請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90895完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳育任 | zh_TW |
| dc.contributor.advisor | Yuh-Renn Wu | en |
| dc.contributor.author | 張雨倢 | zh_TW |
| dc.contributor.author | Yu-Chieh Chang | en |
| dc.date.accessioned | 2023-10-24T16:12:57Z | - |
| dc.date.available | 2024-09-05 | - |
| dc.date.copyright | 2023-10-24 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-11 | - |
| dc.identifier.citation | Chia-Yen Huang, Chia-Lung Tsai, Cheng-Yao Huang, Rong-Yu Yang, YewChung Sermon Wu, Hung-Wei Yen, and Yi-Keng Fu. Efficiency improvement analysis of nano-patterned sapphire substrates and semi-transparent superlattice contact layer in UVC light-emitting diodes. Applied Physics Letters, 117(26):261102, 2020.
Huan-Ting Shen, Claude Weisbuch, James S. Speck, and Yuh-Renn Wu. Three-Dimensional Modeling of Minority-Carrier Lateral Diffusion Length Including Random Alloy Fluctuations in (In,Ga)N and (Al,Ga)N Single Quantum Wells. Phys. Rev. Appl., 16:024054, 2021. Hiroshi Amano et al. The 2020 UV emitter roadmap. Journal of Physics D: Applied Physics, 53(50), 2020. Kneissl M and Rass J. III-Nitride Ultraviolet Emitters—Technology and Applications. Springer Series in Materials Science, Berlin: Springer, 2016. Monika Schreiner, Javier Martínez-Abaigar, Johannes Glaab, and Marcel Jansen. UV-B Induced Secondary Plant Metabolites. Optik & Photonik, 9(2):34–37, 2014. M. Ajmal Khan, Noritoshi Maeda, Masafumi Jo, Yuki Akamatsu, Ryohei Tanabe, Yoichi Yamada, and H. Hirayama. 13 mW operation of a 295–310 nm AlGaN UV-B LED with a p-AlGaN transparent contact layer for real world applications. Journal of Materials Chemistry C, 7:143–152, 2018. Hideki Hirayama, Noritoshi Maeda, Sachie Fujikawa, Shiro Toyoda, and Norihiko Kamata. Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes. Japanese Journal of Applied Physics, 53(10):100209, 2014. M Hessling, R Haag, N Sieber, and P Vatter. The impact of far-UVC radiation (200– 230 nm) on pathogens, cells, skin, and eyes–a collection and analysis of a hundred years of data. MS Hygiene and Infection Control, 16, 2021. Hung-Hsiang Chen, James S. Speck, Claude Weisbuch, and Yuh-Renn Wu. Three dimensional simulation on the transport and quantum efficiency of UVC-LEDs with random alloy fluctuations. Applied Physics Letters, 113(15):153504, 2018. Yongfei Chen, Jiamang Che, Chunshuang Chu, Hua Shao, Yonghui Zhang, and Zi-Hui Zhang. Balanced Resistivity in n-AlGaN Layer to Increase the Current Uniformity for AlGaN-Based DUV LEDs. IEEE Photonics Technology Letters, 34(20):1065–1068, 2022. Christian Kuhn, Luca Sulmoni, Martin Guttmann, Johannes Glaab, Norman Susilo, Tim Wernicke, Markus Weyers, and Michael Kneissl. MOVPE-grown AlGaN-based tunnel heterojunctions enabling fully transparent UVC LEDs. Photonics Research, 7(5):B7–B11, 2019. Tien-Yu Wang, Wei-Chi Lai, Syuan-Yu Sie, Sheng-Po Chang, Yuh-Renn Wu, Yu Zung Chiou, Cheng-Huang Kuo, and Jinn-Kong Sheu. AlGaN-based deep ultraviolet light emitting diodes with magnesium delta-doped AlGaN last barrier. Applied Physics Letters, 117:251101, 2020. Dong Liu, Sang June Cho, Jeongpil Park, Jiarui Gong, Jung-Hun Seo, Rafael Dalmau, Deyin Zhao, Kwangeun Kim, Munho Kim, Akhil R. K. Kalapala, John D. Albrecht, Weidong Zhou, Baxter Moody, and Zhenqiang Ma. 226 nm AlGaN/AlN UV LEDs using p-type Si for hole injection and UV reflection. Applied Physics Letters, 113(1), 2018. Yuanwen Zhang, Lei Yu, Kai Li, Hui Pi, Jiasheng Diao, Xingfu Wang, Yue Shen, Chongzhen Zhang, Wenxiao Hu, Weidong Song, and Shuti Li. The improvement of deep-ultraviolet light-emitting diodes with gradually decreasing Al content in AlGaN electron blocking layers. Superlattices and Microstructures, 82:151–157, 2015. Seoung-Hwan Park and Shun-Lien Chuang. Crystal-orientation effects on the piezoelectric field and electronic properties of strained wurtzite semiconductors. Phys. Rev. B, 59:4725–4737, 1999. Seoung-Hwan Park and Shun-Lien Chuang. Piezoelectric effects on electrical and optical properties of wurtzite GaN/AlGaN quantum well lasers. Applied Physics Letters, 72(24):3103–3105, 1998. Seoung-Hwan Park and Shun-Lien Chuang. Comparison of zinc-blende and wurtzite GaN semiconductors with spontaneous polarization and piezoelectric field effects. Journal of Applied Physics, 87(1):353–364, 2000. Dong Yeong Kim, Jun Hyuk Park, Jong Won Lee, Sunyong Hwang, Seung Jae Oh, Jungsub Kim, Cheolsoo Sone, E Fred Schubert, and Jong Kyu Kim. Overcoming the fundamental light-extraction efficiency limitations of deep ultraviolet light-emitting diodes by utilizing transverse-magnetic-dominant emission. Light: Science & Applications, 4(4):e263–e263, 2015. Weiying Wang, Huimin Lu, Lei Fu, Chenguang He, Mingxing Wang, Ning Tang, Fujun Xu, Tongjun Yu, Weikun Ge, and Bo Shen. Enhancement of optical polarization degree of AlGaN quantum wells by using staggered structure. Opt. Express, 24(16):18176–18183, 2016. Hideo Kawanishi, Masanori Senuma, Mao Yamamoto, Eiichiro Niikura, and Takeaki Nukui. Extremely weak surface emission from (0001) c-plane AlGaN multiple quantum well structure in deep-ultraviolet spectral region. Applied Physics Letters, 89(8):081121, 2006. X. J. Chen, T. J. Yu, H. M. Lu, G. C. Yuan, B. Shen, and G. Y. Zhang. Modulating optical polarization properties of Al-rich AlGaN/AlN quantum well by controlling wavefunction overlap. Applied Physics Letters, 103(18):181117, 2013. M. Kumagai, S. L. Chuang, and H. Ando. Analytical solutions of the block-diagonalized Hamiltonian for strained wurtzite semiconductors. Phys. Rev. B, 57:15303–15314, 1998. Huan-Ting Shen, Yu-Chieh Chang, and Yuh-Renn Wu. Analysis of Light-Emission Polarization Ratio in Deep-Ultraviolet Light-Emitting Diodes by Considering Random Alloy Fluctuations with the 3D k·p Method. physica status solidi (RRL)–Rapid Research Letters, 16(2):2100498, 2022. Frank Mehnke, Christian Kuhn, Martin Guttmann, Christoph Reich, Tim Kolbe, Viola Kueller, Arne Knauer, Mickael Lapeyrade, Sven Einfeldt, Jens Rass, Tim Wernicke, Markus Weyers, and Michael Kneissl. Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes. Applied Physics Letters, 105(5):051113, 2014. Akira Yoshikawa, Ryosuke Hasegawa, Tomohiro Morishita, Kazuhiro Nagase, Satoshi Yamada, James Grandusky, Jonathan Mann, Amy Miller, and Leo J. Schowalter. Improve efficiency and long lifetime UVC LEDs with wavelengths between 230 and 237 nm. Applied Physics Express, 13(2):022001, 2020. Craig G. Moe, Sho Sugiyama, Jumpei Kasai, James R. Grandusky, and Leo J. Schowalter. AlGaN Light-Emitting Diodes on AlN Substrates Emitting at 230 nm. physica status solidi (a), 215(10):1700660, 2018. Bhattacharyya, T. D. Moustakas, Lin Zhou, David. J. Smith, and W. Hug. Deep ultraviolet emitting AlGaN quantum wells with high internal quantum efficiency. Applied Physics Letters, 94(18):181907, 2009. Emanuele Francesco Pecora, Wei Zhang, A. Yu. Nikiforov, Lin Zhou, David J. Smith, Jian Yin, Roberto Paiella, Luca Dal Negro, and T. D. Moustakas. Sub-250 nm room-temperature optical gain from AlGaN/AlN multiple quantum wells with strong band-structure potential fluctuations. Applied Physics Letters, 100(6):061111, 2012. Tsung-Jui Yang, Ravi Shivaraman, James S. Speck, and Yuh-Renn Wu. The influence of random indium alloy fluctuations in indium gallium nitride quantum wells on the device behavior. Journal of Applied Physics, 116(11):113104, 2014. Chen-Kuo Wu, Chi-Kang Li, and Yuh-Renn Wu. Percolation transport study in nitride based LED by considering the random alloy fluctuation. Journal of Computational Electronics, 14(2):416–424, 2015. D. D. Nolte, W. Walukiewicz, and E. E. Haller. Band-edge hydrostatic deformation potentials in III-V semiconductors. Phys. Rev. Lett., 59:501–504, 1987. Zhigang Shuai, Linjun Wang, and Chenchen Song. Deformation Potential Theory, pages 67–88. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. Christophe Geuzaine and Jean-François Remacle. Gmsh: A 3-D Finite Element Mesh Generator with built-in Pre- and Post-Processing Facilities. International Journal for Numerical Methods in Engineering, 79(11):1309–1331, 2009. M. Sabathil, A. Laubsch, and N. Linder. Self-consistent modeling of resonant PL in InGaN SQW LED-structure. In Klaus P. Streubel and Heonsu Jeon, editors, Light-Emitting Diodes: Research, Manufacturing, and Applications XI, volume 6486, page 64860V. International Society for Optics and Photonics, SPIE, 2007. S. L. Chuang and C. S. Chang. k.p method for strained wurtzite semiconductors. Physical Review B, 54(4):2491–2504, 1996. PRB. Seoung-Hwan Park, Doyeol Ahn, and Shun-Lien Chuang. Electronic and Optical Properties of a- and m-Plane Wurtzite InGaN–GaN Quantum Wells. IEEE Journal of Quantum Electronics, 43(12):1175–1182, 2007. Vurgaftman and J. R. Meyer. Band parameters for nitrogen-containing semiconductors. Journal of Applied Physics, 94(6):3675–3696, 2003. Tsukuru Ohtoshi, Atsuko Niwa Atsuko Niwa, and Takao Kuroda Takao Kuroda. Crystal Orientation Effect on Valence-Subband Structures in Wurtzite-GaN Strained Quantum Wells. Japanese Journal of Applied Physics, 35(12A):L1566, 1996. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan. Band parameters for III–V compound semiconductors and their alloys. Journal of Applied Physics, 89(11):5815– 5875, 2001. Marco Piccardo, Chi-Kang Li, Yuh-Renn Wu, James S. Speck, Bastien Bonef, Robert M. Farrell, Marcel Filoche, Lucio Martinelli, Jacques Peretti, and Claude Weisbuch. Localization landscape theory of disorder in semiconductors. II. Urbach tails of disordered quantum well layers. Physical Review B, 95(14), 2017. Chi-Kang Li, Marco Piccardo, Li-Shuo Lu, Svitlana Mayboroda, Lucio Martinelli, Jacques Peretti, James S. Speck, Claude Weisbuch, Marcel Filoche, and Yuh-Renn Wu. Localization landscape theory of disorder in semiconductors. III. Application to carrier transport and recombination in light emitting diodes. Physical Review B, 95(14), 2017. Miguel A. Caro, Stefan Schulz, and Eoin P. O’Reilly. Theory of local electric polarization and its relation to internal strain: Impact on polarization potential and electronic properties of group-III nitrides. Phys. Rev. B, 88:214103, 2013. Emanuele Francesco Pecora, Wei Zhang, A. Yu. Nikiforov, Lin Zhou, David J. Smith, Jian Yin, Roberto Paiella, Luca Dal Negro, and T. D. Moustakas. Sub-250 nm room-temperature optical gain from AlGaN/AlN multiple quantum wells with strong band-structure potential fluctuations. Applied Physics Letters, 100(6):061111, 2012. Claude Weisbuch, Shuji Nakamura, Yuh-Renn Wu, and James S. Speck. Disorder effects in nitride semiconductors: impact on fundamental and device properties. Nanophotonics, 10(1):3–21, 2020. E. Romanov, T. J. Baker, S. Nakamura, J. S. Speck, and ERATO/JST UCSB Group. Strain-induced polarization in wurtzite III-nitride semipolar layers. Journal of Applied Physics, 100(2):023522, 2006. D. N. Arnold, G. David, D. Jerison, S. Mayboroda, and M. Filoche. Effective Confining Potential of Quantum States in Disordered Media. Phys Rev Lett, 116(5):056602, 2016. Marcel Filoche, Marco Piccardo, Yuh-Renn Wu, Chi-Kang Li, Claude Weisbuch, and Svitlana Mayboroda. Localization landscape theory of disorder in semiconductors. I. Theory and modeling. Physical Review B, 95(14), 2017. Sh Park, D. Ahn, and Shun-Lien Chuang. Electronic and Optical Properties of a-and m-Plane Wurtzite InGaN–GaN Quantum Wells. Quantum Electronics, IEEE Journal of, 43:1175 – 1182, 2008. Jih-Yuan Chang, Hui-Tzu Chang, Ya-Hsuan Shih, Fang-Ming Chen, Man-Fang Huang, and Yen-Kuang Kuo. Efficient Carrier Confinement in Deep-Ultraviolet Light-Emitting Diodes With Composition-Graded Configuration. IEEE Transactions on Electron Devices, 64(12):4980–4984, 2017. A.P. Kirk. Solar Photovoltaic Cells: Photons to Electricity. Elsevier Science, 2014. Thierry Goudon, Vera Miljanović, and Christian Schmeiser. On the Shockley– Read–Hall Model: Generation-Recombination in Semiconductors. SIAM Journal on Applied Mathematics, 67(4):1183–1201, 2007. Jasprit Singh. Electronic and Optoelectronic Properties of Semiconductor Structures. Electronic and Optoelectronic Properties of Semiconductor Structures, by Jasprit Singh, pp. 554. ISBN 052182379X. Cambridge, UK: Cambridge University Press, February 2003., 2003. Lin Guan-Bo, Kim Dong-Yeong, Shan Qifeng, Cho Jaehee, E. Fred Schubert, Shim Hyunwook, Sone Cheolsoo, and Kim Jong Kyu. Effect of Quantum Barrier Thickness in the Multiple-Quantum-Well Active Region of GaInN/GaN Light-Emitting Diodes. IEEE Photonics Journal, 5(4):1600207–1600207, 2013. C. J. Sun, P. Kung, A. Saxler, H. Ohsato, K. Haritos, and M. Razeghi. A crystallographic model of (00·1) aluminum nitride epitaxial thin film growth on (00·1) sapphire substrate. Journal of Applied Physics, 75(8):3964–3967, 1994. Hideki Hirayama, Norimichi Noguchi, Tohru Yatabe, and Norihiko Kamata. 227 nm AlGaN Light-Emitting Diode with 0.15 mW Output Power Realized using a Thin Quantum Well and AlN Buffer with Reduced Threading Dislocation Density. Applied Physics Express, 1(5):051101, 2008. Jan Ruschel, Johannes Glaab, Norman Susilo, Sylvia Hagedorn, Sebastian Walde, Eviathar Ziffer, Hyun Kyong Cho, Neysha Lobo Ploch, Tim Wernicke, Markus Weyers, Sven Einfeldt, and Michael Kneissl. Reliability of UVC LEDs fabricated on AlN/sapphire templates with different threading dislocation densities. Applied Physics Letters, 117(24):241104, 2020. Norman Susilo, Eviathar Ziffer, Sylvia Hagedorn, Leonardo Cancellara, Carsten Netzel, Neysha Lobo Ploch, Shaojun Wu, Jens Rass, Sebastian Walde, Luca Sulmoni, Martin Guttmann, Tim Wernicke, Martin Albrecht, Markus Weyers, and Michael Kneissl. Improved performance of UVC-LEDs by combination of high-temperature annealing and epitaxially laterally overgrown AlN/sapphire. Photon. Res., 8(4):589–594, 2020. M. L. Nakarmi, N. Nepal, C. Ugolini, T. M. Altahtamouni, J. Y. Lin, and H. X. Jiang. Correlation between optical and electrical properties of Mg-doped AlN epilayers. Applied Physics Letters, 89(15):152120, 2006. Toru Kinoshita, Toshiyuki Obata, Hiroyuki Yanagi, Shin Inoue, and ichiro. High p-type conduction in high-Al content Mg-doped AlGaN. Applied Physics Letters, 102(1):012105, 2013. M. L. Nakarmi, N. Nepal, J. Y. Lin, and H. X. Jiang. Photoluminescence studies of impurity transitions in Mg-doped AlGaN alloys. Applied Physics Letters, 94(9):091903, 2009. Yuh-Renn Wu, Ravi Shivaraman, Kuang-Chung Wang, and James S. Speck. Analyzing the physical properties of InGaN multiple quantum well light emitting diodes from nano scale structure. Applied Physics Letters, 101(8):083505, 2012. Asif Khan, Krishnan Balakrishnan, and Tom Katona. Ultraviolet light-emitting diodes based on group three nitrides. Nature Photonics, 2(2):77–84, 2008. A Fujioka, K Asada, H Yamada, T Ohtsuka, T Ogawa, T Kosugi, D Kishikawa, and T Mukai. High-output-power 255/280/310 nm deep ultraviolet light-emitting diodes and their lifetime characteristics. Semiconductor Science and Technology, 29(8):084005, 2014. Jih-Yuan Chang, Bo-Ting Liou, Man-Fang Huang, Ya-Hsuan Shih, Fang-Ming Chen, and Yen-Kuang Kuo. High-Efficiency Deep-Ultraviolet Light-Emitting Diodes With Efficient Carrier Confinement and High Light Extraction. IEEE Transactions on Electron Devices, 66(2):976–982, 2019. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck. Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. Journal of Applied Physics, 85(6):3222–3233, 1999. Jeonghyun Hwang, William Schaff, Lester Eastman, Shawn Bradley, Leonard Brillson, David Look, Jiong Wu, Wladek Walukiewicz, M. Furis, and Alexander Cartwright. Si doping of high-Al-mole fraction AlxGa1−xN alloys with rf plasma-induced molecular-beam-epitaxy. Applied Physics Letters, 81:5192–5194, 2002. Xinhui Chen, Kuan-Ying Ho, and Yuh-Renn Wu. Modeling and optimization of p-AlGaN super lattice structure as the p-contact and transparent layer in AlGaN UVLEDs. Opt. Express, 23(25):32367–32376, 2015. Shin-ichiro Inoue, Tamari Naoki, Toru Kinoshita, Toshiyuki Obata, and Hiroyuki Yanagi. Light extraction enhancement of 265 nm deep-ultraviolet light-emitting diodes with over 90 mW output power via an AlN hybrid nanostructure. Applied Physics Letters, 106(13):131104, 2015. Yuh-Renn Wu, Yih-Yin Lin, Hung-Hsun Huang, and Jasprit Singh. Electronic and optical properties of InGaN quantum dot based light emitters for solid state lighting. Journal of Applied Physics, 105(1):013117, 2009. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90895 | - |
| dc.description.abstract | 此研究使用了包含應力變形的等效侷域量子位能模型。此模型是藉由省略k·p方法中的非矩陣對角位置貢獻,來減少計算所需時間,並達到在等效侷域量子位能模型中,考慮k·p方法中應力對不同價帶造成的影響之目的,因此可分別解出不同價帶的位能。此模型藉由價帶與不同導帶間的自發放光來算出橫向電場極化光、橫向磁場極化光及其極化比。本文藉由比較極化比之結果及趨勢說明:在使用應力變形的等效侷域量子位能模型後,由於多能帶位置已取得,且模擬上的極化比趨勢相近。因此,傳統上拿來計算多能帶位置及波函數的k·p方法可以被省略。包含應力變形的等效侷域量子位能模型在省略k·p方法之下計算出的極化比可被快速估計且模擬結果具有可信度。所以,本研究在優化結構時是在省略k·p方法計算下,使用包含應力變形的等效侷域量子位能模型。此外,在此研究的模擬結構下每步疊代可以省略大約47小時的時間。
在多量子井結構之深紫外線發光二極體的模擬上,由於高鋁情況下,氮化鋁鎵的電洞活化能高,在深紫外線發光波段,高鋁材料摻雜後的低電洞注入和高阻抗下注入的電洞流低,都將是導致內部量子效率下降的重要因素。此外,在低電洞注入下的高電子溢流情況也將使得內部量子效率進一步下降,因此本研究藉由3D模擬來優化量子能障結構及p型氮化鋁鎵來改善電洞注入以期達到降低電子溢流情形,並分析隨機合金擾動及應力造成的能帶變形如何對載子阻擋能力造成影響。 | zh_TW |
| dc.description.abstract | This study uses the strain-induced deform potential localization landscape(LL) model to do the simulation. To consider the strain effects, we applied the stain-induced deformation potential shift from the k·p equations into the LL model and solved different valence band states separately. It ignores the influences of the off-diagonal term in the k·p model and tries to accelerate the calculation of device results. With the model, the multi-band position corresponding to the different states will be obtained. According to the spontaneous light emission from the electron and the hole in different states, the transverse electronic (TM) polarized light, transverse magnetic (TE) polarized light, and the polarization ratio (PR) will be calculated. The comparison of the polarization ratio between the modified LL model and the k·p model shows a similar trend, which can be used to estimate the polarization ratio quickly. We only need to use the modified LL model for the optimized structures to obtain the final results. In addition, after removing the k·p method calculation, the calculation time will save around 47 hours per iteration under the simulation structure of this work.
For the UVC multiple quantum well simulation, due to the high activation energy in AlGaN with high Al, the low activated hole density and high resistance of hole current in the p-type AlGaN layer is a critical reason for the low internal quantum efficiency in UVC-LEDs. The severe electron carrier overflow under the low hole injection will further reduce the internal quantum efficiency. Hence, this study tries to reduce the electron carrier overflow by optimizing the structure of quantum barriers and the p-AlGaN layer with the 3D simulation method considering Al random alloy fluctuation. Then, the influence of random alloy fluctuation and the strain-induced band structure deformation will be analyzed and the optimized structure to improve the carrier-blocking ability will be discussed in this paper. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-24T16:12:57Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-24T16:12:57Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements iii
摘要 v Abstract vii Contents ix List of Figures xiii List of Tables xix Chapter 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 The issue of low quantum efficiency in UVC-LEDs . . . . . . . . . . 3 1.3 Random alloy fluctuation . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 The deformation potential is induced by strain . . . . . . . . . . . . . 10 1.5 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Chapter 2 Methodology 13 2.1 Overview of the simulation flow . . . . . . . . . . . . . . . . . . . . 13 2.2 Random seeding generator . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 Gaussian weighting calculation . . . . . . . . . . . . . . . . . . . . 16 2.4 Strain solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.5 The self-consistent Poisson drift-diffusion continuity solver with strain-induced deformation potential localization model . . . . . . . . . . . 20 2.5.1 Poisson equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.5.2 Localization landscape model . . . . . . . . . . . . . . . . . . . . . 20 2.5.3 k·p method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.5.4 Strain-induced deformation potential localization landscape model . 27 2.5.5 Drift-diffusion equation . . . . . . . . . . . . . . . . . . . . . . . . 35 2.5.6 Continuity equation . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.6 Another equation use in the k·p method model . . . . . . . . . . . . 37 2.6.1 Wave function overlap . . . . . . . . . . . . . . . . . . . . . . . . 37 2.6.2 EL intensity equation . . . . . . . . . . . . . . . . . . . . . . . . . 37 Chapter 3 Strain-induced localization landscape model 39 3.1 Simulation structure . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2 The influence of the strain-induced deformation potential . . . . . . . 44 3.3 The comparison of the strain-induced localization landscape model with and without the k·p method . . . . . . . . . . . . . . . . . . . . 45 3.3.1 Polarization ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Chapter 4 Analyzing the performance of the optimized epitaxial structure in 225 nm and 253 nm UVC-LEDs 53 4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.2 The optimization of the epitaxial structure in quantum barriers and electron-blocking layer . . . . . . . . . . . . . . . . . . . . . . . . 55 4.2.1 The optimization of the quantum barriers . . . . . . . . . . . . . . 55 4.2.1.1 J-V plot and band structure . . . . . . . . . . . . . . . 56 4.2.1.2 Internal quantum efficiency . . . . . . . . . . . . . . . 58 4.2.1.3 Current density . . . . . . . . . . . . . . . . . . . . . 60 4.2.1.4 Wall plug efficiency . . . . . . . . . . . . . . . . . . . 63 4.2.2 The improvement of the hole carrier injection . . . . . . . . . . . . 66 4.2.2.1 Band structure and current density . . . . . . . . . . . 67 4.2.2.2 J-V plot . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.2.2.3 Internal quantum efficiency . . . . . . . . . . . . . . . 72 4.2.2.4 Wall plug efficiency . . . . . . . . . . . . . . . . . . . 75 4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Chapter 5 The influence of random alloy fluctuation and strain-induced deformation potential energy shift in 225 nm and 253 nm UVC-LEDs 77 5.1 Influence of random alloy fluctuation to the polarization ratio . . . . 77 5.2 The impact factor of carrier blocking ability . . . . . . . . . . . . . . 80 5.2.1 Random alloy fluctuation . . . . . . . . . . . . . . . . . . . . . . . 80 5.2.1.1 Internal quantum efficiency . . . . . . . . . . . . . . . 86 5.2.2 Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.2.2.1 The analysis of band structure deformation induced by strain . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.2.2.2 The comparison of strain-related parameters . . . . . . 90 5.2.2.3 Strain caused shallower QW for holes . . . . . . . . . 92 5.2.3 The influence of carrier blocking ability on UVC-LED’s performance 96 5.2.3.1 Carrier density . . . . . . . . . . . . . . . . . . . . . . 96 5.2.3.2 Current density . . . . . . . . . . . . . . . . . . . . . 97 5.2.3.3 Radiative recombination . . . . . . . . . . . . . . . . . 99 5.2.3.4 EL intensity . . . . . . . . . . . . . . . . . . . . . . . 101 5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Chapter 6 Conclusion 105 References 111 | - |
| dc.language.iso | en | - |
| dc.subject | 應力變形 | zh_TW |
| dc.subject | 隨機合金擾動 | zh_TW |
| dc.subject | 三維 | zh_TW |
| dc.subject | 等效侷域量子位能模型 | zh_TW |
| dc.subject | 磊晶層優化 | zh_TW |
| dc.subject | 深紫外光發光二極體 | zh_TW |
| dc.subject | optimized epitaxial layer | en |
| dc.subject | UVC-LEDs | en |
| dc.subject | strain deformation | en |
| dc.subject | random alloy fluctuation | en |
| dc.subject | 3D | en |
| dc.subject | localization landscape model | en |
| dc.title | 利用三維等效侷域量子位能模型分析合金擾動和應力對深紫外光發光二極體的影響 | zh_TW |
| dc.title | The optimization and analysis of UVC-LEDs by considering strain-induced deformation potential and random alloy fluctuation with the localization landscape model | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳肇欣;黃建璋;賴韋志;黃嘉彥 | zh_TW |
| dc.contributor.oralexamcommittee | Chao-Hsin Wu;Jian-Jang Huang;Wei-Chi Lai;Chia-Yen Huang | en |
| dc.subject.keyword | 深紫外光發光二極體,應力變形,隨機合金擾動,三維,等效侷域量子位能模型,磊晶層優化, | zh_TW |
| dc.subject.keyword | UVC-LEDs,strain deformation,random alloy fluctuation,3D,localization landscape model,optimized epitaxial layer, | en |
| dc.relation.page | 118 | - |
| dc.identifier.doi | 10.6342/NTU202303083 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-13 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| dc.date.embargo-lift | 2024-09-05 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 12.15 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
