請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90897完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許聿翔 | zh_TW |
| dc.contributor.advisor | Yu-Hsiang Hsu | en |
| dc.contributor.author | 褚國任 | zh_TW |
| dc.contributor.author | Guo-Ren Chu | en |
| dc.date.accessioned | 2023-10-24T16:13:30Z | - |
| dc.date.available | 2025-08-14 | - |
| dc.date.copyright | 2023-10-24 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-09 | - |
| dc.identifier.citation | M. Haghi, K. Thurow, and R. Stoll, "Wearable devices in medical internet of things: scientific research and commercially available devices," Healthcare informatics research, vol. 23, no. 1, pp. 4-15, 2017.
D. A. Hoffman, "Increasing access to care: telehealth during COVID-19," Journal of Law and the Biosciences, vol. 7, no. 1, p. lsaa043, 2020. V. Gruessner. "Top Trends Revolutionizing the Market for Wearable Devices." https://mhealthintelligence.com/news/top-trends-revolutionizing-the-market-for-wearable-devices, 2015. J. M. Peake, G. Kerr, and J. P. Sullivan, "A Critical Review of Consumer Wearables, Mobile Applications, and Equipment for Providing Biofeedback, Monitoring Stress, and Sleep in Physically Active Populations," (in English), Frontiers in Physiology, vol. 9, 2018. Y.-H. Hsu, P.-C. Liu, T.-T. Lin, S.-W. Huang, and Y.-C. Lai, "Development of an elastic piezoelectric yarn for the application of a muscle patch sensor," ACS omega, vol. 5, no. 45, pp. 29427-29438, 2020. E. Marchetta, F. Rastelli, S. Chiavaroli, D. Tresoldi, M. Cadioli, A. Falini, G. Rizzo, and C. Lafortuna, "Image-based measurement of muscles parameters for the assessment of specific tension in elbow flexors," ed: GNB, 2012. T.-W. Wang, "Study on the reliability of the piezoelectric muscle patch sensor using ultrasound imaging and motion capture system," Institute of Applied Mechanics, National Taiwan University, 2022. Y.-L. Lu, "Development of an analysis method for a piezoelectric muscle patch sensor and its application to muscle fatigue," Institute of Applied Mechanics, National Taiwan University, 2022. C. Liu, N. Huang, F. Xu, J. Tong, Z. Chen, X. Gui, Y. Fu, and C. Lao, "3D Printing Technologies for Flexible Tactile Sensors toward Wearable Electronics and Electronic Skin," Polymers (Basel), vol. 10, no. 6, p. E629, 2018. S. Reilly, R. Leach, A. Cuenat, S. Awan, and M. Lowe, Overview of MEMS sensors and the metrology requirements for their manufacture, 1st ed. London, UK: National Physical Laboratory, 2006, pp. 9-15. R. Yu, T. Xia, B. Wu, J. Yuan, L. Ma, G. Cheng, and L. Feng, "Highly Sensitive Flexible Piezoresistive Sensor with 3D Conductive Network," ACS Applied Materials & Interfaces, 2020. M. Kang, J. Kim, B. Jang, Y. Chae, J.-H. Kim, and J.-H. Ahn, "Graphene-Based Three-Dimensional Capacitive Touch Sensor for Wearable Electronics," ACS Nano, vol. 11, no. 8, pp. 7950-7957, 2017. B. Sun, W. Guo, C. Tan, K. Shi, J. Li, X.-X. Wang, X. Huang, Y.-Z. Long, and P. Jiang, "Wireless piezoelectric device based on electrospun PVDF/BaTiO3 NW nanocomposite fibers for human motion monitoring," Nanoscale, vol. 10, 2018. L. Jin, J. Tao, R. Bao, L. Sun, and C. Pan, "Self-powered Real-time Movement Monitoring Sensor Using Triboelectric Nanogenerator Technology," Scientific Reports, vol. 7, no. 1, p. 10521, 2017. R. Setia. "Wearable Technology - Where we are Today and what the Future Holds for us?" https://circuitdigest.com/article/wearable-technology-where-we-are-today-and-what-the-future-holds-for-us, 2020. M. Cardinale and M. C. Varley, "Wearable training-monitoring technology: applications, challenges, and opportunities," International journal of sports physiology and performance, vol. 12, no. s2, pp. S2-55-S2-62, 2017. D. Rodríguez-Martín, C. Pérez-López, A. Samà, J. Cabestany, and A. Català, "A Wearable Inertial Measurement Unit for Long-Term Monitoring in the Dependency Care Area," Sensors, vol. 13, no. 10, pp. 14079-14104, 2013. S. Z. Homayounfar and T. L. Andrew, "Wearable sensors for monitoring human motion: a review on mechanisms, materials, and challenges," SLAS TECHNOLOGY: Translating Life Sciences Innovation, vol. 25, no. 1, pp. 9-24, 2020. 劉柏辰, "可應用於人體肌肉量測的可撓式壓電感測貼布之開發," 應用力學研究所, 國立臺灣大學, 2018. Y.-C. Lai, "Development and verification of a monitoring method for muscle fatigue using a piezoelectric muscle-patch-sensor," Department of Engineering Science and Ocean Engineering, National Taiwan University, 2021. I. P. Herman, Physics of the human body, 2nd ed. New York, USA: Springer Cham, 2016, pp. 331-388. P. Dahal. "Muscle Contraction: Definition, Proteins, Types, Steps." https://thebiologynotes.com/muscle-contraction-mechanism/, 2023. S. Ducreux, "Functional effects of mutations in the skeletal muscle ryanodine receptor type 1 (RYR1) linked to malignant hyperthermia and central core disease," Claude Bernard Lyon 1, 2006. G. E. Pearcey and W. Z. Rymer, "Population recordings of human motor units often display'onion skin'discharge patterns--implications for voluntary motor control," arXiv:2208.11783, 2022. E. N. Marieb and K. Hoehn, Human anatomy & physiology, 7th ed. New York, USA: Pearson education, 2007. P. Crago, J. Houk, and Z. Hasan, "Regulatory actions of human stretch reflex," Journal of neurophysiology, vol. 39, no. 5, pp. 925-935, 1976. J. R. Karp, "Muscle fiber types and training," Strength & Conditioning Journal, vol. 23, no. 5, p. 21, 2001. J. J. Knapik, J. E. Wright, R. H. Mawdsley, and J. Braun, "Isometric, isotonic, and isokinetic torque variations in four muscle groups through a range of joint motion," Physical therapy, vol. 63, no. 6, pp. 938-947, 1983. R. L. Drake, A. W. Vogl, and A. W. Mitchell, Gray's anatomy for students flash cards e-book, 4th ed. Amsterdam, The Netherlands: Elsevier Health Sciences, 2019. J. Marx, R. Hockberger, and R. Walls, D. T. W. a. H. T. Kim, Ed. Rosen's Emergency Medicine-Concepts and Clinical Practice E-Book: 2-Volume Set, 8th ed. Amsterdam, The Netherlands: Elsevier Health Sciences, 2013, pp. 570-595. B. H. Mullis and G. E. Gaski, Synopsis of Orthopaedic Trauma Management, 1st ed. New York, USA: Georg Thieme Verlag, 2020, pp. 319-321. O. Jones. "Muscles in the Anterior Compartment of the Thigh." https://teachmeanatomy.info/lower-limb/muscles/thigh/anterior-compartment/, 2023. S. H. Brown and M. E. Gerling, "Importance of sarcomere length when determining muscle physiological cross-sectional area: a spine example," Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 226, no. 5, pp. 384-388, 2012. P. D. Wilson, "Anatomy of Muscle," in Reference Module in Biomedical Sciences, 2nd ed. Amsterdam, The Netherlands: Elsevier Science, 2014, pp. 111-122. K. Ravichandiran, M. Ravichandiran, M. L. Oliver, K. S. Singh, N. H. McKee, and A. M. Agur, "Determining physiological cross-sectional area of extensor carpi radialis longus and brevis as a whole and by regions using 3D computer muscle models created from digitized fiber bundle data," Computer methods and programs in biomedicine, vol. 95, no. 3, pp. 203-212, 2009. R. Schleip and D. G. Müller, "Training principles for fascial connective tissues: scientific foundation and suggested practical applications," Journal of bodywork and movement therapies, vol. 17, no. 1, pp. 103-115, 2013. J. J. Wan, Z. Qin, P. Y. Wang, Y. Sun, and X. Liu, "Muscle fatigue: general understanding and treatment," Exp Mol Med, vol. 49, no. 10, p. e384, 2017. M. Beretta-Piccoli, G. D’Antona, M. Barbero, B. Fisher, C. M. Dieli-Conwright, R. Clijsen, and C. Cescon, "Evaluation of central and peripheral fatigue in the quadriceps using fractal dimension and conduction velocity in young females," PloS one, vol. 10, no. 4, p. e0123921, 2015. R. M. Enoka and J. Duchateau, "Muscle fatigue: what, why and how it influences muscle function," The Journal of physiology, vol. 586, no. 1, pp. 11-23, 2008. X. Song, H. Li, and W. Gao, "MyoMonitor: Evaluating muscle fatigue with commodity smartphones," Smart Health, vol. 19, p. 100175, 2021. F. Vial, P. Kassavetis, S. Merchant, D. Haubenberger, and M. Hallett, "How to do an electrophysiological study of tremor," Clinical Neurophysiology Practice, vol. 4, pp. 134-142, 2019. A. W. Buijink, M. F. Contarino, J. H. Koelman, J. D. Speelman, and A.-F. van Rootselaar, "How to tackle tremor–systematic review of the literature and diagnostic work-up," Frontiers in neurology, vol. 3, p. 146, 2012. L. Aljihmani, O. Kerdjidj, Y. Zhu, R. K. Mehta, M. Erraguntla, F. Sasangohar, and K. Qaraqe, "Classification of fatigue phases in healthy and diabetic adults using wearable sensor," Sensors, vol. 20, no. 23, p. 6897, 2020. M. Hallett, "Overview of human tremor physiology," Movement disorders, vol. 13, no. S3, pp. 43-48, 1998. W.-T. Tang, W.-Y. Zhang, C.-C. Huang, M.-S. Young, and I.-S. Hwang, "Postural tremor and control of the upper limb in air pistol shooters," Journal of sports sciences, vol. 26, no. 14, pp. 1579-1587, 2008. S. Morrison, J. Kavanagh, S. Obst, J. Irwin, and L. Haseler, "The effects of unilateral muscle fatigue on bilateral physiological tremor," Experimental brain research, vol. 167, pp. 609-621, 2005. D. F. Stegeman, J. H. Blok, H. J. Hermens, and K. Roeleveld, "Surface EMG models: properties and applications," Journal of Electromyography and Kinesiology, vol. 10, no. 5, pp. 313-326, 2000. M. B. Raez, M. S. Hussain, and F. Mohd-Yasin, "Techniques of EMG signal analysis: detection, processing, classification and applications," (in eng), Biol Proced Online, vol. 8, pp. 11-35, 2006. D. Farina, M. Fosci, and R. Merletti, "Motor unit recruitment strategies investigated by surface EMG variables," Journal of applied physiology, vol. 92 1, pp. 235-47, 2002. E. N. Kamavuako, J. C. Rosenvang, M. F. Bøg, A. Smidstrup, E. Erkocevic, M. J. Niemeier, W. Jensen, and D. Farina, "Influence of the feature space on the estimation of hand grasping force from intramuscular EMG," Biomedical Signal Processing and Control, vol. 8, no. 1, pp. 1-5, 2013. E. F. Shair, S. A. Ahmad, M. H. Marhaban, S. B. Mohd Tamrin, and A. R. Abdullah, "EMG Processing Based Measures of Fatigue Assessment during Manual Lifting," BioMed Research International, vol. 2017, p. 3937254, 2017. A. Phinyomark, P. Phukpattaranont, and C. Limsakul, "Feature reduction and selection for EMG signal classification," Expert Systems with Applications, vol. 39, no. 8, pp. 7420-7431, 2012. G. D. Bergland, "A guided tour of the fast Fourier transform," IEEE spectrum, vol. 6, no. 7, pp. 41-52, 1969. Y. Soo, M. Nishino, M. Sugi, H. Yokoi, T. Arai, R. Kato, T. Nakamura, and J. Ota, "Evaluation of frequency band technique in estimating muscle fatigue during dynamic contraction task," in 2009 IEEE International Conference on Robotics and Automation, 2009: IEEE, pp. 933-938. H. A. Yousif, A. Zakaria, N. A. Rahim, A. F. B. Salleh, M. Mahmood, K. A. Alfarhan, L. M. Kamarudin, S. M. Mamduh, A. M. Hasan, and M. K. Hussain, "Assessment of Muscles Fatigue Based on Surface EMG Signals Using Machine Learning and Statistical Approaches: A Review," 2019, vol. 705, no. 1: IOP Publishing, p. 012010, doi: 10.1088/1757-899X/705/1/012010. A. Luttmann, M. Jäger, and W. Laurig, "Electromyographical indication of muscular fatigue in occupational field studies," International journal of Industrial ergonomics, vol. 25, no. 6, pp. 645-660, 2000. J. M. Kim, G. H. Choi, M.-G. Kim, and S. B. Pan, "User Recognition System Based on Spectrogram Image Conversion Using EMG Signals," Computers, Materials & Continua, vol. 72, no. 1, 2022. J. L. Dantas, T. V. Camata, M. A. Brunetto, A. C. Moraes, T. Abrão, and L. R. Altimari, "Fourier and Wavelet spectral analysis of EMG signals in isometric and dynamic maximal effort exercise," in 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010: IEEE, pp. 5979-5982. T. Triwiyanto, O. Wahyunggoro, H. A. Nugroho, and H. Herianto, "Continuous Wavelet Transform Analysis of Surface Electromyography for Muscle Fatigue Assessment on the Elbow Joint Motion," Advances in Electrical and Electronic Engineering, vol. 15, 2017. G. M. Hägg, A. Luttmann, and M. Jäger, "Methodologies for evaluating electromyographic field data in ergonomics," Journal of electromyography and kinesiology, vol. 10, no. 5, pp. 301-312, 2000. L. Rücker, J. Brombach, and K. Bengler, "Experimental study of standing and walking at work _What is compatible with physiological characteristics and human needs?," Zeitschrift für Arbeitswissenschaft, vol. 76, pp. 333-343, 2021. N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis," Proceedings of the Royal Society of London. Series A: mathematical, physical and engineering sciences, vol. 454, no. 1971, pp. 903-995, 1998. A. Biswas, H. P. Cresswell, R. A. Viscarra Rossel, and B. C. Si, "Separating scale‐specific spatial variability in two dimensions using bi‐dimensional empirical mode decomposition," Soil Science Society of America Journal, vol. 77, no. 6, pp. 1991-1995, 2013. H. Liang, S. L. Bressler, E. A. Buffalo, R. Desimone, and P. Fries, "Empirical mode decomposition of field potentials from macaque V4 in visual spatial attention," Biological cybernetics, vol. 92, pp. 380-392, 2005. S. Katzir, "The discovery of the piezoelectric effect," The Beginnings of Piezoelectricity: A Study in Mundane Physics, pp. 15-64, 2006. A. Ballato, "Piezoelectricity: history and new thrusts," in 1996 IEEE Ultrasonics Symposium. Proceedings, 1996, vol. 1: IEEE, pp. 575-583. A. Von Hippel, "Ferroelectricity, domain structure, and phase transitions of barium titanate," Reviews of Modern Physics, vol. 22, no. 3, p. 221, 1950. G. Shirane, E. Sawaguchi, and Y. Takagi, "Dielectric properties of lead zirconate," Physical Review, vol. 84, no. 3, p. 476, 1951. H. Kawai, "The piezoelectricity of poly (vinylidene fluoride)," Japanese journal of applied physics, vol. 8, no. 7, p. 975, 1969. R. C. Smith, Smart material systems: model development, 1st ed. USA: Society for Industrial & Applied, 2005. K. K. Sappati and S. Bhadra, "Piezoelectric Polymer and Paper Substrates: A Review," Sensors, vol. 18, p. 3605, 2018. X. Song, L. He, W. Yang, Z. Wang, Z. Chen, J. Guo, H. Wang, and L. Chen, "Additive manufacturing of bi-continuous piezocomposites with triply periodic phase interfaces for combined flexibility and piezoelectricity," Journal of Manufacturing Science and Engineering, vol. 141, no. 11, p. 111004, 2019. H. Khanbareh, "Expanding the Functionality of Piezo-Particulate Composites," University of Bath, 2016. T. Furukawa, "Piezoelectricity and pyroelectricity in polymers," IEEE Transactions on Electrical Insulation, vol. 24, no. 3, pp. 375-394, 1989. X. Li, "Nonlinearity of piezoelectric resonator based on Ca3TaGa3Si2O14 and YCa4O(BO3)3 single crystals under DC bias field," University of Pittsburgh, 2018. A. Kokkinopoulos, G. Vokas, and P. Papageorgas, "Energy Harvesting Implementing Embedded Piezoelectric Generators – The Potential for the Attiki Odos Traffic Grid," Energy Procedia, vol. 50, 2013. L. Xu, G. Huangfu, Y. Guo, and Y. Yang, "Charge Density-Based Pyroelectric Vacuum Sensor," Research, vol. 6, p. 0028, 2023. Y. Liao, "Practical electron microscopy and database," An Online Book, 2006. "IEEE Standard on Piezoelectricity," ANSI/IEEE Std 176-1987, p. 0_1, 1988. W. Zhang, G. Wu, H. Zeng, Z. Li, W. Wu, H. Jiang, W. Zhang, R. Wu, Y. Huang, and Z. Lei, "The Preparation, Structural Design, and Application of Electroactive Poly(vinylidene fluoride)-Based Materials for Wearable Sensors and Human Energy Harvesters," Polymers (Basel), vol. 15, no. 13, p. 2766, 2023. W. Xia and Z. Zhang, "PVDF-based dielectric polymers and their applications in electronic materials," IET Nanodielectrics, vol. 1, 2018. L. Wu, Z. Jin, Y. Liu, H. Ning, X. Liu, Alamusi, and N. Hu, "Recent advances in the preparation of PVDF-based piezoelectric materials," Nanotechnology Reviews, vol. 11, no. 1, pp. 1386-1407, 2022. N. M. Dawson, "The Processing and Polarization Reversal Dynamics of Thin Film Poly (vinylidene) Fluoride," The University of New Mexico, 2017. Y. Higashihata, J. Sako, and T. Yagi, "Piezoelectricity of vinylidene fluoride-trifluoroethylene copolymers," Ferroelectrics, vol. 32, no. 1, pp. 85-92, 1981. H. Ohigashi and K. Koga, "Ferroelectric copolymers of vinylidenefluoride and trifluoroethylene with a large electromechanical coupling factor," Japanese journal of applied physics, vol. 21, no. 8A, p. L455, 1982. D. Mao, B. Gnade, and M. Quevedo-Lopez, "Ferroelectric Properties and Polarization Switching Kinetic of Poly (Vinylidene Fluoride-Trifluoroethylene) Copolymer," in Ferroelectrics - Physical Effects, 23rd ed. London, UK: Intechopen, 2011. G. Ren, F. Cai, B. Li, J. Zheng, and C. Xu, "Flexible pressure sensor based on a poly (VDF‐TrFE) nanofiber web," Macromolecular Materials and Engineering, vol. 298, no. 5, pp. 541-546, 2013. A. Al-Abduljabbar and I. Farooq, "Electrospun Polymer Nanofibers: Processing, Properties, and Applications," Polymers (Basel), vol. 15, p. 65, 2022. F. Fadil, N. D. N. Affandi, M. I. Misnon, N. N. Bonnia, A. M. Harun, and M. K. Alam, "Review on Electrospun Nanofiber-Applied Products," Polymers (Basel), vol. 13, no. 13, p. 2087, 2021. A. Haider, S. Haider, and I.-K. Kang, "A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology," Arabian Journal of Chemistry, vol. 11, no. 8, pp. 1165-1188, 2018. E. Yang, Z. Xu, L. K. Chur, A. Behroozfar, M. Baniasadi, S. Moreno, J. Huang, J. Gilligan, and M. Minary-Jolandan, "Nanofibrous smart fabrics from twisted yarns of electrospun piezopolymer," ACS applied materials & interfaces, vol. 9, no. 28, pp. 24220-24229, 2017. M. M. Hohman, M. Shin, G. Rutledge, and M. P. Brenner, "Electrospinning and electrically forced jets. I. Stability theory," Physics of fluids, vol. 13, no. 8, pp. 2201-2220, 2001. M. Joshi, R. Shrestha, and H. Pant, "3D Nonwoven Fabrics for Biomedical Applications," in Generation, Development and Modifications of Natural Fibers, 1st ed. London, UK: Intechopen, 2020. S. Haefner, M. Benzaquen, O. Bäumchen, T. Salez, R. Peters, J. D. McGraw, K. Jacobs, E. Raphaël, and K. Dalnoki-Veress, "Influence of slip on the Plateau–Rayleigh instability on a fibre," Nature Communications, vol. 6, p. 7409, 2015. Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, and S. Ramakrishna, "A review on polymer nanofibers by electrospinning and their applications in nanocomposites," Composites science and technology, vol. 63, no. 15, pp. 2223-2253, 2003. S. Park, K. Park, H. Yoon, J. Son, T. Min, and G. Kim, "Apparatus for preparing electrospun nanofibers: designing an electrospinning process for nanofiber fabrication," Polymer International, vol. 56, no. 11, pp. 1361-1366, 2007. J. A. Matthews, G. E. Wnek, D. G. Simpson, and G. L. Bowlin, "Electrospinning of collagen nanofibers," Biomacromolecules, vol. 3, no. 2, pp. 232-238, 2002. 朱信融, "以靜電紡絲研製高排列性聚 (偏氟乙烯-三氟乙烯) 薄膜及相關複合膜應用之研究," 應用力學研究所, 國立臺灣大學, 2016. T. Ohmi, S. Sudoh, and H. Mishima, "Static charge removal with IPA solution," IEEE Transactions on Semiconductor Manufacturing, vol. 7, pp. 440-446, 1994. F. P. Schwartz, M. Bottaro, R. S. Celes, M. C. Pereira, V. d. A. Rocha Júnior, and F. A. d. O. Nascimento, "Study of muscle fatigue in isokinetic exercise with estimated conduction velocity and traditional electromyographic indicators," Revista Brasileira de Engenharia Biomédica, vol. 30, pp. 312-321, 2014. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90897 | - |
| dc.description.abstract | 肌肉貼布感測器為一種具高靈敏性、線性度、可撓性、配戴舒適性且具高生物相容性的穿戴式感測器,可黏貼於肌膚表面來監測肌肉施力行為。本研究的目標為以實驗驗證以肌肉貼布感測器量測肌肉不同施力行為之準確性及可靠性。第一個實驗為動態收縮握力實驗,以實驗驗證肌肉貼布感測器能夠量測動態施力強度的變化,驗證肌肉貼布感測器訊號的中位數與平均值會隨著施力大小而有提升,並可分辨慣用手跟非慣用手的差異,且男女慣用手使用EMG驗證的R2值皆在0.91以上。使用負載係數進行相關性分析,男性受試者有較高的相關性結果,判定係數介於0.75~0.83,女性受試者整體的判定係數介於0.54~0.7。第二個實驗是以肌力測試系統測量股內側肌與股外側肌的動態收縮表現,由實驗證明肌肉貼布感測器的訊號強度與施力強度的判定係數於等速運動可達0.89。等速收縮施力區段的時域遲滯曲線分析的判定係數達0.89,而等張運動僅能達0.69。在頻率響應方面,等速運動的主頻率及第二頻率的判定係數分別為1及0.87,而等張運動較低,分別達到0.98及0.63。在靜態收縮的測試中,亦驗證了肌肉貼布感測器於瞬間施力時的監測性能,扭矩數據相比於肌電訊號有較高的相關性表現,判定係數最高可達0.79,且可呈現出肌肉的差異性。最後,在長時間的靜態收縮實驗中驗證了肌肉貼布感測器的震顫表現,肌肉歸類分群後扭矩與肌肉貼布感測器的中頻率相關性可達0.82以上。在肌肉疲勞分析上,研究震顫與疲勞間的趨勢,觀察到肌電訊號與肌肉貼布感測器趨勢吻合最高可達81.25%的吻合率。總結,本研究驗證了肌肉貼布感測器於肌肉收縮的性能表現,驗證了時域的性能與施力值大小具一定程度的線性關係,由震顫與動態收縮主頻率的相關性表現,也能夠看出肌肉貼布感測器的高度頻率靈敏性。 | zh_TW |
| dc.description.abstract | The muscle patch sensor (MPS) is a wearable sensor that possesses high sensitivity, linearity, flexibility, biocompatibility, and comfort. It can adhere to the skin surface of muscles for monitoring muscle contractions. This research aims to experimentally validate the accuracy and reliability of the MPS in measuring various muscle activities. The first experiment studies dynamic gripping strength to validate the MPS' ability to measure dynamic contractions. Results show the median and mean values increase with contraction force, and it can distinguish dominant and non-dominant hands. It is also validated that both genders exhibit a high correlations and are above 0.91 with Electromyographic results (EMG). Correlation analysis of the loading factor indicates stronger results for males (0.75-0.83) than females (0.54-0.7). The second experiment utilizes a dynamometer system to assess the dynamic contractions of the vastus medialis and vastus lateralis. The results demonstrate that the correlations between the signal strength of the MPS and force intensity reaches 0.89 during isokinetic exercise. The hysteresis analysis for isokinetic exercise also yields a correlation of 0.89, whereas isotonic achieves only 0.69. Regarding frequency response, isokinetic exercise exhibit correlations of 1 and 0.87 for the primary and secondary frequency peaks. On the other hand, the isotonic experiment shows a lower correlation of 0.98 and 0.63, respectively. In the static contraction studies, the MPS shows the capability to measure an instantaneous contraction behaviors. The correlation of the MPS to Torque output is higher than compared to EMG results, which can reach 0.82. Lastly, during long-duration isometric experiments, the capability of using the MPS to measure muscle tremor is verified. The correlation between torque and the MPS's median frequency reaches above 0.82. In the analysis of muscle fatigue, the trend between vibration and fatigue is observed. The fatigue trend between EMG and the MPS reaches 81.25%.In conclusion, this study confirms the performance of the MPS in monitoring muscle contractions. The results demonstrate a good agreement of linear relationship between MPS and various muscle activities. The high-frequency sensitivity of the MPS is evident from the correlation between tremor and dynamic contraction in frequency domain. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-24T16:13:30Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-24T16:13:30Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii ABSTRACT iii 目錄 iv 圖目錄 viii 表目錄 xv 第1章 緒論 1 1.1 研究背景與動機 1 1.1.1 可撓式物理感測器簡介 3 1.1.2 穿戴式運動監測感測器 7 1.1.3 肌肉貼布感測器過往研究成果 9 1.2 研究目標 10 1.3 研究方法 11 1.3.1 前臂動態收縮實驗 11 1.3.2 肌力測試系統腿部實驗 12 第2章 肌肉做動原理與肌電訊號 13 2.1 肌肉活動與肌群簡介 13 2.1.1 肌肉收縮原理 13 2.1.2 肌肉收縮型態 14 2.1.3 前臂肌群簡介 16 2.1.4 腿部伸肌肌群簡介 18 2.1.5 肌肉截面積與形狀 20 2.1.6 肌肉疲勞 (Muscle fatigue) 24 2.1.7 肌肉震顫 (Muscle tremor) 25 2.2 肌電訊號 28 2.2.1 肌電訊號(EMG)介紹 28 2.2.2 肌電訊號實驗擷取方式 29 2.3 肌電訊號分析方法 30 2.3.1 EMG時域分析與頻域分析 31 2.3.2 EMG時域與頻域複合分析 35 2.3.3 經驗模態分解 (Empirical Mode Decomposition) 37 第3章 壓電材料與肌肉貼布感測器製程 40 3.1 壓電材料 40 3.1.1 壓電材料背景介紹和種類 40 3.1.2 介電效應、壓電效應、焦電效應及鐵電效應 43 3.1.3 壓電本構方程式 46 3.1.4 壓電絲線理論推導 49 3.2 高分子聚合物壓電材料 52 3.2.1 聚偏二氟乙烯(PVDF) 52 3.2.2 聚(偏氟乙烯-三氟乙烯), P(VDF-TrFE) 54 3.3 靜電紡絲 56 3.3.1 靜電紡絲(Electrospinning) 56 3.3.2 靜電紡絲原理與技術 57 3.3.3 靜電紡絲參數與架設選擇 59 3.4 肌肉貼布感測器製程 61 3.4.1 高分子P(VDF-TrFE)溶液參數 61 3.4.2 滾筒式靜電紡絲機架設與參數 61 3.4.3 靜電紡絲後處理 64 3.4.4 壓電絲線拉伸處理與線性化 65 3.4.5 肌肉貼布感測器封裝 66 3.4.6 肌肉貼布感測器拉伸與線性化 68 第4章 研究方法與實驗流程 70 4.1 感測器黏貼與訊號輸出 70 4.1.1 實驗感測器黏貼方式 70 4.1.2 感測器訊號輸出與處理 71 4.1.3 肌肉感應貼布數據預處理與正規化 72 4.1.4 EMG數據預處理與正規化 73 4.2 前臂動態收縮實驗 74 4.2.1 實驗目的與實驗方法 74 4.2.2 前臂動態實驗架設 75 4.2.3 前臂動態實驗流程圖 76 4.3 肌力測試系統腿部實驗 78 4.3.1 實驗目的與實驗方法 78 4.3.2 腿部肌力測試系統實驗架設 81 4.3.3 腿部肌力測試系統實驗流程圖 82 第5章 實驗結果與討論 84 5.1 前臂動態收縮實驗 84 5.1.1 實驗結果的箱形圖與顯著性分析 84 5.1.2 MPS數據與負載係數的相關性分析 89 5.1.3 MPS數據與肌電訊號的相關性分析 93 5.1.4 前臂動態收縮實驗分析結果統整 97 5.2 肌力測試系統腿部實驗 98 5.2.1 被動運動情形下MPS的訊號表現 98 5.2.2 最大施力等長運動的分析結果 99 5.2.3 等速運動的分析結果 102 5.2.4 等張運動的分析結果 113 5.2.5 長時間等長運動的分析結果 122 5.2.6 肌力測試系統腿部實驗分析結果統整 131 第6章 結論與未來展望 133 6.1 結論 133 6.2 未來展望 135 REFERENCE 136 附錄 144 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 應變感測器 | zh_TW |
| dc.subject | 聚(偏氯乙烯-三氟乙烯) | zh_TW |
| dc.subject | 動態肌肉收縮 | zh_TW |
| dc.subject | 等速運動 | zh_TW |
| dc.subject | 等張運動 | zh_TW |
| dc.subject | 等長運動 | zh_TW |
| dc.subject | 肌肉震顫 | zh_TW |
| dc.subject | 可撓式感測器 | zh_TW |
| dc.subject | muscle tremor | en |
| dc.subject | flexible sensor | en |
| dc.subject | strain sensor | en |
| dc.subject | P(VDF-TrFE) | en |
| dc.subject | dynamic muscle contraction | en |
| dc.subject | isokinetic exercise | en |
| dc.subject | isotonic exercise | en |
| dc.subject | isometric exercise | en |
| dc.title | 以肌肉感測貼布監測肌肉動態施力行為與疲勞顫振的實驗驗證與分析方法開發 | zh_TW |
| dc.title | Experimental verification and algorithm development of using a muscle patch sensor to monitor muscle dynamic contraction and fatigue-induced tremor | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林哲宇;湯文慈;莊泓叡 | zh_TW |
| dc.contributor.oralexamcommittee | Che-Yu Lin;Wen-Tzu Tang;Hung-Jui Chuang | en |
| dc.subject.keyword | 可撓式感測器,應變感測器,聚(偏氯乙烯-三氟乙烯),動態肌肉收縮,等速運動,等張運動,等長運動,肌肉震顫, | zh_TW |
| dc.subject.keyword | flexible sensor,strain sensor,P(VDF-TrFE),dynamic muscle contraction,isokinetic exercise,isotonic exercise,isometric exercise,muscle tremor, | en |
| dc.relation.page | 173 | - |
| dc.identifier.doi | 10.6342/NTU202302934 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-11 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 應用力學研究所 | - |
| dc.date.embargo-lift | 2025-08-14 | - |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 16.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
