Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9085
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 高純琇(Churn-Shiouh Gau) | |
dc.contributor.author | Yi-ting Wu | en |
dc.contributor.author | 吳怡霆 | zh_TW |
dc.date.accessioned | 2021-05-20T20:08:45Z | - |
dc.date.available | 2012-09-15 | |
dc.date.available | 2021-05-20T20:08:45Z | - |
dc.date.copyright | 2009-09-15 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-07-31 | |
dc.identifier.citation | 1. Association of American Diabetes. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2009;32:S62-S7.
2. 行政院衛生署統計資訊網. 2009. (Accessed 4/25, 2009, at http://www.doh.gov.tw/statistic/index.htm) 3. American Diabetes Association. 2009. (Accessed 4/235, 2009, at http://www.diabetes.org/diabetes-heart-disease-stroke.jsp) 4. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet 1998;352:837-53. 5. Nathan DM, Buse JB, Davidson MB, et al. Medical management of hyperglycemia in type 2 Diabetes: a consensus algorithm for the initiation and adjustment of therapy. Diabetes Care 2008. 6. Feinglos MN, Bethel MA. Therapy of type 2 diabetes, cardiovascular death, and the UGDP. Am Heart J 1999;138:S346-52. 7. Riveline JP, Danchin N, Ledru F, Varroud-Vial M, Charpentier G. Sulfonylureas and cardiovascular effects: from experimental data to clinical use. Available data in humans and clinical applications. Diabetes Metab 2003;29:207-22. 8. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004;27:1047-53. 9. Roglic G, Unwin N, Bennett PH, et al. The burden of mortality attributable to diabetes: realistic estimates for the year 2000. Diabetes Care 2005;28:2130-5. 10. Curtis L. Triplitt CAR, Willam L. Isley. Diabetes Mellitus. In: Dipiro JT, ed. Pharmacotherapy: a Pathophysiologic Approach. 6 ed. New York: McGraw-Hill; 2005:1334-62. 11. Groop LC, Pelkonen R, Koskimies S, Bottazzo GF, Doniach D. Secondary failure to treatment with oral antidiabetic agents in non-insulin-dependent diabetes. Diabetes Care 1986;9:129-33. 12. Bagust A, Beale S. Deteriorating beta-cell function in type 2 diabetes: a long-term model. QJM 2003;96:281-8. 13. Matthews DR, Cull CA, Stratton IM, Holman RR, Turner RC. UKPDS 26: Sulphonylurea failure in non-insulin-dependent diabetic patients over six years. UK Prospective Diabetes Study (UKPDS) Group. Diabet Med 1998;15:297-303. 14. Turner RC, Cull CA, Frighi V, Holman RR. Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49). UK Prospective Diabetes Study (UKPDS) Group. JAMA 1999;281:2005-12. 15. DeFronzo RA, Ferrannini E, Simonson DC. Fasting hyperglycemia in non-insulin-dependent diabetes mellitus: contributions of excessive hepatic glucose production and impaired tissue glucose uptake. Metabolism 1989;38:387-95. 16. Selvin E, Marinopoulos S, Berkenblit G, et al. Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Ann Intern Med 2004;141:421-31. 17. Yamagishi S, Imaizumi T. Diabetic vascular complications: pathophysiology, biochemical basis and potential therapeutic strategy. Curr Pharm Des 2005;11:2279-99. 18. 第二型糖尿病照護指引. 2006. (Accessed 5/22, 2009, at http://www.endo-dm.org.tw/dia/dia_book.asp?id=1.) 19. Kempen JH, O'Colmain BJ, Leske MC, et al. The prevalence of diabetic retinopathy among adults in the United States. Arch Ophthalmol 2004;122:552-63. 20. Wu AY, Kong NC, de Leon FA, et al. An alarmingly high prevalence of diabetic nephropathy in Asian type 2 diabetic patients: the MicroAlbuminuria Prevalence (MAP) Study. Diabetologia 2005;48:17-26. 21. Bucala R, Mitchell R, Arnold K, Innerarity T, Vlassara H, Cerami A. Identification of the major site of apolipoprotein B modification by advanced glycosylation end products blocking uptake by the low density lipoprotein receptor. J Biol Chem 1995;270:10828-32. 22. Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 1998;339:229-34. 23. Schramm TK, Gislason GH, Kober L, et al. Diabetes patients requiring glucose-lowering therapy and nondiabetics with a prior myocardial infarction carry the same cardiovascular risk: a population study of 3.3 million people. Circulation 2008;117:1945-54. 24. Savage PJ. Cardiovascular complications of diabetes mellitus: what we know and what we need to know about their prevention. Ann Intern Med 1996;124:123-6. 25. Malmberg K, Yusuf S, Gerstein HC, et al. Impact of diabetes on long-term prognosis in patients with unstable angina and non-Q-wave myocardial infarction: results of the OASIS (Organization to Assess Strategies for Ischemic Syndromes) Registry. Circulation 2000;102:1014-9. 26. Evans JM, Wang J, Morris AD. Comparison of cardiovascular risk between patients with type 2 diabetes and those who had had a myocardial infarction: cross sectional and cohort studies. BMJ 2002;324:939-42. 27. Lee CD, Folsom AR, Pankow JS, Brancati FL. Cardiovascular events in diabetic and nondiabetic adults with or without history of myocardial infarction. Circulation 2004;109:855-60. 28. HC G. Cardiovascular disease. In: Gerstein HC H, ed. Evidence-based Diabetes Care. Canada: BC Decker; 2001:488-514. 29. Haffner SM, Agostino RD, Jr., Saad MF, et al. Carotid artery atherosclerosis in type-2 diabetic and nondiabetic subjects with and without symptomatic coronary artery disease (The Insulin Resistance Atherosclerosis Study). Am J Cardiol 2000;85:1395-400. 30. Wagenknecht LE, D'Agostino RB, Jr., Haffner SM, Savage PJ, Rewers M. Impaired glucose tolerance, type 2 diabetes, and carotid wall thickness: the Insulin Resistance Atherosclerosis Study. Diabetes Care 1998;21:1812-8. 31. Sander GE, Giles TD. Diabetes mellitus and heart failure. Am Heart Hosp J 2003;1:273-80. 32. Kannel WB, Hjortland M, Castelli WP. Role of diabetes in congestive heart failure: the Framingham study. Am J Cardiol 1974;34:29-34. 33. Shindler DM, Kostis JB, Yusuf S, et al. Diabetes mellitus, a predictor of morbidity and mortality in the Studies of Left Ventricular Dysfunction (SOLVD) Trials and Registry. Am J Cardiol 1996;77:1017-20. 34. Kamalesh M, Cleophas TJ. Heart failure due to systolic dysfunction and mortality in diabetes: pooled analysis of 39,505 subjects. J Card Fail 2009;15:305-9. 35. Standards of medical care in diabetes--2008. Diabetes Care 2008;31 Suppl 1:S12-54. 36. Krentz AJ, Bailey CJ. Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs 2005;65:385-411. 37. Saenz A, Fernandez-Esteban I, Mataix A, Ausejo M, Roque M, Moher D. Metformin monotherapy for type 2 diabetes mellitus. Cochrane Database Syst Rev 2005:CD002966. 38. Fisman EZ, Tenenbaum A, Motro M, Adler Y. Oral antidiabetic therapy in patients with heart disease. A cardiologic standpoint. Herz 2004;29:290-8. 39. Micormedex® Healthcare Series. Thomson Micromedex., 2009. (Accessed 5/22, 2009, at http://www.thomsonhc.com.) 40. Yki-Jarvinen H. Thiazolidinediones. N Engl J Med 2004;351:1106-18. 41. Malmberg K. Prospective randomised study of intensive insulin treatment on long term survival after acute myocardial infarction in patients with diabetes mellitus. DIGAMI (Diabetes Mellitus, Insulin Glucose Infusion in Acute Myocardial Infarction) Study Group. BMJ 1997;314:1512-5. 42. Doupis J, Veves A. DPP4 inhibitors: a new approach in diabetes treatment. Adv Ther 2008;25:627-43. 43. Ashcroft FM, Gribble FM. Tissue-specific effects of sulfonylureas: lessons from studies of cloned K(ATP) channels. J Diabetes Complications 2000;14:192-6. 44. Gribble FM, Reimann F. Sulphonylurea action revisited: the post-cloning era. Diabetologia 2003;46:875-91. 45. Rendell M. The role of sulphonylureas in the management of type 2 diabetes mellitus. Drugs 2004;64:1339-58. 46. DeFronzo RA. Pharmacologic therapy for type 2 diabetes mellitus. Ann Intern Med 1999;131:281-303. 47. Pfeiffer AFH. Oral hypoglycemic agents: sulfonylureas and meglitinides. In: Goldstein BJ, ed. Textbook of Type 2 Diabetes. 1 ed. United Kindon: Martin Dunitz; 2003. 48. Yildiz BO, Gurlek A. Failure of sulfonylureas in type 2 diabetes. Horm Metab Res 1999;31:293-4. 49. Anthont L McCall MCR. Combination therapy for treatment of type 2 diabetes. In: Goldstein BJ, ed. Textbook of Type 2 Diabetes. 1 ed. United Kindon: Martin Dunitz; 2003. 50. DeFronzo RA, Goodman AM. Efficacy of metformin in patients with non-insulin-dependent diabetes mellitus. The Multicenter Metformin Study Group. N Engl J Med 1995;333:541-9. 51. Riddle M. Combining sulfonylureas and other oral agents. Am J Med 2000;108 Suppl 6a:15S-22S. 52. Olsson J, Lindberg G, Gottsater M, et al. Increased mortality in Type II diabetic patients using sulphonylurea and metformin in combination: a population-based observational study. Diabetologia 2000;43:558-60. 53. Gulliford M, Latinovic R. Mortality in type 2 diabetic subjects prescribed metformin and sulphonylurea drugs in combination: cohort study. Diabetes Metab Res Rev 2004;20:239-45. 54. Johnson JA, Majumdar SR, Simpson SH, Toth EL. Decreased mortality associated with the use of metformin compared with sulfonylurea monotherapy in type 2 diabetes. Diabetes Care 2002;25:2244-8. 55. Rosenstock J. Insulin treatment in type 2 diabetes. United Kindon; 2003. 56. van Staa T, Abenhaim L, Monette J. Rates of hypoglycemia in users of sulfonylureas. J Clin Epidemiol 1997;50:735-41. 57. Gangji AS, Cukierman T, Gerstein HC, Goldsmith CH, Clase CM. A systematic review and meta-analysis of hypoglycemia and cardiovascular events: a comparison of glyburide with other secretagogues and with insulin. Diabetes Care 2007;30:389-94. 58. Miller CD, Phillips LS, Ziemer DC, Gallina DL, Cook CB, El-Kebbi IM. Hypoglycemia in patients with type 2 diabetes mellitus. Arch Intern Med 2001;161:1653-9. 59. Holstein A, Plaschke A, Egberts EH. Clinical characterisation of severe hypoglycaemia--a prospective population-based study. Exp Clin Endocrinol Diabetes 2003;111:364-9. 60. Management of hypoglycemia during treatment of diabetes mellitus UpToDate®, 2009. (Accessed 5/26, 2009, at http://www.utdol.com/home/index.html.) 61. Schernthaner G, Grimaldi A, Di Mario U, et al. GUIDE study: double-blind comparison of once-daily gliclazide MR and glimepiride in type 2 diabetic patients. Eur J Clin Invest 2004;34:535-42. 62. Luis Bautista J, Bugos C, Dirnberger G, Atherton T. Efficacy and safety profile of glimepiride in Mexican American Patients with type 2 diabetes mellitus: a randomized, placebo-controlled study. Clin Ther 2003;25:194-209. 63. Meinert CL, Knatterud GL, Prout TE, Klimt CR. A study of the effects of hypoglycemic agents on vascular complications in patients with adult-onset diabetes. II. Mortality results. Diabetes 1970;19:Suppl:789-830. 64. Kilo C, Miller JP, Williamson JR. The Achilles heel of the University Group Diabetes Program. JAMA 1980;243:450-7. 65. Smits P, Bijlstra PJ, Russel FG, Lutterman JA, Thien T. Cardiovascular effects of sulphonylurea derivatives. Diabetes Res Clin Pract 1996;31 Suppl:S55-9. 66. Schotborgh CE, Wilde AA. Sulfonylurea derivatives in cardiovascular research and in cardiovascular patients. Cardiovasc Res 1997;34:73-80. 67. Negroni JA, Lascano EC, del Valle HF. Glibenclamide action on myocardial function and arrhythmia incidence in the healthy and diabetic heart. Cardiovasc Hematol Agents Med Chem 2007;5:43-53. 68. Toombs CF, Moore TL, Shebuski RJ. Limitation of infarct size in the rabbit by ischaemic preconditioning is reversible with glibenclamide. Cardiovasc Res 1993;27:617-22. 69. Lu H, Remeysen P, De Clerck F. The protection by ischemic preconditioning against myocardial ischemia- and reperfusion-induced arrhythmias is not mediated by ATP-sensitive potassium channels in rats. Coron Artery Dis 1993;4:649-57. 70. Kubota I, Yamaki M, Shibata T, Ikeno E, Hosoya Y, Tomoike H. Role of ATP-sensitive K+ channel on ECG ST segment elevation during a bout of myocardial ischemia. A study on epicardial mapping in dogs. Circulation 1993;88:1845-51. 71. Huizar JF, Gonzalez LA, Alderman J, Smith HS. Sulfonylureas attenuate electrocardiographic ST-segment elevation during an acute myocardial infarction in diabetics. J Am Coll Cardiol 2003;42:1017-21. 72. Langtry HD, Balfour JA. Glimepiride. A review of its use in the management of type 2 diabetes mellitus. Drugs 1998;55:563-84. 73. Ischemic reperfusion injury of the heart. UpToDate®, 2009. (Accessed 5/30, 2009, at http://www.utdol.com/home/index.html.) 74. Cole WC, McPherson CD, Sontag D. ATP-regulated K+ channels protect the myocardium against ischemia/reperfusion damage. Circ Res 1991;69:571-81. 75. Shigematsu S, Sato T, Abe T, Saikawa T, Sakata T, Arita M. Pharmacological evidence for the persistent activation of ATP-sensitive K+ channels in early phase of reperfusion and its protective role against myocardial stunning. Circulation 1995;92:2266-75. 76. del Valle HF, Lascano EC, Negroni JA, Crottogini AJ. Glibenclamide effects on reperfusion-induced malignant arrhythmias and left ventricular mechanical recovery from stunning in conscious sheep. Cardiovasc Res 2001;50:474-85. 77. Thornton JD, Thornton CS, Sterling DL, Downey JM. Blockade of ATP-sensitive potassium channels increases infarct size but does not prevent preconditioning in rabbit hearts. Circ Res 1993;72:44-9. 78. Edwards G, Weston AH. Potassium channel openers and vascular smooth muscle relaxation. Pharmacol Ther 1990;48:237-58. 79. Samaha FF, Heineman FW, Ince C, Fleming J, Balaban RS. ATP-sensitive potassium channel is essential to maintain basal coronary vascular tone in vivo. Am J Physiol 1992;262:C1220-7. 80. Imamura Y, Tomoike H, Narishige T, Takahashi T, Kasuya H, Takeshita A. Glibenclamide decreases basal coronary blood flow in anesthetized dogs. Am J Physiol 1992;263:H399-404. 81. Geisen K, Vegh A, Krause E, Papp JG. Cardiovascular effects of conventional sulfonylureas and glimepiride. Horm Metab Res 1996;28:496-507. 82. Billman GE. The cardiac sarcolemmal ATP-sensitive potassium channel as a novel target for anti-arrhythmic therapy. Pharmacol Ther 2008;120:54-70. 83. Billman GE, Avendano CE, Halliwill JR, Burroughs JM. The effects of the ATP-dependent potassium channel antagonist, glyburide, on coronary blood flow and susceptibility to ventricular fibrillation in unanesthetized dogs. J Cardiovasc Pharmacol 1993;21:197-204. 84. Gribble FM, Reimann F. Differential selectivity of insulin secretagogues: mechanisms, clinical implications, and drug interactions. J Diabetes Complications 2003;17:11-5. 85. Gribble FM, Tucker SJ, Seino S, Ashcroft FM. Tissue specificity of sulfonylureas: studies on cloned cardiac and beta-cell K(ATP) channels. Diabetes 1998;47:1412-8. 86. Tomai F, Crea F, Gaspardone A, et al. Ischemic preconditioning during coronary angioplasty is prevented by glibenclamide, a selective ATP-sensitive K+ channel blocker. Circulation 1994;90:700-5. 87. Lee TM, Su SF, Chou TF, Lee YT, Tsai CH. Loss of preconditioning by attenuated activation of myocardial ATP-sensitive potassium channels in elderly patients undergoing coronary angioplasty. Circulation 2002;105:334-40. 88. Klepzig H, Kober G, Matter C, et al. Sulfonylureas and ischaemic preconditioning; a double-blind, placebo-controlled evaluation of glimepiride and glibenclamide. Eur Heart J 1999;20:439-46. 89. Scognamiglio R, Avogaro A, Vigili de Kreutzenberg S, et al. Effects of treatment with sulfonylurea drugs or insulin on ischemia-induced myocardial dysfunction in type 2 diabetes. Diabetes 2002;51:808-12. 90. Reffelmann T, Klues HG, Hanrath P, Schwarz ER. Post-stenotic coronary blood flow at rest is not altered by therapeutic doses of the oral antidiabetic drug glibenclamide in patients with coronary artery disease. Heart 2002;87:54-60. 91. Bijlstra PJ, Lutterman JA, Russel FG, Thien T, Smits P. Interaction of sulphonylurea derivatives with vascular ATP-sensitive potassium channels in humans. Diabetologia 1996;39:1083-90. 92. Chan JC, Tomlinson B, Critchley JA, Cockram CS, Walden RJ. Metabolic and hemodynamic effects of metformin and glibenclamide in normotensive NIDDM patients. Diabetes Care 1993;16:1035-8. 93. Wysowski DK, Armstrong G, Governale L. Rapid increase in the use of oral antidiabetic drugs in the United States, 1990-2001. Diabetes Care 2003;26:1852-5. 94. Davis TM, Parsons RW, Broadhurst RJ, Hobbs MS, Jamrozik K. Arrhythmias and mortality after myocardial infarction in diabetic patients. Relationship to diabetes treatment. Diabetes Care 1998;21:637-40. 95. Halkin A, Roth A, Jonas M, Behar S. Sulfonylureas are not associated with increased mortality in diabetics treated with thrombolysis for acute myocardial infarction. J Thromb Thrombolysis 2001;12:177-84. 96. Danchin N, Charpentier G, Ledru F, et al. Role of previous treatment with sulfonylureas in diabetic patients with acute myocardial infarction: results from a nationwide French registry. Diabetes Metab Res Rev 2005;21:143-9. 97. Horsdal HT, Johnsen SP, Sondergaard F, et al. Sulfonylureas and prognosis after myocardial infarction in patients with diabetes: a population-based follow-up study. Diabetes Metab Res Rev 2009. 98. Jollis JG, Simpson RJ, Jr., Cascio WE, Chowdhury MK, Crouse JR, 3rd, Smith SC, Jr. Relation between sulfonylurea therapy, complications, and outcome for elderly patients with acute myocardial infarction. Am Heart J 1999;138:S376-80. 99. Garratt KN, Brady PA, Hassinger NL, Grill DE, Terzic A, Holmes DR, Jr. Sulfonylurea drugs increase early mortality in patients with diabetes mellitus after direct angioplasty for acute myocardial infarction. J Am Coll Cardiol 1999;33:119-24. 100. Brady PA, Al-Suwaidi J, Kopecky SL, Terzic A. Sulfonylureas and mortality in diabetic patients after myocardial infarction. Circulation 1998;97:709-10. 101. Fisman EZ, Tenenbaum A, Boyko V, et al. Oral antidiabetic treatment in patients with coronary disease: time-related increased mortality on combined glyburide/metformin therapy over a 7.7-year follow-up. Clin Cardiol 2001;24:151-8. 102. Evans JM, Ogston SA, Emslie-Smith A, Morris AD. Risk of mortality and adverse cardiovascular outcomes in type 2 diabetes: a comparison of patients treated with sulfonylureas and metformin. Diabetologia 2006;49:930-6. 103. Simpson SH, Majumdar SR, Tsuyuki RT, Eurich DT, Johnson JA. Dose-response relation between sulfonylurea drugs and mortality in type 2 diabetes mellitus: a population-based cohort study. CMAJ 2006;174:169-74. 104. Margolis DJ, Hoffstad O, Strom BL. Association between serious ischemic cardiac outcomes and medications used to treat diabetes. Pharmacoepidemiol Drug Saf 2008;17:753-9. 105. Evans JM, Ogston SA, Reimann F, Gribble FM, Morris AD, Pearson ER. No differences in mortality between users of pancreatic-specific and non-pancreatic-specific sulphonylureas: a cohort analysis. Diabetes Obes Metab 2008;10:350-2. 106. Aronow WS, Ahn C. Incidence of new coronary events in older persons with diabetes mellitus and prior myocardial infarction treated with sulfonylureas, insulin, metformin, and diet alone. Am J Cardiol 2001;88:556-7. 107. International Diabetes Federation. 2009. (Accessed 6/1, 2009, at http://www.idf.org/diabetes-prevalence.) 108. Chou P, Li CL, Tsai ST. Epidemiology of type 2 diabetes in Taiwan. Diabetes Res Clin Pract 2001;54 Suppl 1:S29-35. 109. Nathan DM, Buse JB, Davidson MB, et al. Management of hyperglycemia in type 2 diabetes: A consensus algorithm for the initiation and adjustment of therapy: a consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 2006;29:1963-72. 110. Chiang CW, Chiu HF, Chen CY, Wu HL, Yang CY. Trends in the use of oral antidiabetic drugs by outpatients in Taiwan: 1997-2003. J Clin Pharm Ther 2006;31:73-82. 111. 全民健康保險資料庫藥品檔(DRUG2006). In. Taiwan: 國家衛生研究院; 2006. 112. Del Prato S, Pulizzi N. The place of sulfonylureas in the therapy for type 2 diabetes mellitus. Metabolism 2006;55:S20-7. 113. Chuang LM, Tsai ST, Huang BY, Tai TY. The current state of diabetes management in Taiwan. Diabetes Res Clin Pract 2001;54 Suppl 1:S55-65. 114. McAfee AT, Koro C, Landon J, Ziyadeh N, Walker AM. Coronary heart disease outcomes in patients receiving antidiabetic agents. Pharmacoepidemiol Drug Saf 2007;16:711-25. 115. Walker AM, Koro CE, Landon J. Coronary heart disease outcomes in patients receiving antidiabetic agents in the PharMetrics database 2000-2007. Pharmacoepidemiol Drug Saf 2008;17:760-8. 116. Monami M, Balzi D, Lamanna C, et al. Are sulphonylureas all the same? A cohort study on cardiovascular and cancer-related mortality. Diabetes Metab Res Rev 2007;23:479-84. 117. Mamputu JC, Renier G. Gliclazide decreases vascular smooth muscle cell dysfunction induced by cell-mediated oxidized low-density lipoprotein. Metabolism 2001;50:688-95. 118. Renier G, Mamputu JC, Serri O. Benefits of gliclazide in the atherosclerotic process: decrease in monocyte adhesion to endothelial cells. Metabolism 2003;52:13-8. 119. Selvin E, Bolen S, Yeh HC, et al. Cardiovascular outcomes in trials of oral diabetes medications: a systematic review. Arch Intern Med 2008;168:2070-80. 120. Mellbin LG, Malmberg K, Norhammar A, Wedel H, Ryden L. The impact of glucose lowering treatment on long-term prognosis in patients with type 2 diabetes and myocardial infarction: a report from the DIGAMI 2 trial. Eur Heart J 2008;29:166-76. 121. Iribarren C, Karter AJ, Go AS, et al. Glycemic control and heart failure among adult patients with diabetes. Circulation 2001;103:2668-73. 122. Stratton IM, Adler AI, Neil HA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 2000;321:405-12. 123. Srikanthan P, Hsueh W. Preventing heart failure in patients with diabetes. Med Clin North Am 2004;88:1237-56. 124. Kane GC, Liu XK, Yamada S, Olson TM, Terzic A. Cardiac KATP channels in health and disease. J Mol Cell Cardiol 2005;38:937-43. 125. Lee TM, Lin MS, Tsai CH, Huang CL, Chang NC. Effects of sulfonylureas on left ventricular mass in type 2 diabetic patients. Am J Physiol Heart Circ Physiol 2007;292:H608-13. 126. Huupponen R. Adverse cardiovascular effects of sulphonylurea drugs. Clinical significance. Med Toxicol 1987;2:190-209. 127. Pantalone KM, Kattan MW, Yu C, et al. The risk of developing coronary artery disease or congestive heart failure, and overall mortality, in type 2 diabetic patients receiving rosiglitazone, pioglitazone, metformin, or sulfonylureas: a retrospective analysis. Acta Diabetol 2009;46:145-54. 128. Malaisse WJ. Gliquidone contributes to improvement of type 2 diabetes mellitus management: a review of pharmacokinetic and clinical trial data. Drugs R D 2006;7:331-7. 129. Harrower AD. Comparison of diabetic control in type 2 (non-insulin dependent) diabetic patients treated with different sulphonylureas. Curr Med Res Opin 1985;9:676-80. 130. Robert B. Parker JHP, and Julie A. Johnson. Heart Failure. In: Dipiro JT, ed. Pharmacotherapy: a Pathophysiologic Approach. 6 ed. New York: McGraw-Hill; 2005:256-60. 131. Hess SCFaDC. Stroke. In: Dipiro JT, ed. Pharmacotherapy: a Pathophysiologic Approach. 6 ed. New York: McGraw-Hill; 2006:415-28. 132. Papanas N, Tziakas D, Chalikias G, et al. Gliclazide treatment lowers serum ICAM-1 levels in poorly controlled type 2 diabetic patients. Diabetes Metab 2006;32:344-9. 133. Ziegler O, Drouin P. Hemobiological properties of gliclazide. J Diabetes Complications 1994;8:235-9. 134. Jennings PE. Vascular benefits of gliclazide beyond glycemic control. Metabolism 2000;49:17-20. 135. Katakami N, Yamasaki Y, Hayaishi-Okano R, et al. Metformin or gliclazide, rather than glibenclamide, attenuate progression of carotid intima-media thickness in subjects with type 2 diabetes. Diabetologia 2004;47:1906-13. 136. Koshiba K, Nomura M, Nakaya Y, Ito S. Efficacy of glimepiride on insulin resistance, adipocytokines, and atherosclerosis. J Med Invest 2006;53:87-94. 137. Schiekofer S, Rudofsky G, Jr., Andrassy M, et al. Glimepiride reduces mononuclear activation of the redox-sensitive transcription factor nuclear factor-kappa B. Diabetes Obes Metab 2003;5:251-61. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9085 | - |
dc.description.abstract | 研究背景 心肌梗塞等大血管病變是第二型糖尿病患的主要死因。1970年代的Uiversity Group Diabetes Program (UGDP) 研究發現,第一代磺醯尿素類藥物(sulfonylureas,SU),tolbutamide,有增加心血管死亡率之疑慮。雖然在體外實驗與動物實驗已發現,SU藥物可能會抑制心血管系統之K(ATP) channel,影響心臟的缺血性調適功能(ischemic preconditioning),但是自從UGDP研究之後,並沒有針對此議題進行探討的大型臨床試驗。而各國以資料庫針對此議題執行的觀察性研究之結果並不一致。有鑑於SU藥物在第二型糖尿病的治療上佔有重要地位,而目前國內尚沒有探討此議題的全國性藥物流行病學研究,因此希望本研究能提供國內臨床醫療人員關於藥物選擇的參考。
研究目的 針對門診或住院期間新開方糖尿病藥物的第二型糖尿病患,探討SU藥物相較於其他糖尿病藥物,發生心血管相關住院事件的風險。此外,也針對不同種類的SU藥物在臨床上的使用,進行比較分析,以探討這些藥物對於心血管住院事件的影響。 研究方法 本研究為一項以台灣全民健保資料庫為材料執行的回溯性世代研究,利用健保資料庫2005年一百萬人承保抽樣歸人檔(LHID 2005),收集2001年1月1日至2007年12月31日期間,於門診或住院期間新開方糖尿病藥物且大於18歲的糖尿病患為研究對象。本研究共分為2部分,第一部份,根據研究期間內使用過SU藥物(SU組)與未使用過SU藥物(Non-SU組)將研究族群分為兩組,進行描述性統計分析,探討兩組病人在人口統計學、臨床用藥分布狀況之異同。另外,根據SU組病人在研究期間內有否使用過glyburide,進一步分為兩個次族群分組(GLY組與Non-GLY組),進行上述描述性統計分析。第二部份,利用time dependent Cox proportional hazard model進行以下三個研究終點事件的多變項迴歸存活分析:急性心肌梗塞與心臟血管手術住院事件(MI事件)、心衰竭住院事件(HF事件)、缺血性中風住院事件(IS事件),以探討SU藥物在短期暴露(30天)與長期暴露(365天)兩種狀況下,發生這三個研究終點事件之風險。另外,將各個SU藥物獨立分為各單項後再進行分析,以探討個別sulfonylureas藥物對於研究終點的影響。而我們也針對口服降血糖藥物的累積暴露劑量,進行上述迴歸模式的分析。 研究結果 經過篩選之後,2001年至2007年間,符合本研究篩選條件的病患共37290位,平均年齡為55.9±14.4歲(mean±SD);51.2%為男性。其中SU組為28340人,Non-SU組為8950人。第一部份的研究結果,在平均年齡(mean±SD)方面,SU組與Non-SU組之平均年齡分別為56.6±13.17歲與53.7±17.4歲;性別方面,男性在這兩組分別佔54.2%與41.7%。SU組病人在進入本世代研究後,使用各種糖尿病與血管藥物的人數比例均顯著高於Non-SU組。而GLY組進入世代研究後在心血管與糖尿病藥物之使用人數比例上,均顯著高於Non-GLY組。第二部份研究結果,針對MI事件,在校正相關的干擾因子後,顯示MI事件前30天有否使用過SU藥物,對於MI事件的發生沒有顯著影響。至於MI事件前365天內曾暴露過SU藥物的病人,相較於未暴露過SU藥物者發生MI事件之hazard ratio (HR)為1.15 (95% CI:0.99-1.32),僅存在邊際顯著意義(p值=0.0598)。在同一模式下,若將SU藥物獨立開來分析,則發現gliclazide之HR為1.2 (95% CI:1.04-1.39),達到統計顯著意義(p值=0.012)。而HF事件方面,在HF事件發生前30天有否使用過SU藥物對於HF事件之發生沒有顯著影響。而在HF事件發生前365天曾暴露過SU藥物,對發生HF事件之風險並未較高。但在同一模式下,若將SU藥物獨立開來分析,則顯示gliquidone之HR為2.08 (95% CI:1.11-3.38,p值=0.022)。至於IS事件方面,在IS事件前30天曾使用過SU藥物,對於IS事件之HR顯著較低,其中以gliclazide與glimepiride之效果較為顯著。而IS事件前365天曾使用過SU藥物,對於IS事件之HR則沒有顯著影響。且將SU藥物獨立開分析的結果顯示,在IS事件前365天曾使用過glyburide可能有較高之風險。 結論 研究期間使用過SU藥物者與未使用者,在族群基本特性以及心血管、糖尿病藥物的使用等背景資料存在差異,包括SU組年齡較高、使用心血管及糖尿病藥物人數比例較高等。而使用過glyburide與未使用過glyburide兩個SU藥物暴露族群,在藥物開方型態上亦有所不同。SU藥物對於急性心肌梗塞與心臟血管手術事件,在短期(30天)與長期(365天)的暴露下雖未發現顯著的影響,但其中在心肌梗塞事件前一年內,使用過gliclazide者可能具有較高的風險。對於心衰竭事件,只有在前一年內使用過gliquidone,可能和發生心衰竭事件具有較高相關性。而在缺血性中風方面,SU藥物在30天與365天內的暴露具有保護性的效果,以glimepiride與gliclazide較顯著,但其365天內的保護效果可能會受到glyburide的影響。本研究結果顯示各種SU藥物對於心血管系統的影響並不一致,因此後續的研究或許可以由個別藥物的角度進行更深入之探討。 | zh_TW |
dc.description.abstract | Background Macrovascular complication is one of the main causes of death in patients with type 2 diabetes. In 1970s, the large clinical trial, University Group Diabetes Program (UGDP) study, pointed out that the first generation sulfonylureas (SU), tolbutamide, could be associated with higher cardiovascular mortality. Although it had been found that sulfonylureas would inhibit the K(ATP) channel in cardiovascular system to prevent the ischemic preconditioning, there has not been any large clinical trial investigating the controversial issue. The results of observational studies based on databse were not consistent with each other. Since sulfonylureas remain the mainstay in the pharmacotherapy of diabetes and to our knowledge, there has not been any pharmacoepidemiological study designed for this issue in Taiwan, so we conducted the present study to provide a reference for clinical medical staffs to select medications.
Objective The study aimed to assess the association between the exposure of sulfonylureas and the risk of cardiovascular events on new users of antidiabetic medications, and furthermore, to compare the effects of individual sulfonylureas on the cardiovascular events. Mehtod This was a retrospective cohort study based on the National Health Insurance Research Database (NHIRD) in Taiwan. We established a cohort of patients with diabetes and aged older than 18 years, who initiated any antidiabetic medications between January 2001 and December 2007. Descriptive analysis. We divided our cohort into 2 groups according to the exposure of sulfonylureas. The SU group was composed of the patients who had ever used sulfonylureas, and the Non-SU group included the ones who had never used sulfonylureas. We compared the demographic characteristics and the patterns of the usage of antidiabetic and cardiovascular medications between the 2 groups. Besides, we divided the SU group into 2 sub-groups: the GLY group was the patients who had ever used glyburide, and the Non-GLY group was the ones who had never used. And the above comparison was conducted for the 2 sub-groups. Survival analysis. There were 3 end points in the present study: hospitalization for acute myocardial infarction and coronary revascularization (MI event), hospitalization for congestive heart failure (HF event), and hospitalization for ischemic stroke (IS event). We fitted 2 multivariate time dependent Cox proportional hazard models to evaluate the adjusted hazard ratio (HR) of all sulfonylureas and individual sulfonylureas for each end point. One of the models was constructed to estimate the HR for patients who exposed sulfonylureas during 30 days before the event, and the other one was similar but to assess the exposure of sulfonylureas during 365 days before the event. We also analyzed the effects of the accumulative dosage of oral hypoglycemic agents (OHAs) in the above 2 models. Results A total of 37290 eligible patients were included in the cohort during 2001 to 2007. The mean age of the cohort was 55.9±14.4 years (mean±SD); 51.2% were male. There were 28340 patients in SU group and 8950 in Non-SU group. The mean age of both groups was 56.6±13.17 years (mean±SD) and 53.7±17.4 years respectively. The male patients were 54.2% in SU group and 41.7% in Non-SU group. After the index date, the proportion of prescription of antidiabetic and CV medications in SU group was significant higher than Non-SU group. And the similar condition was also found in GLY group and Non-GLY group. Aftter adjusting the related confounding factors, the exposure of sulfonylureas during 30 days before MI events was not associated with the occurance of MI events. And there was a trend of increased risk for the patients who exposed sulfonylureas during 365 days before MI events (HR: 1.15, 95%CI: 0.99-1.32, p-value: 0.0598). If we analyzed individual sulfonylurea in the 365-day model, it was found that the HR of gliclazide was 1.2 (95% CI: 1.04-1.39, p-value:0.012). In the analysis of HF events, the variable of sulfonylureas was not significant in the model of 30 days before HF events, and the results were similar in the 365-day model. When seperating the individual sulfonylureas, the HR of gliquidone was 2.08 (95% CI: 1.11-3.38, p-vaule: 0.022). In IS events, the exposure of sulfonylureas during 30 days before IS event was associated with decreased risk, especially for gliclazide and glimepiride. But the protective effect did not exist in the 365-day model. Interestingly, the exposure of glyburide during 365 days before IS events could increase the risk of IS events. Conclusion In our findings, the demographic characteristics and the prescription of antidiabetic and CV durgs were significant different in SU group and Non-SU group. And the prescription patterns in GLY group and Non-GLY group was different. Moreover, patients who exposed sulfonylureas during 30 days or 365 days were not at elevated risk of MI event. But we found the individual one, gliclazide, would be associated with higher risk of MI events in the past 1 year. In HF event, we only found the association between gliquidone and increased risk of hospitalization for CHF when exposing 1 year before. Lastly, sulfonylureas would provide protective effects on ischemic stroke in short-term or long-term exposure, especially gliclazide and glimepiride. But the protection in the period as long as 365 days might be balanced by glyburide. The results in the present study indicated that the impact on CV system of individual sulfonylureas were different, we recommend that the further studies might be designed to explore the issue more deeply. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T20:08:45Z (GMT). No. of bitstreams: 1 ntu-98-R96451009-1.pdf: 3820780 bytes, checksum: 4ac870551541ef5616181eba83d3ee3f (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 謝辭 i
中文摘要 ii Abstract v 目錄 viii 圖目錄 xii 表目錄 xiii 第1章 前言 1 第2章 文獻回顧 3 第1節 糖尿病在全球與台灣之流行病學 3 第2節 糖尿病之分類、病理生理學、與診斷 4 2.2.1 糖尿病之分類1, 10 4 2.2.2第二型糖尿病之病理生理學10 5 2.2.3 糖尿病的診斷1 6 第3節 糖尿病之心臟血管併發症 9 2.3.1 小血管病變18 9 2.3.2 大血管病變 10 第4節 糖尿病之治療學 14 2.4.1 糖尿病的治療目標35 14 2.4.2糖尿病之藥物治療學 15 第5節 磺醯尿素類(sulfonylureas)藥物之介紹 21 2.5.1 磺醯尿素類(sulfonylureas)藥物之藥理作用與磺醯尿素受器43, 44 21 2.5.2磺醯尿素類之藥效學與藥動學 22 2.5.3 磺醯尿素類的副作用 27 第6節 磺醯尿素類與心臟血管疾病 30 2.6.1 議題的開端--UGDP試驗 30 2.6.2 磺醯尿素類影響心臟血管功能之機轉與動物實驗 31 2.6.3 磺醯尿素類對心血管系統磺醯尿素受器(SUR)的選擇性 36 2.6.4 探討磺醯尿素類和心血管系統的小型臨床研究 37 2.6.5探討磺醯尿素類和心血管系統的觀察性研究 40 第3章 研究目的 49 第4章 研究方法 50 第1節 研究材料5 50 第2節 研究設計、研究族群建立、研究終點定義 52 4.2.1 研究設計 52 4.2.2 研究族群的納入條件與排除條件 52 4.2.3 研究終點(endpoint)定義 55 4.2.4 研究期間定義 56 4.2.5 研究分組定義 57 4.2.6 研究資料收集 58 4.2.7 統計分析 60 第5章 研究結果 67 第1節 研究族群與背景資料分析 67 5.1.1 研究族群建立過程與背景分析 67 5.1.2 研究族群分組結果 69 5.1.3 SU組與Non-SU組的年齡、性別資料分析 70 5.1.4 SU組與Non-SU組之糖尿病、心血管用藥、住院事件背景資料分析 71 5.1.5 GLY組與Non-GLY組年齡、性別背景資料分析 74 5.1.6 GLY組與Non-GLY組之糖尿病、心血管用藥、住院事件背景資料分析 75 5.1.7 GLY組與Non-GLY組初次開方sulfonylureas的開方型態分析 79 第2節 研究終點—心肌梗塞與心血管手術住院事件 83 5.2.1 心肌梗塞與心血管手術住院事件(MI事件)之研究族群與粗發生率 83 5.2.2 MI-SU組與MI-Non-SU組進行MI事件的存活分析 84 5.2.3 MI-GLY組、MI-Non-GLY組與MI-Non-SU組進行MI事件的存活分析 88 第3節 研究終點—心衰竭住院事件 94 5.3.1 心衰竭住院事件事件(HF事件)之研究族群與粗發生率 94 5.3.2 HF-SU組與HF-Non-SU組進行MI事件的存活分析 95 5.3.3 HF-GLY組、HF-Non-GLY組與HF-Non-SU組進行HF事件的存活分析 100 第4節 研究終點—缺血性中風住院事件 105 5.4.1 中風住院事件件(IS事件)之研究族群與粗發生率 105 5.4.2 IS-SU組與IS-Non-SU組進行IS事件的存活分析 106 5.4.3 IS-GLY組、IS-Non-GLY組與IS-Non-SU組進行IS事件的存活分析 110 第6章 討論 116 第1節 研究族群背景資料與研究族群分組之用藥 116 6.1.1研究族群背景資料 116 6.1.2 SU組與Non-SU組之心血管與糖尿病藥物的使用 118 6.1.3 GLY組與Non-GLY組病人之心血管與糖尿病藥物的使用 119 第2節 Sulfonylureas藥物與心肌梗塞及心臟血管手術事件 122 6.2.1 Sulfonylureas藥物於MI事件存活分析之結果 122 6.2.2 MI-30天模式與MI-365天模式之結果討論 123 6.2.3 由其他文獻探討MI事件的研究結果與臨床建議 132 第3節 Sulfonylureas藥物與心臟衰竭住院事件 134 6.3.1 Sulfonylureas藥物於HF事件存活分析 134 第4節 Sulfonylureas藥物與缺血性中風住院事件 140 6.4.1 Sulfonylureas藥物於IS事件存活分析之結果 140 第5節 本研究之研究限制與優點 144 6.5.1 本研究之限制 144 6.5.2 本研究之特色與優點 144 第7章 結論 146 參考資料 147 | |
dc.language.iso | zh-TW | |
dc.title | 磺醯尿素類對第二型糖尿病人心臟血管風險之探討:
以全民健康保險資料庫為材料之藥物流行病學研究 | zh_TW |
dc.title | The Effect of Sulfonylureas on the Cardiovascular Risk of Patients with Type II Diabetes Mellitus: a Pharmacoepidemiological Study Based on National Health Insurance Research Database | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃文鴻(Weng-Foung Huang),高淑芬(Susan Shur-Fen Gau),林美淑(Mei-Shu Lin) | |
dc.subject.keyword | 磺醯尿素,第二型糖尿病,心血管風險, | zh_TW |
dc.subject.keyword | sulfonylurea,type 2 diabetes,cardiovascular risk, | en |
dc.relation.page | 157 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2009-07-31 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 臨床藥學研究所 | zh_TW |
Appears in Collections: | 臨床藥學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-98-1.pdf | 3.73 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.