENTIFYING AND LOCATING SURFACE-DEFECTS IN WOOD - PART OF AN AUTOMATED LUMBER PROCESSING SYSTEM. Ieee Transactions on Pattern Analysis and Machine Intelligence, 5(6), 573-583. https://doi.org/10.1109/tpami.1983.4767446 Ding, F. L., Zhuang, Z. L., Liu, Y., Jiang, D., Yan, X. A., & Wang, Z. G. (2020). Detecting Defects on Solid Wood Panels Based on an Improved SSD Algorithm. Sensors, 20(18), Article 5315. https://doi.org/10.3390/s20185315 Estevez, P. A., Perez, C. A., & Goles, E. (2003). Genetic input selection to a neural classifier for defect classification of radiata pine boards. Forest Products Journal, 53(7-8), 87-94. <Go to ISI>://WOS:000184799200012 Fang, Y. M., Guo, X. X., Chen, K., Zhou, Z., & Ye, Q. (2021). Accurate and Automated Detection of Surface Knots on Sawn Timbers Using YOLO-V5 Model. Bioresources, 16(3), 5390-5406. https://doi.org/10.15376/biores.16.3.5390-5406 Funck, J. W., Zhong, Y., Butler, D. A., Brunner, C. C., & Forrer, J. B. (2003). Image segmentation algorithms applied to wood defect detection. Computers and Electronics in Agriculture, 41(1-3), 157-179. https://doi.org/10.1016/s0168-1699(03)00049-8 Gao, M. Y., Wang, F., Liu, J. Y., Song, P., Chen, J. F., Yang, H., Mu, H. B., Qi, D. W., Chen, M. J., Wang, Y., & Yue, H. H. (2022). Estimation of the convolutional neural network with attention mechanism and transfer learning on wood knot defect classification. Journal of Applied Physics, 131(23), Article 233101. https://doi.org/10.1063/5.0087060 Girshick, R. (2015). Fast r-cnn. Proceedings of the IEEE international conference on computer vision, Girshick, R. B., Donahue, J., Darrell, T., & Malik, J. (2013). Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. 2014 IEEE Conference on Computer Vision and Pattern Recognition, 580-587. Gonzalez, R. C. W. R. E. (2018). Digital image processing. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press. Gu, I. Y. H., Andersson, H., & Vicen, R. (2010). Wood defect classification based on image analysis and support vector machines. Wood Science and Technology, 44(4), 693-704. https://doi.org/10.1007/s00226-009-0287-9 He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition, Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-excitation networks. Proceedings of the IEEE conference on computer vision and pattern recognition, Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. Electronic Markets, 31(3), 685-695. Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255-260. https://doi.org/doi:10.1126/science.aaa8415 Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. Kollmann, F. F. P. C. W. A. (1984). Principles of wood science and technology. Springer-Verlag. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25, 1097-1105. Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the Ieee, 86(11), 2278-2324. https://doi.org/10.1109/5.726791 Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. (2016). Ssd: Single shot multibox detector. Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14, Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M. (2013). Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602. Oksuz, K., Cam, B. C., Kalkan, S., & Akbas, E. (2020). Imbalance problems in object detection: A review. Ieee Transactions on Pattern Analysis and Machine Intelligence, 43(10), 3388-3415. Otsu, N. (1979). THRESHOLD SELECTION METHOD FROM GRAY-LEVEL HISTOGRAMS. Ieee Transactions on Systems Man and Cybernetics, 9(1), 62-66. https://doi.org/10.1109/tsmc.1979.4310076 Qian, N. (1999). On the momentum term in gradient descent learning algorithms. Neural Netw, 12(1), 145-151. https://doi.org/10.1016/s0893-6080(98)00116-6 Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. Proceedings of the IEEE conference on computer vision and pattern recognition, Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in neural information processing systems, 28. Russell, S., & Norvig, P. (2020). Artificial Intelligence: A Modern Approach (4th Edition). Pearson. http://aima.cs.berkeley.edu/ Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. Proceedings of the IEEE conference on computer vision and pattern recognition, Urbonas, A., Raudonis, V., Maskeliunas, R., & Damasevicius, R. (2019). Automated Identification of Wood Veneer Surface Defects Using Faster Region-Based Convolutional Neural Network with Data Augmentation and Transfer Learning. Applied Sciences-Basel, 9(22), Article 4898. https://doi.org/10.3390/app9224898 Zhao, Z.-Q., Zheng, P., Xu, S.-t., & Wu, X. (2019). Object detection with deep learning: A review. IEEE transactions on neural networks and learning systems, 30(11), 3212-3232. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91032 | - |
| dc.description.abstract | 木材中有從樹木生長到加工生產流程中可能出現的缺點,最主要為樹木側枝基部殘留於樹幹所形成的節,會大幅降低木材的性質。目前國內對於木材缺點的檢查多為人工進行,為了自動化木材生產流程,我們需要能夠自動偵測木材缺點的技術。
本研究採用faster region convolution neural network (Faster R-CNN)物件偵測模型,將木材表面影像輸入模型後,由模型輸出該影像中存在的缺點位置、尺寸以及種類資訊。影像資料來自於杉木(Cunninghamia lanceolata)、柳杉(Japonica cryptomeria)以及臺灣杉(Taiwania cryptomerioides),皆為國內常見的人工林樹種,共計1,238張木材表面影像。訓練由8種不同CNN特徵提取骨架所構成之Faster R-CNN,在位置與尺寸的邊界框偵測上,Precision與Recall最高可達到93.18%以及92.23%,分別為Resnet50_FPN和Resnet18_FPN模型;在缺點分類準確率則是Resnet50_FPN有最高的87.06% Accuracy,同時可達到60.06%的mean average precision (mAP)。在偵測錯誤的案例中,側枝最外圍所造成的不正常纖維排列是缺點認定的模糊地帶,人工判定存在個人主觀成分導致不確定性。此外,生節在木材中自然出現的頻率遠高於其他種類的缺點,造成缺點分類的不平均。 本研究作為木材加工化的基礎,在木材表面缺點偵測上取得令人滿意的成果,未來能結合木材之目視分等或集成元加工等實際應用的自動化,提升木材產品的品質與穩定性。 | zh_TW |
| dc.description.abstract | There are certain defects associated with wood, primarily the presence of knots formed by the residual branches at the base of the tree, which significantly reduce the quality of the wood. Currently, the inspection of wood defects in the domestic market relies mostly on manual processes. To automate the wood production process, technique that can detect wood defects automatically is necessary.
In this study, the Faster Region Convolutional Neural Network (Faster R-CNN) object detection model is adopted. By inputting surface images of wood into the model, it can output the location, size, and class of defects. The image data used in this study consisted of 1,238 images of commonly found plantation species in Taiwan, including Chinese fir (Cunninghamia lanceolata), Japanese Cedar (Japonica cryptomeria), and Taiwania (Taiwania cryptomerioides). The Faster R-CNN models was trained using 8 CNN feature extraction backbones, achieving the highest precision and recall of 93.18% and 92.23%, respectively, for bounding box detection, with the ResNet50_FPN and ResNet18_FPN models. The ResNet50_FPN model also achieved the highest accuracy of 87.06% for defect classification and a mean average precision (mAP) of 60.06%. In cases where errors occurred, the abnormal fiber arrangement caused by the outer periphery of knots created ambiguity in identification, leading to uncertainty due to subjective judgments. Additionally, the frequency of occurrence of live knots in wood is much higher than other types of defects, resulting in an imbalance in classification. This study has achieved satisfactory results in the detection of surface defects in wood, as a foundation for wood processing. In the future, integrating this automated technique with visual grading and processing of lumber could enhance the quality and consistency of wood products. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-24T16:49:06Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-24T16:49:06Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝辭 i
摘要 ii Abstract iii 目錄 iv 圖目錄 vi LIST OF FIGURES vii 表目錄 viii LIST OF TABLES ix I. 前言 1 II. 文獻回顧 2 (I) 機器學習(Machine Learning) 2 (II) 人工神經網路 (Artificial Neural Network, ANN) 3 (III) 訓練模型演算法 5 (IV) 卷積神經網路(Convolutional neural network, CNN) 6 (V) 物件偵測(Object Detection) 7 (VI) 木材缺點偵測相關文獻 10 III. 材料與研究方法 14 (I) 試驗材料與設備 14 (II) 資料集 15 (III) 資料增強 18 (IV) 模型架構 18 (V) 模型評量指標 19 IV. 結果與討論 20 (I) Faster R-CNN預設訓練環境 20 (II) 調整損失函數權重 29 (III) 調整學習率 34 (IV) 以k-means分析滑動窗尺寸與長寬比 37 V. 結語 43 VI. 參考文獻 44 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 節 | zh_TW |
| dc.subject | 缺點偵測 | zh_TW |
| dc.subject | Faster R-CNN | zh_TW |
| dc.subject | 物件偵測 | zh_TW |
| dc.subject | Faster R-CNN | en |
| dc.subject | knot | en |
| dc.subject | object detection | en |
| dc.subject | deep learning | en |
| dc.subject | defect detection | en |
| dc.title | 國產針葉材表面缺點偵測研究 | zh_TW |
| dc.title | The Study on the Defects Detection of Domestic Softwood Lumber Surface | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳永芳;郭彥甫;黃乾綱 | zh_TW |
| dc.contributor.oralexamcommittee | Yung-Fang Chen;Yan-Fu Kuo;Chien-Kang Huang | en |
| dc.subject.keyword | 節,缺點偵測,Faster R-CNN,物件偵測,深度學習, | zh_TW |
| dc.subject.keyword | knot,defect detection,Faster R-CNN,object detection,deep learning, | en |
| dc.relation.page | 47 | - |
| dc.identifier.doi | 10.6342/NTU202303483 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-11 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 森林環境暨資源學系 | - |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 2.88 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
