Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90999
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳炳煇zh_TW
dc.contributor.advisorPing-Hei Chenen
dc.contributor.author康呈欣zh_TW
dc.contributor.authorCHENG-HSIN KANGen
dc.date.accessioned2023-10-24T16:40:33Z-
dc.date.available2025-08-08-
dc.date.copyright2023-10-24-
dc.date.issued2023-
dc.date.submitted2023-08-09-
dc.identifier.citation[1] S. Nukiyama, "The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure," International Journal of Heat and Mass Transfer, vol. 9, no. 12, pp. 1419-1433, 1966.
[2] J. Kim, S. Jun, R. Laksnarain, and S. M. You, "Effect of surface roughness on pool boiling heat transfer at a heated surface having moderate wettability," International Journal of Heat and Mass Transfer, vol. 101, pp. 992-1002, 2016.
[3] J. S. Kim, A. Girard, S. Jun, J. Lee, and S. M. You, "Effect of surface roughness on pool boiling heat transfer of water on hydrophobic surfaces," International Journal of Heat and Mass Transfer, vol. 118, pp. 802-811, 2018.
[4] C.-Y. Su, C.-Y. Yang, B.-W. Jhang, Y.-L. Hsieh, Y.-Y. Sin, and C.-C. Huang, "Pool boiling heat transfer enhanced by fluorinated graphene as atomic layered modifiers," ACS applied materials & interfaces, vol. 12, no. 9, pp. 10233-10239, 2020.
[5] W. Wu, H. Bostanci, L. Chow, Y. Hong, M. Su, and J. P. Kizito, "Nucleate boiling heat transfer enhancement for water and FC-72 on titanium oxide and silicon oxide surfaces," International Journal of Heat and Mass Transfer, vol. 53, no. 9-10, pp. 1773-1777, 2010.
[6] C.-C. Hsu and P.-H. Chen, "Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings," International Journal of Heat and Mass Transfer, vol. 55, no. 13-14, pp. 3713-3719, 2012.
[7] A. Jaikumar and S. G. Kandlikar, "Enhanced pool boiling heat transfer mechanisms for selectively sintered open microchannels," International Journal of Heat and Mass Transfer, vol. 88, pp. 652-661, 2015.
[8] D. Min, G. Hwang, Y. Usta, O. Cora, M. Koc, and M. Kaviany, "2-D and 3-D modulated porous coatings for enhanced pool boiling," International Journal of Heat and Mass Transfer, vol. 52, no. 11-12, pp. 2607-2613, 2009.
[9] U. Kumar, S. Suresh, M. Thansekhar, and D. Babu, "Effect of diameter of metal nanowires on pool boiling heat transfer with FC-72," Applied Surface Science, vol. 423, pp. 509-520, 2017.
[10] L. L. Manetti, G. Ribatski, R. R. de Souza, and E. M. Cardoso, "Pool boiling heat transfer of HFE-7100 on metal foams," Experimental Thermal and Fluid Science, vol. 113, p. 110025, 2020.
[11] B. Shen et al., "Enhanced pool boiling of ethanol on wettability-patterned surfaces," Applied thermal engineering, vol. 149, pp. 325-331, 2019.
[12] D. Y. Lim and I. C. Bang, "Controlled bubble departure diameter on biphilic surfaces for enhanced pool boiling heat transfer performance," International Journal of Heat and Mass Transfer, vol. 150, p. 119360, 2020.
[13] Z. Lian, J. Xu, Z. Yu, P. Yu, and H. Yu, "A simple two-step approach for the fabrication of bio-inspired superhydrophobic and anisotropic wetting surfaces having corrosion resistance," Journal of Alloys and Compounds, vol. 793, pp. 326-335, 2019.
[14] J. Yong et al., "A simple way to achieve superhydrophobicity, controllable water adhesion, anisotropic sliding, and anisotropic wetting based on femtosecond-laser-induced line-patterned surfaces," Journal of Materials Chemistry A, vol. 2, no. 15, pp. 5499-5507, 2014.
[15] M. H. Kwon, H. S. Shin, and C. N. Chu, "Fabrication of a super-hydrophobic surface on metal using laser ablation and electrodeposition," Applied Surface Science, vol. 288, pp. 222-228, 2014.
[16] D. V. Ta et al., "Nanosecond laser textured superhydrophobic metallic surfaces and their chemical sensing applications," Applied Surface Science, vol. 357, pp. 248-254, 2015.
[17] D.-M. Chun, C.-V. Ngo, and K.-M. Lee, "Fast fabrication of superhydrophobic metallic surface using nanosecond laser texturing and low-temperature annealing," CIRP Annals, vol. 65, no. 1, pp. 519-522, 2016.
[18] M. Zupančič, M. Može, P. Gregorčič, and I. Golobič, "Nanosecond laser texturing of uniformly and non-uniformly wettable micro structured metal surfaces for enhanced boiling heat transfer," Applied Surface Science, vol. 399, pp. 480-490, 2017.
[19] P. Gregorčič, M. Zupančič, and I. Golobič, "Scalable surface microstructuring by a fiber laser for controlled nucleate boiling performance of high-and low-surface-tension fluids," Scientific reports, vol. 8, no. 1, p. 7461, 2018.
[20] Y. Hsu, "On the size range of active nucleation cavities on a heating surface," 1962.
[21] M. Može, M. Zupančič, M. Hočevar, I. Golobič, and P. Gregorčič, "Surface chemistry and morphology transition induced by critical heat flux incipience on laser-textured copper surfaces," Applied Surface Science, vol. 490, pp. 220-230, 2019.
[22] J. Y. Ho, K. K. Wong, and K. C. Leong, "Saturated pool boiling of FC-72 from enhanced surfaces produced by Selective Laser Melting," International Journal of Heat and Mass Transfer, vol. 99, pp. 107-121, 2016.
[23] T. Young, "III. An essay on the cohesion of fluids," Philosophical transactions of the royal society of London, no. 95, pp. 65-87, 1805.
[24] R. N. Wenzel, "Resistance of solid surfaces to wetting by water," Industrial & engineering chemistry, vol. 28, no. 8, pp. 988-994, 1936.
[25] A. Cassie and S. Baxter, "Wettability of porous surfaces," Transactions of the Faraday society, vol. 40, pp. 546-551, 1944.
[26] S. Bankoff, "Ebullition from solid surfaces in the absence of a pre-existing gaseous phase," Transactions of the American Society of Mechanical Engineers, vol. 79, no. 4, pp. 735-740, 1957.
[27] H. T. Phan, N. Caney, P. Marty, S. Colasson, and J. Gavillet, "Surface wettability control by nanocoating: the effects on pool boiling heat transfer and nucleation mechanism," International Journal of Heat and Mass Transfer, vol. 52, no. 23-24, pp. 5459-5471, 2009.
[28] U. Sajjad, A. Sadeghianjahromi, H. M. Ali, and C.-C. Wang, "Enhanced pool boiling of dielectric and highly wetting liquids-a review on enhancement mechanisms," International Communications in Heat and Mass Transfer, vol. 119, p. 104950, 2020.
[29] U. Sajjad, A. Sadeghianjahromi, H. M. Ali, and C.-C. Wang, "Enhanced pool boiling of dielectric and highly wetting liquids–A review on surface engineering," Applied Thermal Engineering, vol. 195, p. 117074, 2021.
[30] K. C. Leong, J. Y. Ho, and K. K. Wong, "A critical review of pool and flow boiling heat transfer of dielectric fluids on enhanced surfaces," Applied Thermal Engineering, vol. 112, pp. 999-1019, 2017.
[31] E. Von Hippel, S. Thomke, and M. Sonnack, "Creating breakthroughs at 3M. Harvard Business Review," ed: September-October, 1999.
[32] A. Brand, "Knowledge management and innovation at 3M," Journal of knowledge management, vol. 2, no. 1, pp. 17-22, 1998.
[33] S. Liu, G. J. Xiao, O. C. Lin, Y. He, and S. Y. Song, "A new one-step approach for the fabrication of microgrooves on Inconel 718 surface with microporous structure and nanoparticles having ultrahigh adhesion and anisotropic wettability: Laser belt processing," Applied Surface Science, vol. 607, Jan 2023, Art no. 155108, doi: 10.1016/j.apsusc.2022.155108.
[34] X. Zhao, H. Zhang, X. Xi, F. Liu, and B. Zhang, "Effect of unidirectional surface roughness on heat transfer performance of spray cooling," Experimental Heat Transfer, vol. 36, no. 1, pp. 96-119, 2023.
[35] J. R. Taylor and W. Thompson, An introduction to error analysis: the study of uncertainties in physical measurements. Springer, 1982.
[36] W. M. Rohsenow, "A method of correlating heat-transfer data for surface boiling of liquids," Transactions of the American Society of Mechanical Engineers, vol. 74, no. 6, pp. 969-975, 1952.
[37] S. J. Thiagarajan, R. Yang, C. King, and S. Narumanchi, "Bubble dynamics and nucleate pool boiling heat transfer on microporous copper surfaces," International Journal of Heat and Mass Transfer, vol. 89, pp. 1297-1315, 2015.
[38] M. S. El-Genk and J. L. Parker, "Enhanced boiling of HFE-7100 dielectric liquid on porous graphite," Energy Conversion and Management, vol. 46, no. 15-16, pp. 2455-2481, 2005.
[39] S. Liu, G. Xiao, O. Lin, Y. He, and S. Song, "A new one-step approach for the fabrication of microgrooves on Inconel 718 surface with microporous structure and nanoparticles having ultrahigh adhesion and anisotropic wettability: Laser belt processing," Applied Surface Science, vol. 607, p. 155108, 2023.
[40] C.-C. Hsu, T.-W. Su, and P.-H. Chen, "Pool boiling of nanoparticle-modified surface with interlaced wettability," Nanoscale research letters, vol. 7, pp. 1-7, 2012.
[41] C.-C. Hsu, M.-R. Lee, C.-H. Wu, and P.-H. Chen, "Effect of interlaced wettability on horizontal copper cylinders in nucleate pool boiling," Applied Thermal Engineering, vol. 112, pp. 1187-1194, 2017.
[42] N. Zuber, "Hydrodynamic aspects of boiling heat transfer (thesis)," Ramo-Wooldridge Corp., Los Angeles, CA (United States); Univ. of California …, 1959.
[43] S. G. Kandlikar, "A theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation," Journal of Heat Transfer-Transactions of the Asme, vol. 123, no. 6, pp. 1071-1079, Dec 2001, doi: 10.1115/1.1409265.
[44] K. H. Chu, R. Enright, and E. N. Wang, "Structured surfaces for enhanced pool boiling heat transfer," Applied Physics Letters, vol. 100, no. 24, Jun 2012, Art no. 241603, doi: 10.1063/1.4724190.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90999-
dc.description.abstract本研究使用飛秒雷射技術於銅表面上製造出微溝槽的結構,使表面呈現非向的濕潤性質。本研究的目標是探討與比較光滑銅表面以及微溝槽表面的池沸騰熱傳表現,池沸騰實驗皆是於一大氣壓且飽和狀態下進行,使用的工作流體為介電溶液Novec-7100。實驗中所得到的沸騰曲線以及所拍攝的氣泡動態顯示,具備非等向濕潤性質的微溝槽結構對沸騰熱傳係數以及臨界熱通量皆有影響。比較微溝槽結構表面以及未改質的光滑銅表面的熱傳表現可以得知,具有微溝槽的表面氣泡成核數量大幅上升,使得沸騰熱傳係數隨之提高。研究結果顯示,在所有微溝槽結構表面中,微溝槽間距為100 μm的表面具有最佳的熱傳增強效果,沸騰熱傳係數為未改質表面的1.37倍。本研究也利用接觸角量測結果、氣泡動態以及理論預測模型來分析臨界熱通量,並取得與理論模型良好的相容性。zh_TW
dc.description.abstractA femtosecond laser–texturing method was employed to create microgrooves with anisotropic wettability on a copper surface. The objective was to examine the pool boiling heat transfer performance on plain copper surfaces and microgroove surfaces under saturation at atmospheric pressure. In the experiments, Novec-7100 dielectric liquid was used as the working fluid. An analysis of boiling curves and of high-speed-image data on the formation of bubbles revealed that the anisotropic wettability induced by microgroove surfaces with varying groove spacing affected both the heat transfer coefficient and critical heat flux values. Relative to the smooth copper surface, microgroove surfaces enhanced the heat transfer performance by increasing the number of bubble nucleation sites. The experimental boiling results indicated that a groove spacing of 100 μm achieved the largest heat transfer coefficient enhancement, namely 1.37 times (relative to the smooth surface). Furthermore, critical heat flux analysis was conducted on the basis of contact angle measurement results, high-speed images of evolution bubbles, and theoretical prediction models. Good agreement of CHF values was achieved between our study and the prediction model.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-24T16:40:33Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-24T16:40:33Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 i
Abstract ii
Nomenclature iii
Table of Contents vii
List of Figures ix
List of Table xiii
Chapter 1 Introduction 1
1.1 Literature review 1
1.1.1 Pool boiling 1
1.1.2 Effect of surface roughness in pool boiling 3
1.1.3 Effect of surface wettability in pool boiling 5
1.1.4 Effect of Structured Surfaces on Pool Boiling 10
1.1.5 Effect of biphilic wettability on Pool Boiling 16
1.1.6 Anisotropic wettability 18
1.1.7 Effect of laser on surface wettability 21
1.1.8 Effect of laser irradiation on pool boiling 25
1.2 Research objectives 31
Chapter 2 Theory 33
2.1 Surface energy 33
2.2 Surface wettability and Static contact angle 34
2.3 Young’s equation 34
2.4 Wenzel’s model 36
2.5 Cassie-Baxter model 36
2.6 Required energy relationship between contact angle and bubble generation 37
Chapter 3 Experimental approach 39
3.1 Experimental setup 39
3.2 Properties of working fluid 43
3.3 Surface preparation 45
3.4 Surface morphology 48
3.5 Surface wettability 51
3.6 Experimental procedure 55
3.7 Data Reduction and uncertainty analysis 56
Chapter 4 Results and discussion 60
4.1 Validation of the experimental setup 60
4.2 Evaluations of pool boiling heat transfer data 61
4.3 Analysis of anisotropic wettability effect and bubble dynamics 63
4.4 Analysis of CHF values 68
4.5 Evaluation of overall heat transfer characteristics 71
Chapter 5 Conclusions and Future Prospects 72
5.1 Conclusions 72
5.2 Future prospects 72
References 74
-
dc.language.isoen-
dc.subject飛秒雷射zh_TW
dc.subject介電液zh_TW
dc.subject非等向濕潤性zh_TW
dc.subject氣泡動態zh_TW
dc.subject熱傳係數zh_TW
dc.subject臨界熱通量zh_TW
dc.subject池沸騰zh_TW
dc.subjectCritical heat fluxen
dc.subjectPool boilingen
dc.subjectFemtosecond laser scanningen
dc.subjectDielectric liquiden
dc.subjectAnisotropic wettabilityen
dc.subjectBubble dynamicsen
dc.subjectHeat transfer coefficienten
dc.title探討具有非等向濕潤性質之微溝槽表面對於介電溶液池沸騰熱傳影響zh_TW
dc.titleSaturated pool boiling of Novec-7100 dielectric liquid over microgroove surfaces with characteristics of anisotropic wettabilityen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張天立;許進吉zh_TW
dc.contributor.oralexamcommitteeTien-Li Chang;Chin-Chi Hsuen
dc.subject.keyword池沸騰,飛秒雷射,介電液,非等向濕潤性,氣泡動態,熱傳係數,臨界熱通量,zh_TW
dc.subject.keywordPool boiling,Femtosecond laser scanning,Dielectric liquid,Anisotropic wettability,Bubble dynamics,Heat transfer coefficient,Critical heat flux,en
dc.relation.page77-
dc.identifier.doi10.6342/NTU202303809-
dc.rights.note未授權-
dc.date.accepted2023-08-11-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
4.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved