請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90976完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許聿翔 | zh_TW |
| dc.contributor.advisor | Yu-Hsiang Hsu | en |
| dc.contributor.author | 石家豪 | zh_TW |
| dc.contributor.author | Chia-Hao Shih | en |
| dc.date.accessioned | 2023-10-24T16:34:25Z | - |
| dc.date.available | 2025-09-30 | - |
| dc.date.copyright | 2023-10-24 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-10 | - |
| dc.identifier.citation | [1] M. Dehghani and R. M. Dangelico, "Smart wearable technologies: Current status and market orientation through a patent analysis," in 2017 IEEE International Conference on Industrial Technology (ICIT), 2017: IEEE, pp. 1570-1575.
[2] S. Patel, H. Park, P. Bonato, L. Chan, and M. Rodgers, "A review of wearable sensors and systems with application in rehabilitation," Journal of NeuroEngineering and Rehabilitation, vol. 9, no. 1, pp. 1-17, 2012. [3] G. V. Research, "Wearable technology market size, share & trends analysis report by product (wrist-wear, eye-wear & head-wear, foot-wear, neck-wear, body-wear), by application, by region, and segment forecasts, 2023–2030," ed: Grand View Research San Francisco (CA), 2020. [4] A. A. Al-Atawi, F. Khan, and C. G. Kim, "Application and Challenges of IoT Healthcare System in COVID-19," Sensors, vol. 22, no. 19, p. 7304, 2022. [5] W.H.O. "Ageing and health." Facts sheets, 2022, https://www.who.int/news-room/fact-sheets/detail/ageing-and-health [6] D. Britton, "The Impact of Aging and Progressive Neurological Disease on Swallowing: A Concise Overview," Journal of Texture Studies, vol. 47, no. 4, pp. 257-265, 2016. [7] E. H. de Lima Alvarenga, G. P. Dall’Oglio, E. Z. Murano, and M. Abrahão, "Continuum theory: presbyphagia to dysphagia? Functional assessment of swallowing in the elderly," European Archives of Oto-Rhino-Laryngology, vol. 275, pp. 443-449, 2018. [8] L. Sura, A. Madhavan, G. Carnaby, and M. A. Crary, "Dysphagia in the elderly: management and nutritional considerations," Clinical interventions in aging, pp. 287-298, 2012. [9] K. Matsuo and J. B. Palmer, "Anatomy and physiology of feeding and swallowing: normal and abnormal," Physical medicine and rehabilitation clinics of North America, vol. 19, no. 4, pp. 691-707, 2008. [10] H. Firmin, S. Reilly, and A. Fourcin, "Non-invasive monitoring of reflexive swallowing," Speech Hearing and Language, vol. 10, no. 1, pp. 171-184, 1997. [11] J. A. Robbins, "Normal swallowing and aging," in Seminars in neurology, New York, USA, 1996, vol. 16, no. 04: © 1996 by Thieme Medical Publishers, Inc., pp. 309-317. [12] J. M. Wilkinson, D. C. Codipilly, and R. P. Wilfahrt, "Dysphagia: evaluation and collaborative management," American Family Physician, vol. 103, no. 2, pp. 97-106, 2021. [13] L. W. Baijens, P. Clavé, P. Cras, O. Ekberg, A. Forster, G. F. Kolb, J. C. Leners, S. Masiero, J. Mateos-Nozal, and O. Ortega, "European Society for Swallowing Disorders–European Union Geriatric Medicine Society white paper: oropharyngeal dysphagia as a geriatric syndrome," Clinical interventions in aging, pp. 1403-1428, 2016. [14] M. A. Malouh, J. A. Cichero, Y. J. Manrique, L. Crino, E. T. Lau, L. M. Nissen, and K. J. Steadman, "Are medication swallowing lubricants suitable for use in dysphagia? Consistency, viscosity, texture, and application of the international dysphagia diet standardization initiative (IDDSI) framework," Pharmaceutics, vol. 12, no. 10, p. 924, 2020. [15] M. L. Huckabee, P. Macrae, and K. Lamvik, "Expanding instrumental options for dysphagia diagnosis and research: ultrasound and manometry," Folia Phoniatrica et Logopaedica, vol. 67, no. 6, pp. 269-284, 2016. [16] R. Wootton, "Telemedicine," Bmj, vol. 323, no. 7312, pp. 557-560, 2001. [17] S. Stojanović and B. Belić, "Laryngeal manifestations of rheumatoid arthritis," Innovative Rheumatology, p. 215, 2013. [18] N. Yagi, S. Nagami, M. K. Lin, T. Yabe, M. Itoda, T. Imai, and Y. Oku, "A noninvasive swallowing measurement system using a combination of respiratory flow, swallowing sound, and laryngeal motion," Medical & biological engineering & computing, vol. 55, pp. 1001-1017, 2017. [19] W. Y. Shieh, C. M. Wang, H. Y. K. Cheng, and C. H. Wang, "Using wearable and non-invasive sensors to measure swallowing function: Detection, verification, and clinical application," Sensors, vol. 19, no. 11, p. 2624, 2019. [20] C. M. Wang, J. Y. Chen, C. C. Chuang, W. C. Tseng, A. M. Wong, and Y. C. Pei, "Aging‐related changes in swallowing, and in the coordination of swallowing and respiration determined by novel non‐invasive measurement techniques," Geriatrics & gerontology international, vol. 15, no. 6, pp. 736-744, 2015. [21] 王奕勛, "以壓電吞嚥感測貼布擷取人體吞嚥行為之演算法開發與實驗驗證," 碩士論文, 應用力學研究所, 國立臺灣大學, 2022. [22] S. Ye, J. Fuh, and L. Lu, "Effects of Ca substitution on structure, piezoelectric properties, and relaxor behavior of lead-free Ba (Ti0. 9Zr0. 1) O3 piezoelectric ceramics," Journal of alloys and compounds, vol. 541, pp. 396-402, 2012. [23] H. Shao, H. Wang, and J. Fang, "Piezoelectric energy conversion performance of electrospun nanofibers," in Energy Harvesting Properties of Electrospun Nanofibers: IOP Publishing Bristol, UK, 2019, pp. 4-1-4-42. [24] R. A. Kishore and S. Priya, "A review on low-grade thermal energy harvesting: Materials, methods and devices," Materials, vol. 11, no. 8, p. 1433, 2018. [25] T. Tanaka, G. Montanari, and R. Mulhaupt, "Polymer nanocomposites as dielectrics and electrical insulation-perspectives for processing technologies, material characterization and future applications," IEEE transactions on Dielectrics and Electrical Insulation, vol. 11, no. 5, pp. 763-784, 2004. [26] D. Damjanovic, "Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics," Reports on progress in physics, vol. 61, no. 9, p. 1267, 1998. [27] A. Hajjaji, "Caractérisation multi échelle et lois de comportement dans les matériaux ferroélectriques," PhD thèse, INSA de Lyon, 2007. [28] J. Bender and J. Krim, "Applications of the piezoelectric quartz crystal microbalance for microdevice development," in Microscale Diagnostic Techniques. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 227-259. [29] H. Kawai, "The piezoelectricity of poly (vinylidene fluoride)," Japanese journal of applied physics, vol. 8, no. 7, p. 975, 1969. [30] Q. Zhang, V. Bharti, and X. Zhao, "Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly (vinylidene fluoride-trifluoroethylene) copolymer," Science, vol. 280, no. 5372, pp. 2101-2104, 1998. [31] E. Kabir, M. Khatun, L. Nasrin, M. J. Raihan, and M. Rahman, "Pure β-phase formation in polyvinylidene fluoride (PVDF)-carbon nanotube composites," Journal of Physics D: Applied Physics, vol. 50, no. 16, p. 163002, 2017. [32] Y. Higashihata, J. Sako, and T. Yagi, "Piezoelectricity of vinylidene fluoride-trifluoroethylene copolymers," Ferroelectrics, vol. 32, no. 1, pp. 85-92, 1981. [33] H. Ohigashi and K. Koga, "Ferroelectric copolymers of vinylidenefluoride and trifluoroethylene with a large electromechanical coupling factor," Japanese journal of applied physics, vol. 21, no. 8A, p. L455, 1982. [34] J. Nunes-Pereira, S. Ribeiro, C. Ribeiro, C. J. Gombek, F. Gama, A. Gomes, D. Patterson, and S. Lanceros-Méndez, "Poly (vinylidene fluoride) and copolymers as porous membranes for tissue engineering applications," Polymer Testing, vol. 44, pp. 234-241, 2015. [35] Y. Maeda, H. Kanetsuna, K. Nagata, K. Matsushige, and T. Takemura, "Direct observation of phase transitions of polyethylene under high pressure by a PSPC x‐ray system," Journal of Polymer Science: Polymer Physics Edition, vol. 19, no. 9, pp. 1313-1324, 1981. [36] G. Davis, J. McKinney, M. Broadhurst, and S. Roth, "Electric‐field‐induced phase changes in poly (vinylidene fluoride)," Journal of Applied Physics, vol. 49, no. 10, pp. 4998-5002, 1978. [37] B. Servet and J. Rault, "Polymorphism of poly (vinylidene fluoride) induced by poling and annealing," Journal de Physique, vol. 40, no. 12, pp. 1145-1148, 1979. [38] R. G. Kepler and R. Anderson, "Ferroelectric polymers," Advances in physics, vol. 41, no. 1, pp. 1-57, 1992. [39] A. Baji, Y. W. Mai, Q. Li, and Y. Liu, "Electrospinning induced ferroelectricity in poly (vinylidene fluoride) fibers," Nanoscale, vol. 3, no. 8, pp. 3068-3071, 2011. [40] L. Rayleigh, "XX. On the equilibrium of liquid conducting masses charged with electricity," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 14, no. 87, pp. 184-186, 1882. [41] J. Zeleny, "The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces," Physical Review, vol. 3, no. 2, p. 69, 1914. [42] P. K. Baumgarten, "Electrostatic spinning of acrylic microfibers," Journal of colloid and interface science, vol. 36, no. 1, pp. 71-79, 1971. [43] B. Vonnegut and R. L. Neubauer, "Production of monodisperse liquid particles by electrical atomization," Journal of colloid science, vol. 7, no. 6, pp. 616-622, 1952. [44] V. G. Drozin, "The electrical dispersion of liquids as aerosols," Journal of colloid science, vol. 10, no. 2, pp. 158-164, 1955. [45] G. I. Taylor, "Disintegration of water drops in an electric field," Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 280, no. 1382, pp. 383-397, 1964. [46] S. Suresh, A. Becker, and B. Glasmacher, "Impact of apparatus orientation and gravity in electrospinning—A review of empirical evidence," Polymers, vol. 12, no. 11, p. 2448, 2020. [47] A. V. Subbotin and A. N. Semenov, "Electrohydrodynamics of stationary cone-jet streaming," Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 471, no. 2182, p. 20150290, 2015. [48] W. E. Teo and S. Ramakrishna, "A review on electrospinning design and nanofibre assemblies," Nanotechnology, vol. 17, no. 14, p. R89, 2006. [49] H. Yoshimoto, Y. Shin, H. Terai, and J. Vacanti, "A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering," Biomaterials, vol. 24, no. 12, pp. 2077-2082, 2003. [50] J. A. Matthews, G. E. Wnek, D. G. Simpson, and G. L. Bowlin, "Electrospinning of collagen nanofibers," Biomacromolecules, vol. 3, no. 2, pp. 232-238, 2002. [51] D. Li, Y. Wang, and Y. Xia, "Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays," Nano letters, vol. 3, no. 8, pp. 1167-1171, 2003. [52] C. Xu, R. Inai, M. Kotaki, and S. Ramakrishna, "Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering," Biomaterials, vol. 25, no. 5, pp. 877-886, 2004. [53] P. D. Dalton, D. Klee, and M. Möller, "Electrospinning with dual collection rings," Polymer, vol. 46, no. 3, pp. 611-614, 2005. [54] L. Muthukrishnan, "An overview on electrospinning and its advancement toward hard and soft tissue engineering applications," Colloid and Polymer Science, vol. 300, no. 8, pp. 875-901, 2022. [55] 朱信融, "以靜電紡絲研製高排列性聚 (偏氟乙烯-三氟乙烯) 薄膜及相關複合膜應用之研究," 碩士論文, 應用力學研究所, 國立臺灣大學, 2016. [56] 林哲宇, 賈澤民, 胡李琳, 江俊諺, 古嘉豪, 陳耀麟, and 邵耀華, "超音波影像原理簡介," 物理治療, vol. 35, no. 3, pp. 180-187, 2010. [57] 陳國智 and 張志華, "懂得這三個原則,肺部超音波不再是無字天書," 台灣急診醫學通訊, 第三卷第二期, 2020, https://www.sem.org.tw/EJournal/Detail/209. [58] T. G. Leighton, "What is ultrasound?," Progress in biophysics and molecular biology, vol. 93, no. 1-3, pp. 3-83, 2007. [59] K. OGUCHI, E. SAITOH, M. BABA, S. KUSUDO, T. TANAKA, and K. ONOGI, "The repetitive saliva swallowing test (RSST) as a screening test of functional dysphagia (2) validity of RSST," The Japanese Journal of Rehabilitation Medicine, vol. 37, no. 6, pp. 383-388, 2000. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90976 | - |
| dc.description.abstract | 本研究的目標為比較吞嚥感應貼布黏貼方式,以及驗證及其於重複唾液吞嚥測試之應用及演算法開發,此吞嚥感應貼布以同時量測舌骨及甲狀軟骨訊號來做為監測吞嚥訊號的一種非侵入式穿戴裝置,以做為吞嚥評估之標準。本研究亦建立一套資料擷取系統,可同時分析舌骨及甲狀軟骨之特徵波形,用以探討所量測到的訊號與吞嚥之間的關係。實驗結果顯示無論使用橫式或直式吞嚥感應貼布,皆可成功擷取到受試者的吞嚥行為,並且比較出健康受試者與吞嚥困難受試者的差異。本研究所開發的演算法對於重複唾液吞嚥測試之準確率在健康男性、健康女性、及患有吞嚥困難受試者中吞嚥次數監測能力在誤差+/-1以內皆可達100%。本研究亦使用超音波影像分析舌骨及甲狀軟骨的運動行為,用以驗證壓電吞嚥感測貼布訊號的可靠度,其中舌骨的總行程時間之誤差範圍達2.04~3.31%,甲狀軟骨的總行程時間之誤差範圍達1.06~4.24%,成功驗證壓吞嚥感應貼布所量測到的訊號可代表舌骨及甲狀軟骨進行吞嚥行為時所產生的喉部皮膚表面形變。總結,本研究以實際實驗驗證吞嚥感應貼布可以建立人體吞嚥行為參數以及準確判斷吞嚥次數,並且在吞嚥困難的受試者身上得到初步試驗與驗證,以及驗證壓電吞嚥感測貼布訊號的可靠度,可作為即時吞嚥監測之個人化裝置。 | zh_TW |
| dc.description.abstract | The aim of this study is to compare the development and validation of different attachment methods for the swallow-patch-sensor and to develop an algorithm for the application of the repetitive saliva swallowing test. The swallow patch sensor measures the skin movement of hyoid bone and thyroid cartilage during the swallowing process for assessment. A data acquisition system is created to simultaneously analyze the characteristic waveforms of the thyroid cartilage and hyoid bone signals to monitor the swallowing process. The experimental results show that the swallowing behavior can be successfully captured using both the horizontal or vertical type swallow patch sensor, and can both identify differences between healthy participants and dysphagia patients. The accuracy of the developed algorithm can reach 100% for healthy male, healthy female and dysphagia subjects with +/-1 error in the total number of swallows, respectively. Finally, ultrasonic images are also used to analyze the behavior of hyoid bone and thyroid cartilage to verify the reliability of the swallow patch sensor. The error of the total travel time of the hyoid bone is 2.04% to 3.31%, and the error of the total travel time of the thyroid cartilage is 1.06% to 4.24%. It verified that the signals measured by the swallow patch sensor can represent the surface deformation of the skin caused by the hyoid bone and thyroid cartilage during the swallowing process. In summary, this study experimentally verifies that using the swallow patch sensor can assess human swallowing behaviors. It can accurately determine the number of swallows in the repetitive saliva swallowing test. It also provides initial experimental verifications on dysphagia participants. Finally, the reliability of this swallow monitoring system is verified, which can become as a personalized device for real-time swallowing monitoring. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-24T16:34:25Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-24T16:34:25Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vii 表目錄 xii 第1章 緒論 1 1.1 研究背景與動機 1 1.1.1 吞嚥正常和吞嚥困難 3 1.1.2 吞嚥困難檢測方法 5 1.1.3 文獻回顧 7 1.2 研究目標 11 1.3 論文架構 14 第2章 壓電材料 15 2.1 壓電材料介紹 15 2.1.1 壓電效應、焦電效應、介電效應 15 2.1.2 壓電材料種類 17 2.2 高分子壓電材料 18 2.2.1 聚-偏氟乙烯 PVDF 18 2.2.2 聚(偏氟乙烯-三氟乙烯) P(VDF-TrFE) 19 第3章 感測器製程 21 3.1 靜電紡絲 21 3.1.1 靜電紡絲原理 21 3.1.2 滾筒式靜電紡絲收集器 23 3.2 吞嚥感應貼布製程 24 3.2.1 P(VDF-TrFE)溶液配置 24 3.2.2 靜電紡絲實驗架設 25 3.2.3 吞嚥感應貼布製程 26 第4章 研究方法與實驗架設 30 4.1 吞嚥行為之演算法開發 30 4.1.1 比較不同之橫式吞嚥感應貼布貼附位置 30 4.1.2 比較不同之直式吞嚥感應貼布封裝寬度 32 4.1.3 吞嚥訊號及各參數介紹 34 4.1.4 資料擷取系統之分析流程及演算法開發 39 4.1.5 資料擷取系統操作介面 45 4.1.6 量測吞嚥行為之實驗架設 46 4.2 壓電吞嚥感測貼布結合超音波影像之驗證 49 4.2.1 超音波原理 49 4.2.2 超音波探頭選擇 49 4.2.3 喉部超音波影像位置 50 4.2.4 超音波影像分析流程 51 4.2.5 壓電吞嚥感測貼布結合超音波影像之實驗架設 55 第5章 實驗結果與討論 57 5.1 橫式與直式吞嚥感應貼布之吞嚥差異 57 5.1.1 舌骨及甲狀軟骨之單次吞嚥差異 57 5.1.2 連續吞嚥與判斷吞嚥次數之方法 63 5.2 壓電吞嚥感測貼布結合超音波影像之分析結果 89 5.2.1 超音波影像驗證吞嚥訊號 89 5.2.2 受試者之超音波驗證結果 90 第6章 結論與未來展望 97 6.1 結論 97 6.2 未來展望 100 REFERENCES 101 附錄1 106 附錄2 121 附錄3 131 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 壓電纖維 | zh_TW |
| dc.subject | 穿戴式裝置 | zh_TW |
| dc.subject | 吞嚥困難 | zh_TW |
| dc.subject | 靜電紡絲 | zh_TW |
| dc.subject | 吞嚥感應貼布 | zh_TW |
| dc.subject | wearable device | en |
| dc.subject | electrospinning | en |
| dc.subject | piezoelectric fiber | en |
| dc.subject | dysphagia | en |
| dc.subject | swallow patch sensor | en |
| dc.title | 吞嚥感應貼布黏貼方式之開發與驗證及其於重複唾液吞嚥測試之演算法開發 | zh_TW |
| dc.title | Development and verification of the attachment method for the swallow-patch-sensor and its algorithm development for the repetitive saliva swallowing test | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王亭貴;蕭名彥;林哲宇 | zh_TW |
| dc.contributor.oralexamcommittee | Tyng-Guey Wang;Ming-Yen Hsiao;Che-Yu Lin | en |
| dc.subject.keyword | 吞嚥感應貼布,吞嚥困難,穿戴式裝置,靜電紡絲,壓電纖維, | zh_TW |
| dc.subject.keyword | swallow patch sensor,dysphagia,wearable device,electrospinning,piezoelectric fiber, | en |
| dc.relation.page | 142 | - |
| dc.identifier.doi | 10.6342/NTU202304028 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-12 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 應用力學研究所 | - |
| dc.date.embargo-lift | 2025-09-30 | - |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 9.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
