Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90863
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾翎威zh_TW
dc.contributor.advisorLing-Wei Chenen
dc.contributor.author蔡繪理zh_TW
dc.contributor.authorTsai-Hui Lien
dc.date.accessioned2023-10-03T17:57:22Z-
dc.date.available2023-11-10-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-09-
dc.identifier.citation[1] Higgins, J. P. T., Thomas J., Chandler J., et al. 2021. Cochrane Handbook for Systematic Reviews of Interventions version 6.2. Cochrane, 2021.
[2] Schwingshackl, L., Chaimani A., Hoffman G., et al. 2018. A network meta-analysis on the comparative efficacy of different dietary approaches on glycaemic control in patients with type 2 diabetes mellitus. European Journal of Epidemiology. 2018 Feb;33(2):157-170.
[3] Rücker, G., Petropoulou M., Schwarzer G. 2019. Network meta-analysis of multicomponent interventions. Biometrical Journal. 2020 May;62(3):808-821.
[4] Ge L., Sadeghirad B., Ball G. D. C., et al. 2020. Comparison of dietary macronutrient patterns of 14 popular named dietary programmes for weight and cardiovascular risk factor reduction in adults: systematic review and network meta-analysis of randomised trials. BMJ. 2020 Apr 1;369:m696.
[5] Salanti, G., Ades A. E., Ioannidis J. P. 2011. Graphical methods and numerical summaries for presenting results from multiple treatment meta-analysis: an overview and tutorial. J Clin Epidemiol. 2011;64(2):163–7
[6] Guyatt G. H., Oxman A. D., Vist G.E., et al., 2008. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ; 336:924-6.
[7] White, I. R., Barret J. K., Jackson D., Higgins J. P. T. 2012. Consistency and inconsistency in network meta-analysis: model estimation using multivariate meta-regression. PubMed; 3(2): 111–125.
[8] Nikolakopoulou, A., Higgins J. P., Papakonstantinou T. 2020. CINeMA: an approach for assessing confidence in the results of a network meta-analysis. PLoS medicine 2020, 17, e1003082.
[9] Ge, L., Sadeghirad B., Ball G.D., et al. 2020. Comparison of dietary macronutrient patterns of 14 popular named dietary programmes for weight and cardiovascular risk factor reduction in adults: systematic review and network meta-analysis of andomized trials. Bmj 2020, 369
[10] Sundfør, T. M., Svendsen M., Tonstad S. 2018. Intermittent calorie restriction—a more effective approach to weight loss? AJCN: volume 108, Issue 5, 2018, 909–910
[11] Tripolt, N. J., Stekovic S., Aberer F., et al. 2018. Intermittent Fasting (Alternate Day Fasting) in Healthy, Non-obese Adults: Protocol for a Cohort Trial with an Embedded Randomized Controlled Pilot Trial. Adv Ther: 35(8) 1265-1283
[12] Gouveri, E., Marakomichelakis G., Diamantopoulos E. J. 2020. Chapter 34 - The Mediterranean diet and metabolic syndrome. Academia Press: The Mediterranean Diet Second ed. 371-279
[13] Philips, N. E., Mareschal J., Schwab N., et al. 2021. The Effects of Time-Restricted Eating versus Standard Dietary Advice on Weight, Metabolic Health and the Consumption of Processed Food: A Pragmatic Randomised Controlled Trial in Community-Based Adults. Nutrient: 13, 1042
[14] Karras, S. N., Koufakis T., Adamidou L., et al. 2021. Effects of Christian Orthodox Fasting Versus Time-Restricted Eating on Plasma Irisin Concentrations Among Overweight Metabolically Healthy Individuals. Nutrients: 13. 1071
[15] Christensen, R. A. G., High. S., Wharton S., et al. 2021. Sequential diets and weight loss: Including a low-carbohydrate high-fat diet with and without time-restricted feeding. Nutrition: 91-92
[16] Keogh, J. B., Pedersen E., Petersen K. S., Clifton P. M. 2014. Effects of intermittent compared to continuous energy restriction on short-term weight loss and long-term weight loss maintenance. Clin Obesity. 2014 Jun;4(3):150-6.
[17] Kang, J., Ratamess N., Faigenbaum A., Bush J. 2021. Effect of Time-Restricted Feeding on Anthropometric, Metabolic, and Fitness Parameters: A Systematic Review. Journal of the American College of Nutrition 41(5) :1-16
[18] Charlot, A., Hutt, F., Sabatier, E., Zoll, J. 2021. Beneficial effects of early time-restricted feeding on metabolic diseases: Importance of aligning food habits with the circadian clock. Nutrients: 13, 1405
[19] Tippairote, T., Janssen S., Chunhabundit R. 2021. Restoration of metabolic tempo through time-restricted eating (TRE) as the preventive measure for metabolic diseases. Crit. Rev. Food Sci. Nutr., 61, 2444–2453.
[20] Kesztyüs, D., Cermak P., Kesztyüs T., Barzel A. 2021. Early or Delayed Onset of Food Intake in Time-Restricted Eating: Associations with Markers of Obesity in a Secondary Analysis of Two Pilot Studies. Int. J. Environ. Res. Public Health 2021, 18, 9935
[21] Jamshed, H., Beyl R.A., Della Manna D.L., et al. 2019. Early Time-Restricted Feeding Improves 24-Hour Glucose Levels and Affects Markers of the Circadian Clock, Aging, and Autophagy in Humans. Nutrients 2019, 11, 1234.
[22] Sutton, E.F., Beyl R., Early K.S., et al. 2018. Early Time-Restricted Feeding Improves Insulin Sensitivity, Blood Pressure, and Oxidative Stress Even without Weight Loss in Men with Prediabetes. Cell Metab. 2018, 27, 1212–1221.
[23] Ravussin, E., Beyl R.A., Poggiogalle E., et al. 2019. Early Time-Restricted Feeding Reduces Appetite and Increases Fat Oxidation but Does Not Affect Energy Expenditure in Humans. Obesity 2019, 27(8):1244-1254.
[24] Anton, S.D., Moehl K, Donahoo WT, Marosi K, Lee SA, Mainous AG 3rd, et al. 2018. Flipping the Metabolic Switch: Understanding and Applying the Health Benefits of Fasting. Obes (Silver Spring). 2018, 26:254–68.
[25] Chaix, A., Zarrinpar A., Miu P., Panda S. 2014. Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges. Cell Metab. 2014 Dec 2;20(6):991-1005.
[26] Chaix, A., Lin T., Le H. D., Chang M. W., Panda S. 2019. Time-Restricted Feeding Prevents Obesity and Metabolic Syndrome in Mice Lacking a Circadian Clock. Cell Metab. 2019 Feb 5;29(2):303-319.e4.
[27] Hatori, M., Vollmers C., Zarrinpar A., et al. 2012. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 2012 Jun 6;15(6):848-60.
[28] Pureza, I. R. D. M., Macena M. D. L., Junior A. E. D. S., et al. 2021. Effect of early time-restricted feeding on the metabolic profile of adults with excess weight: A systematic review with meta-analysis. Clin Nutr. 2021 Apr; 40(4): 1788-1799.
[29] Liu, L., Chen W., Wu D., Hu F. 2022. Metabolic Efficacy of Time-Restricted Eating in Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. he Journal of Clinical Endocrinology & Metabolism: 2022, 107, 3428–3441
[30] Xie, Z., He Z., Ye Y., Mao Y. 2022. Effects of time-restricted feeding with different feeding windows on metabolic health: A systematic review of human studies. Nutrition. 2022 Oct;102:111764.
[31] Lowe, D. A., Wu N., Rohdin-Bibby L., et al. 2020. Effects of Time-Restricted Eating on Weight Loss and Other Metabolic Parameters in Women and Men with Overweight and Obesity: The TREAT Randomized Clinical Trial. JAMA Internal Medicine d. 2020;180(11):1491-1499.
[32] Cava, E., Yeat N. C., Mittendorfer B. 2017. Preserving Healthy Muscle during Weight Loss. Adv Nutr. 2017 May; 8(3): 511–519.
[33] Dasinger, M. L., Gleason J. A., Griffith J. L., et al. 2005. Comparison of the Atkins, Ornish, Weight Watchers, and Zone diets for weight loss and heart disease risk reduction: a randomized trial. JAMA 2005 Jan 5;293(1):43-53.
[34] Rynders, C.A., Thomas E.A., Zaman A., et al. 2019. Effectiveness of intermittent fasting and time-restricted feeding compared to continuous energy restriction for weight loss. Nutrients 2019, 11, 2442.
[35] Pascual, P. E., Rolands M. R., Eldrige A. L., et al. 2022. A meta-analysis comparing the effectiveness of alternate day fasting, the 5:2 diet, and time-restricted eating for weight loss. Obesity 2022, Vol. 23, Issue S1 page 9-21.
[36] Termannsen, A.D.; Varming, A.; van Elst, C.; Bjerre, N.; Nørgaard, O.; Hempler, N.F.; Færch, K.; Quist, J.S. 2023. Feasibility of time‐restricted eating in individuals with overweight, obesity, prediabetes, or type 2 diabetes: A systematic scoping review. Obesity 2023, 31, 1463-1485
[37] Nair, A. S. 2019. Publication bias - Importance of studies with negative results!. Indian J Anaesth. 2019 Jun ; 63(6): 505–507.
[38] Cankurtaran, M., Halil M., Balam B., Dagli N. 2006. Prevalence and correlates of metabolic syndrome (MS) in older adults. Arch Gerontol Geriatr. 2006; 42:35–45.
[39] Regmi, P., Heilbronn L. K. 2020. Time-Restricted Eating: Benefits, Mechanisms, and Challenges in Translation. iScience 2020 Jun 26; 23(6): 101161.
[40] Belete, R., Ataro Z., Abdu A., Sheleme M. 2021. Global prevalence of metabolic syndrome among patients with type I diabetes mellitus: a systematic review and meta-analysis. Diabetology & Metabolic Syndrome volume 13, Article number: 25
[41] Jensen MD, Ryan DH, Apovian CM, et al. 2013. AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. Circulation. 2014;129(25 Suppl 2):S102-S138.
[42] Bishehsari F, Voigt RM, Keshavarzian A. 2020. Circadian rhythms and the gut microbiota: from the metabolic syndrome to cancer. Nature Reviews Endocrinology. 2020;16(12):731-9
[43] Chen H, Zheng X, Zong X, Li Z, Li N, Hur J, et al. 2021. Metabolic syndrome, metabolic comorbid conditions and risk of early-onset colorectal cancer. Gut. 2021;70(6):1147-54
[44] Noubiap JJ, Nansseu JR, Lontchi-Yimagou E, Nkeck JR, Nyaga UF, Ngouo AT, et al. 2022. Geographic distribution of metabolic syndrome and its components in the general adult population: A meta-analysis of global data from 28 million individuals. Diabetes Research and Clinical Practice. 2022; 188:109924
[45] Yeh CJ, Chang HY, Pan WH. 2011. Time trend of obesity, the metabolic syndrome and related dietary pattern in Taiwan: from NAHSIT 1993–1996 to NAHSIT 2005–2008. Asia Pac J Clin Nutr 2011; 20:292–300
[46] Wang HH, Lee DK, Liu M, Portincasa P, Wang DQ-H. 2020. Novel insights into the pathogenesis and management of the metabolic syndrome. Pediatric gastroenterology, hepatology & nutrition. 2020;23(3):189
[47] Yeh, WC, Chuang HH, Lu MC, et al. 2018. Prevalence of metabolic syndrome among employees of a taiwanese hospital varies according to profession. Medicine 97(31): p e11664, August 2018.
[48] Lloyd-Jones, D.M., Liu K., Colangelo L. A., et al. 2007. Consistently stable or decreased body mass index in young adulthood and longitudinal changes in metabolic syndrome components: the Coronary Artery Risk Development in Young Adults Study. Circulation. 2007; 115:1004–1011.
[49] Case CC, Jones PH, Nelson K, O’Brian Smith E, Ballantyne CM. 2002. Impact of weight loss on the metabolic syndrome. Diabetes Obes Metab. 2002; 4:407–414.
[50] Anton S, Ezzati A, Witt D, McLaren C, Vial P. 2021. The effects of intermittent fasting regimens in middle-age and older adults: current state of evidence. Exp Gerontol. 2021; 156:111617
[51] Varady, K. 2011. Intermittent versus daily calorie restriction: which diet regimen is more effective for weight loss? Obesity reviews. 2011;12(7): e593-e601
[52] Rynders, C. A., Thomas E. A., Zaman A., Pan Z., Catenacci V. A., Melanson E. L. 2019. Effectiveness of intermittent fasting and time-restricted feeding compared to continuous energy restriction for weight loss. Nutrients. 2019;11(10):2442
[53] Pannen, S. T., Maldonado S. G., Nonnenmacher T., et al. 2021. Adherence and Dietary Composition during Intermittent vs. Continuous Calorie Restriction: Follow-Up Data from a Randomized Controlled Trial in Adults with Overweight or Obesity. Nutrients 2021, 13, 1195.
[54] Headland, M., Clifton P. M., Carter S., Keogh J. B. 2016. Weight-Loss Outcomes: A Systematic Review and Meta-Analysis of Intermittent Energy Restriction Trials Lasting a Minimum of 6 Months. Nutrients 2016, 8(6), 354
[55] Heymsfield, S.B.; Harp, J.B.; Reitman, M.L.; Beetsch, J.W.; Schoeller, D.A.; Erondu, N.; Pietrobelli, A. 2007. Why do obese patients not lose more weight when treated with low-calorie diets? A mechanistic perspective. Am. J. Clin. Nutr. 2007, 85, 346–354.
[56] Alhamdan B, Garcia‐Alvarez A, Alzahrnai A, Karanxha J, Stretchberry D, Contrera K, et al. 2016. Alternate‐day versus daily energy restriction diets: which is more effective for weight loss? A systematic review and meta‐analysis. Obesity science & practice. 2016;2(3):293-302
[57] He S, Wang J, Zhang J, Xu J. 2021. Intermittent versus continuous energy restriction for weight loss and metabolic improvement: a meta‐analysis and systematic review. Obesity. 2021;29(1):108-15.
[58] Gabel, K., Hoddy K. K., Haggerty, N., et al. 2018. Effects of 8-hour time restricted feeding on body weight and metabolic disease risk factors in obese adults: A pilot study. Nutr. Healthy Aging 2018, 4, 345–353.
[59] Antoni, R., Robertson T. M., Robertson M., Johnston, J. 2018. A pilot feasibility study exploring the effects of a moderate time-restricted feeding intervention on energy intake, adiposity and metabolic physiology in free-living human subjects. J. Nutr. Sci. 2018, 7, 1–6.
[60] Gasmi, M., Sellami M., Denham J., et al. 2018. Time-restricted feeding influences immune responses without compromising muscle performance in older men. Nutrition 2018, 51–52, 29–37.
[61] Moro, T., Tinsley G., Bianco, A., et al. 2018. Effects of eight weeks of time-restricted feeding (16/8) on basal metabolism, maximal strength, body composition, inflammation, and cardiovascular risk factors in resistance-trained males. J. Transl. Med. 2016, 14, 290.
[62] Gill, S., Panda S. 2015. A Smartphone App Reveals Erratic Diurnal Eating Patterns in Humans that Can Be Modulated for Health Benefits. Cell Metab. 2015, 22, 789–798.
[63] Tinsley, G. M., Forsse J. S., Butler N. K., et al. 2017. Time-restricted feeding in young men performing resistance training: A randomized controlled trial. Eur. J. Sport Sci. 2017, 17, 200–207.
[64] Stote, K. S., Baer D. J., Spears K., et al. 2007. A controlled trial of reduced meal frequency without caloric restriction in healthy, normal-weight, middle-aged adults. Am. J. Clin. Nutr. 2007, 85, 981–988.
[65] Carlson, O., Martin B., Stote K. S., et al. 2007. Impact of reduced meal frequency without caloric restriction on glucose regulation in healthy, normal-weight middle-aged men and women. Metabolism 2007, 56, 1729–1734
[66] Poggiogalle E, Jamshed H, Peterson CM. 2018. Circadian regulation of glucose, lipid, and energy metabolism in humans. Metabolism 2018a
[67] Scheer F. A., Hilton M. F., Mantzoros C. S., Shea S. A. 2009. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci U S A. 2009; 106:4453–4458.
[68] Bass, J., Takahashi J. S. 2010. Circadian integration of metabolism and energetics. Science. 2010; 330:1349–1354.
[69] Huang W, Ramsey KM, Marcheva B, et al. 2011. Circadian rhythms, sleep, and metabolism. J Clin Invest. 2011; 121:2133–2141.
[70] Karlsson B., Knutsson A., Lindahl B. 2021. Is there an association between shift work and having a metabolic syndrome? Results from a population based study of 27 485 people. Occup Environ Med. 2001; 58:747–752
[71] Wang F, Zhang L, Zhang Y, et al. 2014. Meta-analysis on night shift work and risk of metabolic syndrome. Obes Rev. 2014; 15:709–720
[72] He M, Wang J, Liang Q, et al. 2022. Time-restricted eating with or without low-carbohydrate diet reduces visceral fat and improves metabolic syndrome: a randomized trial. Cell Rep Med. 2022;3(10):100777.
[73] Queiroz, J. D. N., Macedo R. C. O., Dos Santos G. C., et al. 2022. Cardiometabolic effects of early v. delayed time-restricted eating plus energetic restriction in adults with overweight and obesity: an exploratory randomised clinical trial. Br J Nutr. 2022 May 26;1-13.
[74] Kesztyus, D., Cermak P., Gulich M., Kesztyus T. 2019. Adherence to time-restricted feeding and impact on abdominal obesity in primary care patients: results of a pilot study in a pre-post design. Nutrients 2019;11(12):2854.
[75] Ferland A., Eckel R. H. 2011. Does sustained weight loss reverse the metabolic syndrome? Curr Hypertens Rep. 2011; 13:456–464.
[76] de Cabo, R., Mattson M. P. 2019. Effects of intermittent fasting on health, aging, and disease. N Engl J Med 2019;381(26):2541–51
[77] Liu J, Yi P, Liu F. 2023. The Effect of Early Time-Restricted Eating vs Later TimeRestricted Eating on Weight Loss and Metabolic Health. The Journal of Clinical Endocrinology & Metabolism, 2023, 108, 1824–1834
[78] Huang L, Chen Y, Wen S, et al. 2023. Is time‐restricted eating (8/16) beneficial for body weight and metabolism of obese and overweight adults? A systematic review and meta‐analysis of randomized controlled trials. Food Sci Nutr. 2023 Mar; 11(3): 1187–1200.
[79] Lin L, Chu H. 2018. Quantifying Publication Bias in Meta-Analysis. Biometrics. 2018 Sep; 74(3): 785–794.
[80] Parr, E. B., Devlin B. L., Hawley J. A. 2022. Perspective: Time-Restricted Eating—Integrating the What with the When. Advances in Nutrition, Volume 13, Issue 3, May 2022, Pages 699–711.
[81] Chen W, Liu X, Bao L, et al. 2023. Health effects of the time-restricted eating in adults with obesity: A systematic review and meta-analysis. Sec. Nutrition and Sustainable Diets. Volume 10 – 2023
[82] Rosenberger, K. J., Duan R., Chen Y., Lin F. 2021. Predictive P-score for treatment ranking in Bayesian network meta-analysis. BMC Med Res Methodol (2021) 21:213
[83] Cruz-Jentoft, A. J., Baeyens J. P., Bauer J. M., et al. 2010. European Working Group on Sarcopenia in Older People. Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39(4):412-423.
[84] Janssen, I., Heymsfield S. B., Ross R. 2002. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc. 2002;50(5): 889-896.
[85] Rathnayake, N., Alwis G., Lenora J., Lekamwasam S. 2018. Concordance between appendicular skeletal muscle mass measured with DXA and estimated with mathematical models in middle-aged women. J Physiol Anthropol. 2018;37(1):19.
[86] Brown, J. C., Harhay M. O., Harhay M. N. 2017. Appendicular lean mass and mortality among prefrail and frail older adults. J Nutr Health Aging. 2017;21(3):342-345.
[87] Bhanot, S., McNeill J. H. Insulin and hypertension: a causal relationship? Cardiovasc Res. 1996;31:212–221.
[88] Moon S, Kang J, Kim SH, et al. 2020. Beneficial Effects of Time-Restricted Eating on Metabolic Diseases: A Systemic Review and Meta-Analysis. Nutrients 2020, 12(5), 1267.
[89] Wei M, Brandhorst S., Shelehchi M., et al. 2017. Fasting-mimicking diet and markers/risk factors for aging, diabetes, cancer, and cardiovascular disease. Sci Transl Med. 2017;9
[90] Reppert, S. M., Weaver D.R. 2002. Coordination of circadian timing in mammals. Nature 418, 935-941.
[91] Yoo, S. H., Yamazaki S., Lowrey P. L., et al. 2004. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc. Natl. Acad. Sci. USA 101, 5339-5346.
[92] Jiang P., Turek F. W. 2017. Timing of meals: when is as critical as what and how much. Am. J. Physiol. Endocrinol. Metab. 312, E369-E380.
[93] Damiola, F., Le Minh N., Preitner N. 2000. Restricted feeding uncouples circadian oscillations in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 14. 2950-2961.
[94] Phillips, N. E., Mareschal J., Schwab N., et al. 2021. The effects of timerestricted eating versus standard dietary advice on weight, metabolic health and the consumption of processed food: a pragmatic andomized controlled trial in community-based adults. Nutrients 2021;13(3):1042
[95] Hatori, M., Vollmers C., Zarrinpar A., et al. 2012. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 2012;15(6):848-860
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90863-
dc.description.abstract研究背景:「代謝性疾病」是全球所面臨的健康議題,而「健康的飲食模式」被認為是促進及改善代謝健康地的最佳策略。限時進食 (Time-restricted eating, TRE) 是近年備受矚目的飲食模式,其限制一天的進食時間需在10 小時以內,並依據進食/禁食的時間分為:早時段 (early TRE)、中時段 (mid TRE)和晚時段 (late TRE) 限時進食。雖然已有許多文獻針對限時進食進行探討,但其代謝效果是否優於其他飲食策略,例如連續熱量限制 (Continuous energy restriction, CER)仍存在不一致性,並且也缺乏直接比較不同型式限時進食的研究。因此本研究想利用網絡統合分 (Network meta-analysis),評估不同種限時進食與其他飲食策略相比對代謝健康的效果差異。

材料與方法:本研究從Embase、Cochrane Library和PubMed數據庫之創始時期至2022年12月搜尋限時進食與代謝相關之研究,並納入體位測量(體重、身體質量指數、脂肪質量、無脂肪質量/瘦肉組織、腰圍)、血糖代謝(空腹血糖、空腹胰島素、糖化血色素、胰島素阻抗指數)、血壓(收縮壓和舒張壓)、血脂分析(總膽固醇、低密度膽固醇、高密度膽固醇、三酸甘油酯)的結果。以隨機效應的網絡統合分析評估不同飲食策略對代謝結果的相對有效性,並藉由P-score對不同飲食策略進行排名。

結果:共有六十六篇符合標準的試驗納入本研究中,這些試驗的參與者來自不同人群,總計有3016位受試者。在體位測量結果方面,自由選擇禁食時段之限時進食、中時段限時進食和20:4限時進食被認為是最佳飲食策略的比例較高。在血糖代謝測量方面,早時段、中時段和20:4限時進食被認為是最佳飲食策略的比例較高。在血壓測量方面,早時段限時進食、自由選擇禁食時段之限時進食、18:6和16:8限時進食被認為是最佳策略的比例較高。在血脂分析方面,自由選擇禁食時段之限時進食和12:12限時進食被認為是最佳飲食策略的比例較高。與常規飲食和連續性斷食比較中,大多數分析結果顯示限時進食能有利的改善代謝健康。儘管限時進食與無脂肪質量/瘦肉組織、糖化血色素和所有血脂分析指標皆未達到統計上顯著差異,但與常規飲食或連續型斷食比較下並未有更差的效益。透過使用網絡統合分析可信度測量 (Confidence in network meta-analysis, CINeMA),針對每個網絡統合分析之證據可信度進行評估,結果顯示76%的直接性證據被歸類為低或非常低的可信度質量。在所有納入探討服從性的試驗中,紀錄了無論是早時段、中時段、晚時段、還是自由選擇禁食時段之限時進食,其服從性平均皆超過70%。此外,在66篇試驗中,有20篇研究報告了有關不良事件發生率,其中有九篇明確指出試驗期間無發生不良事件;而另11篇研究,報告限時進食受試者和對照組中皆有發生輕微副作用。

結論:根據網絡統合分析結果,在進行限時進食時,無論自由選擇禁食時段之限時進食、早時段限時進食和午時段限時進食,似乎與常規飲食相比都為代謝健康指標,如體重、身體質量指數、脂肪質量、腰圍、空腹血糖、空腹胰島素、胰島素阻抗指數等帶來更好的效果。然而,本研究暫無法明確得知任何一種時間長短進行之限時進食是在對於改善代謝結果方面擁有最佳或較差的效益。本研究顯示限時進食是一種具有潛力的飲食策略,至少在改善代謝健康方面表現出與常規飲食和連續熱量限制飲食有更好的效果,且服從性偏高。然而,本研究也顯示大部分直接證據的可信度偏低,因此未來需要更進一步進行高質量的試驗來確認限時進食對代謝健康的療效。


關鍵字:限時進食、代謝健康、網絡統合分析
zh_TW
dc.description.abstractBackground: Metabolic diseases increase the risk of serious health conditions globally. Dietary changes are usually the first-line therapy employed to improve metabolic health. Time-restricted eating (TRE) involves restriction of daily eating window to 10 hours or less. TRE can be divided into three forms: early TRE, mid TRE, and late TRE. It is still controversial whether the effect of TRE on metabolic health can be greater than other dietary strategies such as continuous energy restriction (CER). In addition, there is a lack of studies comparing the different forms of TRE. Therefore, we aim to conduct a network meta-analysis (NMA) to evaluate the pooled relative effect of TRE forms compared to other dietary interventions.

Methods and Materials: We search for potential studies involving TRE from Embase, Cochrane Library, and PubMed from databases inception to December 2022. Outcomes included anthropometric measurements (body weight (BW), body mass index (BMI), fat mass (FM), fat-free mass/lean mass (FFM/LM), waist circumference (WC)), glucose metabolism (fasting blood glucose (FBG), fasting insulin (FI), hemoglobin A1c (HbA1c), homeostasis model assessment-insulin resistance index (HOMA-IR)), blood pressure (systolic blood pressure (SBP) and diastolic blood pressure (DBP)), lipid profile (total cholesterol (TG), low density lipoprotein cholesterol (LDL), high density lipoprotein cholesterol (HDL), triglycerides (TG)). We used NMA with random effects to estimate the relative effectiveness of the different dietary strategies for each outcome and rank them based on P-score.

Results: There were 66 eligible trials included, and the participants enrolled in these studies were 3016 individuals from various populations. Overall, self-selected TRE and TRE 20:4 are considered the best TRE approach for anthropometric measurements according to the P-score ranking. For glucose metabolism outcomes, early TRE, mid TRE, and TRE 20:4 are considered the best overall. For blood pressure outcomes, early TRE self-selected TRE, TRE 18:6, and TRE 16:8 are considered the best TRE forms. For lipid profile measurements, self-selected TRE and TRE 12:12 are considered the best TRE forms. TRE demonstrated a more favorable effect in most of the outcomes when compared to a usual diet and CER. Although there was no significant improvement in FFM/LM, HbA1c, and all the outcomes of lipid profile, they were not worse than the usual diet or CER. Through Confidence in Network Meta-analysis (CINeMA) to rate the confidence of evidence for each NMA, 76% of the direct evidence available was classified as low or very low quality. The included studies (>70%) noted excellent adherence rate regardless of the types of TRE (early TRE, mid TRE, late TRE, or self-selected TRE). In addition, out of the 66 studies analyzed, 20 studies reported information about adverse events. Among these 20 studies, nine specifically stated that no adverse events occurred during the trials. Eleven studies reported only minor side effects occurring in both participants following a TRE diet or other strategies.

Conclusion: According to the NMA, late TRE seemed to yield inferior effects compared to early TRE, mid TRE and self-selected TRE. However, in the different eating windows of TRE, none of the TRE durations consistently demonstrated a superior or inferior effects on improving metabolic outcomes. TRE appears as a promising dietary strategy that, at the very least, shows comparable effectiveness to usual diet and CER in improving metabolic health such as body weight, body mass index, fat mass, waist circumference, fasting blood glucose, fasting insulin, and HOMA-IR. However, since most evidence was of low or very low certainty, further high-quality trials are warranted to confirm the relative efficacy of TRE on metabolic health.

Key words: time-restricted eating, metabolic health, network meta-analysis
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:57:22Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T17:57:22Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審訂書 i
誌謝 ii
中文摘要 iii
Abstract v
List of Figures x
List of Tables xii
Chapter 1: Introduction 1
Chapter 2: Material and Methods 6
2-1 Search strategy 6
2-2 Eligibility criteria 6
2-3 Study selection and data extraction 7
2-4 Risk of bias assessment 8
2-5 Data synthesis and statistical methods 8
2-5-1 Network meta-analysis (NMA) 9
2-5-2 Standard meta-analysis, subgroup analysis, small study effects and publication bias 10
2-6 Assessing certainty of evidence of the NMA 11
2-7 Summarizing the effectiveness of TRE and other dietary strategies on metabolic health outcomes based on NMA 11
2-8 Software and packages 12
Chapter 3: Results 13
3-1 Literature search 13
3-2 Study characteristics 13
3-3 Categorization of outcomes 15
3-4 Effects of time-restricted eating on metabolic health: standard meta-analysis 16
3-4-1 Anthropometric measures 16
3-4-2 Blood pressure measures 16
3-4-3 Glucose metabolism measures 17
3-4-4 Lipid profile measures 18
3-4-5 Subgroup analyses of standard meta-analysis 19
3-5 Effects of time-restricted eating on metabolic health: network meta-analysis 19
3-5-1 Anthropometric measures 21
3-5-1-1 Body weight 21
3-5-1-2 Body mass index (BMI) 25
3-5-1-3 Fat mass (FM) 28
3-5-1-4 Fat-free mass/lean mass (FFM/LM) 32
3-5-1-5 Waist circumference (WC) 36
3-5-2 Blood pressure measures 41
3-5-2-1 Systolic blood pressure (SBP) 41
3-5-2-2 Diastolic blood pressure (DBP) 45
3-5-3 Glucose metabolism measures 49
3-5-3-1 Fasting blood glucose (FBG) 49
3-5-3-2 Fasting insulin (FI) 52
3-5-3-3 HbA1c 56
3-5-3-4 HOMA-IR 60
3-5-4 Lipid profile measures 64
3-5-4-1 Total cholesterol (TC) 64
3-5-4-2 Low-density lipoprotein cholesterol (LDL) 68
3-5-4-3 High-density lipoprotein cholesterol (HDL) 71
3-5-4-4 Triglycerides (TG) 75
3-6 Summary of network meta-analysis results 79
3-7 Adherence 88
3-8 Adverse events 88
Chapter 4: Discussion 89
Chapter 5: Conclusion 99
References 100
Supplementary documents 111
-
dc.language.isoen-
dc.subject限時進食、代謝健康、網絡統合分析zh_TW
dc.subject metabolic healthen
dc.subject network meta-analysisen
dc.subjecttime-restricted eatingen
dc.title比較限時進食與其他飲食策略對於代謝健康之影響:系統性文獻回顧與網絡統合分析zh_TW
dc.titleEffects of time-restricted eating in comparison with other dietary strategies on metabolic health: A systematic review and network meta-analysisen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee杜裕康;陳信任;陳勇志zh_TW
dc.contributor.oralexamcommitteeYu-Kang Tu;Hsin-Jen Chen;Yung-Chih Chenen
dc.subject.keyword限時進食、代謝健康、網絡統合分析,zh_TW
dc.subject.keywordtime-restricted eating, metabolic health, network meta-analysis,en
dc.relation.page181-
dc.identifier.doi10.6342/NTU202303889-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-10-
dc.contributor.author-college公共衛生學院-
dc.contributor.author-dept流行病學與預防醫學研究所-
dc.date.embargo-lift2028-08-09-
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
12.11 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved