Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90932
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor傅昭銘zh_TW
dc.contributor.advisorChao-Ming Fuen
dc.contributor.author吳人翔zh_TW
dc.contributor.authorJen-Hsiang Wuen
dc.date.accessioned2023-10-24T16:22:58Z-
dc.date.available2025-08-08-
dc.date.copyright2023-10-24-
dc.date.issued2023-
dc.date.submitted2023-08-10-
dc.identifier.citation1. 李景明,張慶瑞,林正雄. 磁性技術手冊.中華民國磁性技術協會.5(2002).
2. Y. Liu, D.J. Sellmyer, D. Shindo. Handbook of Advanced Magnetic Materials. Springer. 1(2006).
3. 洪連輝, 劉立基, 魏榮君. 固態物理學導論. 高立圖書有限公司. 335(2006).
4. 戴道生, 錢昆明. 凝態物理學叢書-鐵磁學(下). 科學出版社.1(2000).
5. G. Bertotti. Hysteresis in Magnetism: For Physicists, Materials Scientists, and Engineers. Academic Press. 424(1998).
6. A. Jordan, P. Wust, H. Faehling, et al. Int. J. Hyperthermia. 9,51(1993).
7. M. I. Shliomis, A. F. Pshenichnikov, K. I. Morozov, S. I. Yu, J. Magn. Magn. Mater.85,40(1990).
8. M. Hanson. J. Magn. Magn. Mater. 96,105(1991).
9. P. C. Fannin. J. Magn. Magn. Mater. 446,258(2003).
10. Jin K, Teng L, Shen Y, et al. Patient-derived human tumour tissue xenografts in immunodeficient mice: a systematic review. Clin Transl Oncol. 12,473(2010).
11. L. Gu, X. Li, J. Jiang. Stem Cell Tracking Using Effective Self-Assembled Peptide-Modified Superparamagnetic Nanoparticles. Nanoscale. 10,34(2018).
12. Tang T, Valenzuela A, Petit F, et al. In Vivo MRI of Functionalized Iron Oxide Nanoparticles for Brain Inflammation. Contrast Media Mol Imaging. 2018(2018).
13. Karakatsanis A, Olofsson H, Stalberg P, et al. Simplifying Logistics and Avoiding the Unnecessary in Patients with Breast Cancer Undergoing Sentinel Node Biopsy. A Prospective Feasibility Trial of the Preoperative Injection of Super Paramagnetic Iron Oxide Nanoparticles. Scandinavian Journal of Surgery. 107,130(2018).
14. Young JS, Bernal G, Polster SP, et al. Convection-Enhanced Delivery of Polymeric Nanoparticles Encapsulating Chemotherapy in Canines with Spontaneous Supratentorial Tumors. World Neurosurg. 117,698(2018).
15. Chemla YR, Grossman HL, Poon Y, et al. Ultrasensitive magnetic biosensor for homogeneous immunoassay. Proc Natl Acad Sci USA. 97,14268(2000).
16. Kyu Sung K, Je-Kyun P. Magnetic force-based multiplexed immunoassay using superparamagnetic nanoparticles in microfluidic channel. Lab on a Chip. 6(2005).
17. Johannsen M, Gneveckow U, Taymoorian K, et al. Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: results of a prospective phase I trial. Int J Hyperthermia. 23,315(2007).
18. Maier-Hauff K, Rothe R, Scholz R, et al. Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J Neurooncol. 81,53(2007).
19. Maier-Hauff K, Ulrich F, Nestler D, et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol. 103,317(2011).
20. Akram M, Iqbal M, Daniyal M, et al. Awareness and current knowledge of breast cancer. Biol Res. 50,33(2017).
21. Merino Bonilla JA, Torres Tabanera M, Ros Mendoza LH. Breast cancer in the 21st century: from early detection to new therapies. Radiologia. 59,368(2017)
22. Nadia H, Michael G. Breast cancer. The Lancet. 389,1134(2017).
23. Tai YL, Chen KC, Hsieh JT, Shen TL. Exosomes in cancer development and clinical applications. Cancer Sci. 109,2364(2018).
24. Hoshino A, Costa-Silva B, Shen TL, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 527,329(2015).
25. Mackowiak PA. Fever: blessing or curse? A unifying hypothesis. Ann. Intern. Med. 120,1037(1994).
26. Roti Roti JL. Cellular responses to hyperthermia (40-46 degrees C): cell killing and molecular events. Int J Hyperthermia. 24,3(2008).
27. Zhang Y, Calderwood SK. Autophagy, protein aggregation and hyperthermia: a mini-review. Int J Hyperthermia. 27,409(2011).
28. Ahmed K, Zaidi SF. Treating cancer with heat: hyperthermia as promising strategy to enhance apoptosis. J Pak Med Assoc.63,504(2013).
29. Basile A, Biziato D, Sherbet GV, et al. Hyperthermia inhibits cell proliferation and induces apoptosis: relative signaling status of P53, S100A4, and Notch in heat sensitive and resistant cell lines. J. Cell. Biochem. 103,212(2008).
30. Zhao P, Jiang H, Su D. Inhibition of cell proliferation by mild hyperthermia at 43˚C with Paris Saponin I in the lung adenocarcinoma cell line PC‑9. Mol. Med. Rep. 11,327(2014).
31. Wust P, Hildebrandt B, Sreenivasa G et al. Hyperthermia in combined treatment of cancer. Lancet Oncol. 3,487(2002).
32. Seifert G, Budach V, Keilholz U, et al. Regional hyperthermia combined with chemotherapy in paediatric, adolescent and young adult patients: current and future perspectives. Radiat Oncol. 11,65(2016).
33. Youssef I, Amin NP. Hyperthermia for chest wall recurrence. StatPearls. 2022.
34. van Rhoon GC, Paulides MM, van Holthe JM, et al. Hyperthermia by electromagnetic fields to enhanced clinical results in oncology. Annu Int Conf IEEE Eng Med Biol Soc. 359(2016).
35. Zhu L, Altman MB, Laszlo A, et al. Ultrasound hyperthermia technology for radiosensitization. Ultrasound Med Biol. 45,1025(2019).
36. Maloney E, Hwang JH. Emerging HIFU applications in cancer therapy. Int J Hyperthermia. 31,302(2015).
37. Fishman PS, Fischell JM. Focused ultrasound mediated opening of the blood-brain barrier for neurodegenerative diseases. Front Neurol. 12,749047(2021).
38. Józefczak A, Kaczmarek K, Bielas R. Magnetic mediators for ultrasound theranostics. Theranostics. 11,10091(2021).
39. Brenkman HJF, Päeva M, van Hillegersberg R, et al . Prophylactic hyperthermic intraperitoneal chemotherapy (HIPEC) for gastric cancer-A systematic review. J Clin Med. 8,1685(2019).
40. Fatima H, Charinpanitkul T, Kim KS. Fundamentals to apply magnetic nanoparticles for hyperthermia therapy. Nanomaterials(Basel). 11,1203(2021)
41. Sun H, Jiang C, Wu L, et al. Cytotoxicity-Related Bioeffects Induced by Nanoparticles: The Role of Surface Chemistry. Front Bioeng Biotechnol. 12,414(2019).
42. Shi LW, Zhang JQ, Zhao M, et al. Effects of polyethylene glycol on the surface of nanoparticles for targeted drug delivery. Nanoscale. 13,10748(2021).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90932-
dc.description.abstract熱療法已被廣泛應用於腫瘤及癌症的臨床治療。在熱療法中,磁性奈米顆粒(簡稱MNP)被成功地運用;這種方法的基本原理是將MNP注射到患部,然後利用交流磁場來引發熱炙效應。當MNP被注射到患處後,癌細胞會吞噬這些顆粒。在施加交流磁場的情況下,MNP在癌細胞內部受到磁場影響,產生轉動及熱效應,造成細胞結構的損傷及凋亡。
胞外體(Exosome)在癌症研究中扮演著關鍵角色。它們會在癌細胞之前先轉移到目的地,並釋放功能性蛋白來調整微環境。當環境適宜時,癌細胞接著轉移。利用這一特性,將MNP接上胞外體的表面,使其成為可被交流磁場處理的目標。本研究旨在探討MNP及其在交流磁場作用下對三陰性乳腺癌細胞系MDA-MB-4175的影響。此外,我們也研究了使用牛血清白蛋白(BSA)修飾MNP的過程,以優化其與胞外體的結合。
實驗主要分為乳癌細胞的生存狀態與表面修飾兩大部分。在乳癌細胞的部分,分別評估了癌細胞與作為正常細胞參照的NIH 3T3細胞,在多種MNP濃度和不同交流磁場持續時間下的存活情況。此外,透過特定的實驗設計,進一步探索了環境和細胞內MNP的具體影響。在表面修飾的部分,將MNP與BSA混合,並於不同的反應時間點測量BSA的濃度,以了解其在MNP上的結合比率。最後,利用Rabbit igG作為接合橋樑,並在其上連接螢光抗體,再以顯微鏡進行觀察。
實驗結果表明,當細胞與MNP共同培養後,細胞會吞噬MNP。隨著MNP濃度的增加,3T3細胞和MDA-MB-4175細胞的存活率都會逐步下降,但在交流磁場作用下的0至60分鐘內並無明顯變化。然而,當被細胞吞噬的MNP受到交流磁場的影響時,其在細胞內的旋轉和熱效應會進一步降低存活率,大約下降了20%。當MNP被PEG-400包裹後,其對細胞的毒性得以降低,使存活率提高約13%。至於MNP的表面修飾,研究發現在37℃、0.1M的EDC條件下,反應時間為50分鐘時,MNP能成功地與BSA結合,其比例是每毫克MNP能結合0.3毫克的BSA。免疫螢光影像也證實了這一成功的結合過程。
zh_TW
dc.description.abstractThermal therapy has been widely applied to clinical treatments for tumors and cancers. In hyperthermia, Magnetic Nanoparticles (MNPs) have been successfully utilized; the fundamental principle of this method is the injection of MNPs into the afflicted area, followed by the application of an alternating magnetic field to induce a hyperthermic effect. After MNPs are injected into the affected area, cancer cells engulf these particles. When subjected to an alternating magnetic field, MNPs within the cancer cells respond to the magnetic influence, generating rotational and thermal effects, leading to cellular structural damage and apoptosis.
Exosomes play a pivotal role in cancer research. They migrate to target locations before cancer cells and release functional proteins to modify the microenvironment. Once the environment is conducive, cancer cells follow suit. Exploiting this characteristic, MNPs are attached to the surface of exosomes, turning them into targets for alternating magnetic field treatment. This research aims to investigate the impact of MNPs and their effects on the triple-negative breast cancer cell line MDA-MB-4175 under an alternating magnetic field. Additionally, we studied the process of modifying MNPs using Bovine Serum Albumin (BSA) to optimize their binding with exosomes.
The experiments are divided into the survival state of breast cancer cells and surface modification. In the breast cancer cell segment, we evaluated the survival of cancer cells and NIH 3T3 cells, which served as a model for normal cells, under various MNP concentrations and alternating magnetic field durations. Furthermore, through specific experimental designs, we delved deeper into the precise impacts of the environment and intracellular MNPs. In the surface modification segment, we mixed MNPs with BSA and measured the concentration of BSA at different reaction time points to understand its binding ratio on MNPs. Finally, we used Rabbit IgG as a binding bridge and attached fluorescent antibodies to it, followed by microscopic observation.
The results indicate that cells engulf MNPs after co-culturing. As the concentration of MNPs increases, the survival rates of both 3T3 cells and MDA-MB-4175 cells progressively decline, but no noticeable changes are observed within 0 to 60 minutes under the alternating magnetic field. However, when the MNPs ingested by cells are influenced by the alternating magnetic field, their intracellular rotation and thermal effects further reduce the survival rate, decreasing by approximately 20%. When MNPs are encapsulated with PEG-400, their cytotoxicity is diminished, leading to an increase in survival rate by about 13%. Regarding MNP surface modification, we discovered that at 37°C with 0.1M EDC conditions, with a reaction time of 50 minutes, MNPs successfully bind with BSA at a ratio of 0.3 mg BSA per mg of MNP. Immunofluorescence images also confirmed this successful binding process.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-24T16:22:58Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-24T16:22:58Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
摘要 iii
Abstract v
目錄 vii
圖目錄 ix
第一章 緒論與文獻回顧 1
1.1 磁性材料理論探討及應用 2
1.1.1 磁性物質基本特性 2
1.1.2 磁性物質的分類 3
1.1.3 磁異向性 6
1.1.4 鐵氧體的磁疇與磁滯現象 6
1.1.5 鐵氧體的電磁動力行為 8
1.1.6 磁性奈米粒子之生醫應用 13
1.2 乳癌簡介 17
1.3 熱炙療法 24
1.4 研究目的 26
1.5 論文架構 27
第二章 實驗材料與方法 28
2.1 磁性奈米粒子之製備 28
2.1.1製備磁性奈米粒子之藥品 28
2.1.2 製備磁性奈米粒子之設備 29
2.1.3磁性奈米粒子製備步驟 29
2.2 細胞株與細胞培養液 30
2.3 細胞株培養 31
2.4 磁性奈米粒子與交流磁場用於細胞之處理 33
2.5 CCK-8試驗測定細胞存活率 34
2.6 磁性奈米粒子以白蛋白進行表面修飾 34
2.7 蛋白含量之測量 35
2.8 磁粒子之免疫螢光 35
2.9 數據處理 36
第三章 實驗結果 37
3.1 磁性奈米粒子之交流磁場處理對乳癌細胞生長狀態之影響 37
3.1.1 MNP及交流磁場對MDA-MB-4175細胞存活率影響 37
3.1.2 MNP之交流磁場處理對MDA-MB-4175細胞存活率影響 41
3.1.3 PEG包覆的MNP對MDA-MB-4175細胞存活率影響 44
3.2 磁性奈米粒子之表面修飾 47
第四章 結論與未來展望 51
4.1 磁性奈米粒子之交流磁場處理對乳癌細胞生長狀態之影響 51
4.2 磁性奈米粒子之表面修飾 53
4.3 未來研究方向建議 54
參考文獻 56
-
dc.language.isozh_TW-
dc.subject磁性奈米粒子zh_TW
dc.subject聚乙二醇zh_TW
dc.subject表面修飾zh_TW
dc.subject胞外體zh_TW
dc.subject交流磁場zh_TW
dc.subject乳腺癌zh_TW
dc.subjectexosomeen
dc.subjectalternating magnetic fielden
dc.subjectbreast canceren
dc.subjectmagnetic nanoparticleen
dc.subjectPolyethylene Glycolen
dc.subjectsurface modificationen
dc.title具表面修飾之磁性奈米粒子其交流磁場效應對乳癌細胞生長影響zh_TW
dc.titleEffect of Alternating Magnetic Field for the Surface-Modified Magnetic Nanoparticles on the Growth of Breast Cancer Cellsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳政維;沈湯龍zh_TW
dc.contributor.oralexamcommitteeJeng-Wei Chen;Tang-Long Shenen
dc.subject.keyword磁性奈米粒子,乳腺癌,交流磁場,胞外體,表面修飾,聚乙二醇,zh_TW
dc.subject.keywordmagnetic nanoparticle,breast cancer,alternating magnetic field,exosome,surface modification,Polyethylene Glycol,en
dc.relation.page59-
dc.identifier.doi10.6342/NTU202302182-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-11-
dc.contributor.author-college理學院-
dc.contributor.author-dept應用物理研究所-
dc.date.embargo-lift2025-08-08-
顯示於系所單位:應用物理研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf1.83 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved